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tA generi
 methodology is proposed for the des
ription of ele
trostati
 plasmamodes via a general 
ollisionless (unmagnetized) Lagrangian (single-) 
uid model.The linear and weakly nonlinear os
illations regimes are investigated. The modu-lational stability pro�le of dust a
ousti
 waves is dis
ussed, as a 
ase study.1. Introdu
tion. A variety of known ele
trostati
 plasma waves [1℄ refer to propagat-ing os
illations of one dynami
al plasma 
onstituent � (massm�, 
harge q� � s�Z�e; e isthe absolute ele
tron 
harge; s� = q�=jq�j = �1 is the 
harge sign) against one (or more)ba
kground 
onstituent(s) �0 (mass m�0 , 
harge q�0 � s�0Z�0e, similarly), whi
h is (are)
onsidered to obey a known distribution, e.g. in a �xed (uniform) or in a thermalized(Maxwellian) state, depending on the parti
ular aspe
ts (e.g. frequen
y s
ales) of thephysi
al system 
onsidered. For instan
e, the ion-a
ousti
 mode [1℄ refers to ions (� = i)os
illating against a Maxwellian ele
tron ba
kground (�0 = e), the dust-a
ousti
 mode[2℄ refers to low-frequen
y os
illations of 
harged dust grains (� = d) against a ther-malized ion and ele
tron ba
kground (�0 = i; e), and so forth. An ele
trostati
 plasmamode is thus often eÆ
iently des
ribed via a single 
uid model, where the dynami
s ofthe inertial spe
ies � obeys the density n� (
onservation) and the mean 
uid velo
ity u�(moment evolution) equations, 
onsidering the ele
tri
 for
e F = �q�r� in the latter(and omitting the Lorentz for
e therein, sin
e propagation along the external magneti
�eld lines, � ẑ, is 
onsidered). The pressure dynami
s (i.e. the temperature e�e
t) isomitted in this (
old 
uid) des
ription. The system is then 
losed by 
onsidering Pois-son's equation, for the ele
tri
 potential �. Overall neutrality is assumed at equilibrium,i.e. P�=�;f�0g n�;0 q� = 0.2. The model. In this brief paper, we aim in suggesting a generi
 model for thestudy of the modulational (in)stability of ele
trostati
 plasma waves, by employing aLagrangian des
ription, i.e. looking into a moving frame whi
h follows the 
uid motionat velo
ity u�. This is a
hieved by introdu
ing the Lagrangian variables f�; �g,� = z � Z �0 u(�; � 0) d� 0 ; � = t : (1)
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This Lagrange transformation has been widely studied in 
uid me
hani
s and in plasmaphysi
s [3 - 5℄. See that the two sets of 
oordinates 
oin
ide at t = 0. The spa
e andtime gradients are now �=�z ! ��1 �=�� and �=�t! �=�� � ��1 u� �=��, where�(�; �) � �x�� = 1 + Z �0 d� 0 ���u�(�; � 0) : (2)Note that the 
onve
tive derivative D � �=�t+u �=�x is now plainly identi�ed to �=�� .Also noti
e that � satis�es �(�; � = 0) = 0, and ��(�; �)=�� = �u�(�; �)=��.The Lagrangian transformation de�ned above leads to a new set of redu
ed equationsn�(�; �) = ��1(�; �)n�(�; 0) (3)�u�(�; �)�� = s�Z�em� E(�; �) � �s�Z�em� ��1(�; �) ��(�; �)�� ; (4)��1(�; �) �E(�; �)�� = 4� s� Z� e [n�(�; �)� n̂ n�;0℄ ; (5)� ��� � ��1u� ����E(�; �) = �4� s� Z� e n�(�; �) u�(�; �) : (6)The (dimensionless) quantity n̂ � �P�0 n�0q�0=(n�;0q�) is in fa
t a known exa
t fun
tionof �, to be de�ned for ea
h spe
i�
 problem under 
onsideration. Poisson's equation isobtained by 
ombining Eqs. (4) and (5):��1 ������1 ���� � = �4� s� Z� e (n� � n̂ n�;0) : (7)In prin
iple, one's aim is to solve the system of Eqs. (3) to (6) or, in terms of �, Eqs.(3), (4) and (7), for a given initial 
ondition n�(�; � = 0) = n0(�), and then invert ba
kto fz; tg. However, this abstra
t s
heme is de�nitely not a trivial task to a

