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Envelope localized modes in electrostatic plasma waves
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Abstract

A generic methodology is proposed for the study of the amplitude modulation
of electrostatic plasma modes via a collisionless (unmagnetized) one fluid plasma
decsription. An explicit analytical framework is provided for the investigation of
the wave’s modulational stability profile and the occurrence of localized envelope
structures, whose explicit forms are presented and discussed.

1. Introduction. In a general manner, several known electrostatic plasma modes [1]
consist of propagating oscillations of one dynamical plasma constituent, say « (mass
Mmq, charge g, = sqZqe; € is the absolute electron charge; s = s, = ¢o/|ga] = £1 is
the charge sign), against a background of one (or more) constituent(s) o' (mass m,
charge ¢o = SoZaoe, similarly); the latter is (are) often assumed to obey a known
distribution, e.g. being in a fixed (uniform) or in a thermalized (Maxwellian) state, for
simplicity, depending on the particular aspects (e.g. frequency scales) of the physical
system considered. For instance, the ion-acoustic (IA) mode refers to ions (o = i)
oscillating against a Maxwellian electron background (o' = e) [2], the electron-acoustic
(EA) mode [3] refers to electron oscillations (« = e) against a fixed ion background (o’ =
i), and so forth [1] The purpose of this brief paper is to provide a generic methodological
framework for the study of the nonlinear (self-)modulation of the amplitude of such
electrostatic modes, a mechanism known to be associated with harmonic generation and
the formation of localized envelope modulated wave packets, such as the ones abundantly
observed during laboratory experiments and satellite observations, e.g. in the Earth’s
magnetosphere.

2. The model. The standard (single) fluid model, for the inertial species « reads:

on
—_— p— 1
at+v (nu) 0, (1)
Ju o
JE— = — —_ — 2
8t+u Vu sV an, (2)
Op
—dt—l—u Vp = —ypV-u, (3)

where the particle density n,, mean fluid velocity u,, pressure p, and electric potential
® are scaled as: 1 = ny/Nap, U = Ua/C, P = Pa/NaokpTn, and ¢ = |¢.|®/(ksT.),
where n,, is the equilibrium density and ¢, = (kgT,/m,)'/? is a characteristic (e.g.
sound) velocity. Time and space are scaled over appropriately chosen scales ty [e.g.
wy b = (4714062 /ma) *] and ro = cut; v = cp/ey = 1+ 2/f is the specific heat ratio;
T, is the fluid temperature, and T, is an effective temperature (related to the background

considered), to be determined for each problem under consideration (kg is Boltzmann’s
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constant). The temperature ratio 7, /7. is denoted by o (the so-called cold model is
recovered for 0 = 0). The Lorentz force term was omitted, since wave propagation
along the external magnetic field (~ Z) is considered. The system is closed by Poisson’s
equation V2® = —4r Y v=a,{a’} "= g¢=. Overall neutrality is assumed at equilibrium, i.e.

Yos=a{a’} Ps0qs = 0.

3. Weakly nonlinear oscillation regime. What follows is essentially an implemen-
tation of the long known reductive perturbation technique, which was first applied in
the study of electron plasma [4] and electron-cyclotron [5] waves, three decades ago.
The above system of evolution equations for the state vector S = {n,u, ¢} describes
electrostatic harmonic waves in the form S = Sgexp[i(kr — wt)] 4+ c.c.. In order to
study the modulational stability profile of these electrostatic waves and model the non-
linear harmonic generation mechanism entering into play when their amplitude becomes
non-negligible, we consider small deviations from the equilibrium state S = (1,0,0)7,
viz. S = SO 4+ ¢S 4 283 4 | where ¢ < 1 is a smallness parameter. We have
assumed that S = ¥°° S](-”f)(X, T) eltlkr=wt) (for j = 1,2, ...; SJ(?_)Z = S](-ff)*, for re-
ality), thus allowing the wave amplitude to depend on the stretched (slow) coordinates
X = e(x—v,t), T = €t [where v, = dw(k)/0Ok, is the wave group velocity along
the modulation direction x]. The amplitude modulation direction is assumed oblique
with respect to the (arbitrary) propagation direction, expressed by the wave vector
k = (ky, ky) = (k cosf, k sin). Accordingly, we set: 9/0t — 0/0t — €0,0/0X +€20/0T
and 0/0x — 0/0x+€d/0X (while 9/0y remains unchanged). By expanding near ¢ ~ 0,
Poisson’s eq. may formally be cast in the form

Vi =d—a¢’+a'¢’ —sB(n—1), (4)

where the exact form of the coefficients «, o' and 3, which should be determined exactly
for any specific problem, contain all the essential dependence on the plasma parameters.
Note that the right-hand side in Eq. (4) cancels at equilibrium. Substituting into Eqs.
(1) - (4), one is then left with the task of isolating orders in € (i.e. n = 1,2,...) and
successively solve for the harmonic amplitudes SJ(;L). The calculation, particularly lengthy
yet straightforward, can be found e.g. in [2] for TA (s = +1) and in [3] for EA waves
(s = —1) (also see [6, 7] for details on the method).
The first harmonic amplitudes are determined (to order ~ ') as

(1) (1)

) = s[(1+8)/B]¢, ull) = (w/k)cosOni”, uf) = (w/k)sinon{”, p{") = yn

)
) 7y

in terms of the potential correction ¢§” = ¢), along with the dispersion relation w? =
Bk%/(k* +1). Furthermore, the amplitudes of the 2nd and Oth (constant) harmonic
corrections are obtained in ~ €2; the lengthy expressions are omitted for brevity".

