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Abstract
A generic methodology is proposed for the description of electrostatic plasma
modes via a general collisionless (unmagnetized) Lagrangian (single-) fluid model.
The linear and weakly nonlinear oscillations regimes are investigated. The modu-
lational stability profile of dust acoustic waves is discussed, as a case study.

1. Introduction. A variety of known electrostatic plasma waves [1] refer to propagat-
ing oscillations of one dynamical plasma constituent « (mass m, charge g, = s, Zye€; € is
the absolute electron charge; s, = ¢o/|qa| = 1 is the charge sign) against one (or more)
background constituent(s) o' (mass my, charge go = So Zare, similarly), which is (are)
considered to obey a known distribution, e.g. in a fixed (uniform) or in a thermalized
(Maxwellian) state, depending on the particular aspects (e.g. frequency scales) of the
physical system considered. For instance, the ion-acoustic mode [1] refers to ions (« = 7)
oscillating against a Maxwellian electron background (¢/ = e), the dust-acoustic mode
[2] refers to low-frequency oscillations of charged dust grains (o = d) against a ther-
malized ion and electron background (o' = i,e), and so forth. An electrostatic plasma
mode is thus often efficiently described via a single fluid model, where the dynamics of
the inertial species o obeys the density n, (conservation) and the mean fluid velocity u,
(moment evolution) equations, considering the electric force F = —¢,V¢ in the latter
(and omitting the Lorentz force therein, since propagation along the external magnetic
field lines, ~ Z, is considered). The pressure dynamics (i.e. the temperature effect) is
omitted in this (cold fluid) description. The system is then closed by considering Pois-

son’s equation, for the electric potential ¢. Overall neutrality is assumed at equilibrium,

i.e. Zgza,{af} Moo Go = 0.

2. The model. In this brief paper, we aim in suggesting a generic model for the
study of the modulational (in)stability of electrostatic plasma waves, by employing a
Lagrangian description, i.e. looking into a moving frame which follows the fluid motion

at velocity u,. This is achieved by introducing the Lagrangian variables {&, 7},

fzz—/UTu(f,T')dT', T=t. (1)
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This Lagrange transformation has been widely studied in fluid mechanics and in plasma
physics [3 - 5]. See that the two sets of coordinates coincide at ¢ = 0. The space and
time gradients are now 9/9z — 3719/0¢ and 0/0t — 0/01 — B~ uy 0/0E, where

B(¢,7) = —1+/d7 " 2)

Note that the convective derivative D = 0/0t+u 0/0z is now plainly identified to 0/0r.
Also notice that (3 satisfies §(&, 7 =0) =0, and 9B(&,7)/01 = Jua (&, 7)/0E.

The Lagrangian transformation defined above leads to a new set of reduced equations

no(&,7) = B7(ET)na(€,0) (3)
a [0} ) ZOé ZOé — a 9
elet) Bt = e e 22T
506 e = drs Zuelnaler) - e, )
(——B Ug 35> (&,7) = —AmwsaZyeng(&,T)ua(E, 7). (6)
The (dimensionless) quantity 7 = — 3 Mo/’ /(Na,0¢a) is in fact a known exact function

of ¢, to be defined for each specific problem under consideration. Poisson’s equation is

obtained by combining Eqs. (4) and (5):

5 g(ﬁ 12?) -

In principle, one’s aim is to solve the system of Eqgs. (3) to (6) or, in terms of ¢, Egs.

(3), (4) and (7), for a given initial condition n,(§, 7 = 0) = ng(£), and then invert back

—AT Sq Zo € (Ng — NiNgy) - (7)

to {z,t}. However, this abstract scheme is definitely not a trivial task to accomplish.

3. Nonlinear electrostatic oscillations. Combining Eqs. (4) to (6), one obtains

0%u .
57 = ~Wpallla (8)

where w, , is the plasma frequency w,, = (47n40722€2/mq)"/2. Despite its apparent
simplicity, Eq. (8) is neither an ordinary differential equation nor a closed evolution
equation for the mean velocity u, (&, 7): recall that the (normalized) background particle
density n depends on the potential ¢, whose evolution in turn involves u, (&, 7) [via
B(&,7)] and ny (€, 7). Eq. (8) suggests that the system performs nonlinear oscillations

7'/2. Near equilibrium 7 ~ 1 (thanks to charge quasi-neutrality)

at a frequency w = w,
and one plainly recovers a linear oscillation at the plasma frequency w, .. Unfortunately

this apparent simplicity, which might in principle enable one to solve for u(§, 7) and
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then obtain {£, 7} in terms of {z,¢} and vice versa (cf. [3]) is in general illusory: the
oscillations described by Eq. (8) are intrinsically nonlinear and (unless 7 = const.; cf.

e.g. Refs. [3, 4] for electron-acoustic waves), one has to retain all of Eqs. (3) to (7).