omplish.3. Nonlinear ele
trostati
 os
illations. Combining Eqs. (4) to (6), one obtains�2u��� 2 = �!2p;� n̂ u� ; (8)where !p;� is the plasma frequen
y !p;� = (4�n�;0Z2�e2=m�)1=2. Despite its apparentsimpli
ity, Eq. (8) is neither an ordinary di�erential equation nor a 
losed evolutionequation for the mean velo
ity u�(�; �): re
all that the (normalized) ba
kground parti
ledensity n̂ depends on the potential �, whose evolution in turn involves u�(�; �) [via�(�; �)℄ and n�(�; �). Eq. (8) suggests that the system performs nonlinear os
illationsat a frequen
y ! = !p;� n̂1=2. Near equilibrium n̂ � 1 (thanks to 
harge quasi-neutrality)and one plainly re
overs a linear os
illation at the plasma frequen
y !p;�. Unfortunatelythis apparent simpli
ity, whi
h might in prin
iple enable one to solve for u(�; �) and
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then obtain f�; �g in terms of fz; tg and vi
e versa (
f. [3℄) is in general illusory : theos
illations des
ribed by Eq. (8) are intrinsi
ally nonlinear and (unless n̂ = 
onst:; 
f.e.g. Refs. [3, 4℄ for ele
tron-a
ousti
 waves), one has to retain all of Eqs. (3) to (7).4. Redu
tive perturbation analysis. The above system of evolution equations de-s
ribes ele
trostati
 os
illations in the form of harmoni
 waves, i.e. S = S0 exp[i(k� �!�)℄ + 
:
: (S denotes the state ve
tor fn�; u�; E; �; �g). In order to study the mod-ulational stability pro�le of these ele
trostati
 waves and model the nonlinear har-moni
 generation me
hanism entering into play when their amplitude be
omes non-negligible, we 
onsider small deviations from the equilibrium state S(0) = (1; 0; 0; 0; 1)T ,i.e. S = S(0) + �S(1) + �2S(2) + :::, where � � 1 is a smallness parameter. We haveassumed that Sj(n) = P1l=�1 S(n)j;l (Z; T ) eil(k��!�) (for j = 1; 2; :::; 5; S(n)j;�l = S(n)j;l �, forreality), thus allowing the wave amplitude to depend on the stret
hed (slow) Lagrangian
oordinates Z = �(� � vg �) ; T = �2 � [where vg = !0(k) is the wave group velo
ity℄.For 
onvenien
e, time and spa
e are s
aled by (appropriately 
hosen, for a given prob-lem) s
ales �̂ (e.g. !�1p;�) and �̂ = V � [where V = (kBT�=m�)1=2; T� is a 
hara
teristi
temperature, to be appropriately de�ned℄ also n, u and � are s
aled over n�;0, V andkBT�=jq�j, respe
tively. Taylor expanding n̂(�) near � � 0 (viz. � � ��1 + �2�2 + :::),n̂ � 1 + 
1�+ 
2�2 + 
3�3 + :::= 1 + �
1�1 + �2(
1�2 + 
2�21) + �3(
1�3 + 2
2�1�2 + 
3�31) + ::: : (9)The 
oeÆ
ients 
j (j = 1; 2; :::), to be determined from (the exa
t de�nition of) n̂ forany given problem, 
ontain all the essential dependen
e on the plasma parameters.One is now left with the task of isolating orders in �n (i.e. n = 1; 2; :::) and su

essivelysolve for the harmoni
 amplitudes S(n)j;l . The equations for n = l = 1 yield�(1)1 =  ; n(1)1 = ��(1)1 = s(k2=!2) ; u(1)1 = s(k=!) ; E(1)1 = �i k ; (10)along with the dispersion relation !2 = k2=(k2 + s
1) y. For n = 2, we obtain theamplitudes of the 2nd harmoni
s S(2)2 and 
onstant (`dire
t 
urrent' ) terms S(2)0 , as wellas a �nite 
ontribution S(2)1 to the �rst harmoni
s (expressions omitted here, for brevity).To order � �3, the equations for l = 1 yield an expli
it 
ompatibility 
ondition in theform of a nonlinear S
hr�odinger{type equationi � �T + P �2 �Z2 +Q j j2  = 0 : (11)The dispersion 
oeÆ
ient P is related to the 
urvature of the dispersion 
urve as P =!00(k)=2 = �3!3(1�!2)=(2k2) < 0 (8 k). The nonlinearity 
oeÆ
ient Q, due to 
arrier

31st EPS 2004; IoannisKourakis et al. : Lagrangian formulation of electrostatic plasma waves - Application to ... 3 of 4



wave self-intera
tion, is given by the expressionQ = + !312 k4 �(�9
41 + 12
21
2 � 4
22) + [6(s� 3)
1
2 � 15s
31 + 18s
3℄ k2�[3
21 + 6(3s+ 1)
2℄ k4 + 3s
1 k6� : (12)At long wavelengths, Q behaves asQ � �(3
21�2
2)2=(12k) (for any 
harge sign s = �1).We note a strong modi�
ation in the wave's nonlinear pro�le (
f. the form of the Q
oeÆ
ient) in this Lagrangian des
ription, with respe
t to its Eulerian 
ounterpart.5. A 
ase study: Dust A
ousti
 waves. Applying the above formalism to dusta
ousti
 waves [2, 7℄, viz. � = d (dust) and �0 = e; i, with ne = ne;0 exp[e�=(kBTe)℄and ni = ni;0 exp[�Zie�=(kBTi)℄ (and s = �1= + 1 for negatively/positively 
hargeddust grains), one obtains: 
1 = ��1(1 + ��2)=(1 � �) , 
2 = +�21(1 � ��22)=[2(1 � �)℄ ,and 
3 = ��1(1� ��32)=[6(1� �)℄ , having de�ned the dust parameter � = ne;0=(Zini;0),the parameters �1 = ZiTeff=(ZdTi) and �2 = Ti=ZiTe, the s
ales �̂ = !�1p;d and �̂ =
d�̂ , where 
d = !p;d(��2D;e + ��2D;i)�1=2 � (Teff=md)1=2, and making use of the neutrality
ondition at equilibrium. Note that the sign of 
1=
2=
3 is s= � s=s, respe
tively (sos
1 > 0). A simple numeri
al analysis shows that long wavelength dust-a
ousti
 waveswill be modulationally unstable to perturbations, sin
e PQ > 0, whi
h may result in theformation of bright-type envelope ex
itations, while wavelengths shorter than a thresholdwill be stable, and may propagate as dark/gray-type envelope modulated wavepa
kets[6, 7℄.A
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