4. The envelope evolution equation. The potential correction ¢ is found to obey
a compatibility condition in the form of a nonlinear Schréidinger—type equation (NLSE)
Y 0y

za—T+P8X2+Q\w|2w:0. (5)

Both the dispersion coefficient P, in fact related to the curvature of the dispersion curve
as P = 0?w/20k? = [W"(k) cos®f + w'(k)sin?0/k]/2, and the nonlinearity coefficient
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(@, which is due to carrier wave self-interaction, are functions of k,  and [, as expected
(in addition to , o/, for Q). The exact general expressions thus obtained (omitted hereff
[8]) may be tailor fit to any given electrostatic plasma wave problem (via the form of
the parameters «, o/, 3) in view of a numerical investigation of the wave’s amplitude
dynamics (e.g. stability profile, wave localization; see in the following).

5. Stability profile — envelope excitations. It is known that the evolution of a
wave whose amplitude obeys Eq. (5) depends on the coefficient product PQ, which may
be investigated in terms of the physical parameters involved. The resulting modulated
wave here is of the form ¢ = ety cos(kz — wt + ©) + O(e?), where the slowly varying
amplitude g (ex, et) and phase correction O (ex, et) are determined by (solving) Eq. (5)
for 1 = 1y exp(i©) (see [8] for details; also [2, 3, 6, 7] for a summary).
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Figure 1: Bright wavepacket, for two different (arbitrary) sets of parameter values.

© o oo

For positive P(), the carrier wave is modulationally unstable and may thus either
collapse, due to external perturbations, or lead to the formation of bright envelope mod-
ulated wavepackets, i.e. localized envelope pulses confining the carrier (see Fig. 1):

2P \ /2 X —0T 1
¢0:<QL2> sech<7L ), @:ﬁ

[8], where v, is the envelope velocity; L and € represent the pulse’s spatial width and
oscillation frequency, respectively. We note that L and 1 satisfy Ly = (2P/Q)'/? =
constant [in contrast with Korteweg-deVries (KdV) solitons, where L?*i); = const. in-
stead]. Also, the maximum amplitude )y is independent from the velocity v, here.

For negative PQ, the carrier wave is modulationally stable and may propagate as
a dark/grey envelope wavepackets, i.e. a propagating localized envelope hole (a void)
amidst a uniform wave energy region. The exact expression for dark envelopes reads:

(6)

2
v, X + (Q — ;)T

_ L x4 ePow?— Yy 7
—ﬁ[ve + ( Qwo—g)] (7)

X —-0T
’Lﬂg = zlzwlo tanh <T) s (")

(see Fig. 2a); again, L'¢', = (2|P/Q|)"/? (=cst.). The grey envelope reads [8]:

U = ' {1 — dsech{[X — o, T)/L"}}° )
d tanh(2=%T)
/2 (9)

L//

[1 — d? sech? (—XL’,’,E Tﬂ
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Here ©y is a constant phase; S denotes the product S = sign(P) x sign(v. — V). The
pulse width L" = (|P/Q|)'/?/(dy" ) now also depends on the real parameter d, given by:

P =1+ (v.—Vy)?/(2PQy"s) < 1. Vi = const. € R satisfies [8]: Vy — \/2|PQ|¢"2 <
ve < Vo+4/2|PQ|";. For d =1 (thus Vy = v,), one recovers the dark envelope soliton.

Figure 2: Dark (left) and grey (right) type modulated wavepacket (for PQ < 0). See

that the amplitude never reaches zero in the latter case.

6. Conclusion. The envelope modulated localized electrostatic structures (wave pack-
ets) which are widely observed during satellite missions and laboratory experiments, may
be efficiently modeled by making use of the standard reductive perturbation method [4,
5]. Explicit criteria for the excitation type (and the carrier wave stability) are thus
obtained, allowing for an analysis of the nonlinear profile of a (any) given electrostatic

mode under consideration. An extended report is under way and will be reported soon
[7].

Acknowledgements. Support from the Deutsche Forschunsgemeinschaft through Sonder-
forschungsbereich 591 — Universelles Verhalten gleichgewichtsferner Plasmen: Heizung, Trans-
port und Strukturbildung as well as from the EU (Contract No. HPRN-CT-2000-00140) is
gratefully acknowledged. I.K. is currently on leave from the Faculté des Sciences Appliquées
of the U.L.B. Université Libre de Bruxelles (Brussels, Belgium).

References

T The expressions (10) - (42) in [6] hold exactly here (upon an index shift, d — «, therein).
ft See Eq. (29) in [6], for P, as well as Eqs. (31), (40) - (42), for Q.

[1] N. A. Krall, A. W. Trivelpiece, Principles of plasma physics, McGraw - Hill (N. Y., 1973).
[2] I. Kourakis and P. K. Shukla, J. Phys. A: Math. Gen., 36, 11901 (2003).

[3] I. Kourakis and P. K. Shukla, Phys. Rev. E, 69 (3), 036411 (2004).

[4] N. Asano, T. Taniuti and N. Yajima, J. Math. Phys. 10 (11), 2020 (1969).

[5] A. Hasegawa, Phys. Rev. A 1 (6), 1746 (1970); Phys. Fluids 15 (5), 870 (1972).

[6] I. Kourakis and P. K. Shukla, Phys. Scripta 69, (4), 316 (2004).

[7] I. Kourakis and P. K. Shukla, “Ezact theory for localized envelope modulated electrostatic
plasma wave packets”, in preparation.

[8] R. Fedele and H. Schamel, Fur. Phys. J. B 27 313 (2002);

R. Fedele, H. Schamel and P. K. Shukla, Phys. Scripta T 98 18 (2002).