4. Reductive perturbation analysis. The above system of evolution equations de-
scribes electrostatic oscillations in the form of harmonic waves, i.e. S = Sgexpli(k€ —
wT)] + c.c. (S denotes the state vector {n,, u,, E,¢,5}). In order to study the mod-
ulational stability profile of these electrostatic waves and model the nonlinear har-
monic generation mechanism entering into play when their amplitude becomes non-
negligible, we consider small deviations from the equilibrium state S(® = (1,0,0,0,1)7,
ie. S =80 4 eSM 4283 4 | where € < 1 is a smallness parameter. We have
assumed that SjW = ¥° S](-ﬁ)(Z, T) e'k&=w) (for j = 1,2,...,5; SJ(’n_)l = S](.j})*, for
reality), thus allowing the wave amplitude to depend on the stretched (slow) Lagrangian
coordinates Z = €(§ —wv,7), T = €7 [where v, = w'(k) is the wave group velocity].
For convenience, time and space are scaled by (appropriately chosen, for a given prob-
lem) scales 7 (e.g. w;}) and & = V7 [where V = (kpT./ma)"/?; T, is a characteristic
temperature, to be appropriately defined] also n, u and ¢ are scaled over n,p, V' and

kpT./|q.|, respectively. Taylor expanding 7(¢) near ¢ =~ 0 (viz. ¢ =~ €y + €2da + ...),

N 14 ¢+ cd? + e3¢’ + ...
= Ll+ecir + € (cids + c2d]) + € (13 + 2c201 02 + 36}) + ... (9)

The coefficients ¢; (j = 1,2,...), to be determined from (the exact definition of) n for
any given problem, contain all the essential dependence on the plasma parameters.
One is now left with the task of isolating orders in €” (i.e. n = 1,2,...) and successively

solve for the harmonic amplitudes S](’Tll). The equations for n =1 = 1 yield
o) =, nl) =—al) = s/, ul) =skjoye, B = —iky,(10)

along with the dispersion relation w? = k2/(k* +sc;) . For n = 2, we obtain the

amplitudes of the 2nd harmonics s§2) and constant (‘direct current’) terms ng), as well

as a finite contribution S(12) to the first harmonics (expressions omitted here, for brevity).
To order ~ €3, the equations for [ = 1 yield an explicit compatibility condition in the

form of a nonlinear Schrodinger—type equation

Y 0%t _

The dispersion coefficient P is related to the curvature of the dispersion curve as P =
w"(k)/2 = =3w?(1 —w?)/(2k?) < 0 (V k). The nonlinearity coefficient @, due to carrier
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wave self-interaction, is given by the expression

3

Q = +—

oy {(—90‘11 +12¢tcy — 4c3) + [6(s — 3)cica — 15s¢3 + 18sc3] k?

—[3¢} 4+ 6(35 + 1)ca] k* + 3s¢y kﬁ}. (12)

At long wavelengths, Q behaves as Q ~ —(3c?—2¢;)?/(12k) (for any charge sign s = +1).
We note a strong modification in the wave’s nonlinear profile (cf. the form of the @

coefficient) in this Lagrangian description, with respect to its Eulerian counterpart.

5. A case study: Dust Acoustic waves. Applying the above formalism to dust
acoustic waves [2, 7], viz. a = d (dust) and o' = e, i, with n, = n.gexpled/(ksT:)]
and n; = n;gexp|—Zep/(kgT;)] (and s = —1/ + 1 for negatively/positively charged
dust grains), one obtains: ¢; = —0;(1 + p)/(1 — u), co = +07(1 — pb3)/[2(1 — p)],
and ¢z = —0;(1 — pb3)/[6(1 — u)], having defined the dust parameter u = n.o/(Z;nip),
the parameters 6, = Z;T.;;/(Z4T;) and 6, = T;/Z;T,, the scales 7 = wp_’; and § =
cat, where ¢4 = wypa(Ap% + Ap5) 2 = (Toyp/ma)'/?, and making use of the neutrality
condition at equilibrium. Note that the sign of ¢;/cy/c3 is s/ — s/s, respectively (so
sc; > 0). A simple numerical analysis shows that long wavelength dust-acoustic waves
will be modulationally unstable to perturbations, since PQ) > 0, which may result in the
formation of bright-type envelope excitations, while wavelengths shorter than a threshold
will be stable, and may propagate as dark/gray-type envelope modulated wavepackets
6, 7].
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