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Abstract

Highly localized structures (Discrete Breathers) involving vertical (transverse,
off-plane) oscillations of charged dust grains are shown to exist in a dust lattice,
accounting for the lattice discreteness and the sheath electric field nonlinearity.
These structures correspond to either extremely localized pulses or dark excitations
composed of dips/voids. Explicit criteria for different modes are presented.

1. Introduction. Discrete Breathers (DBs) (or Intrinsic Localized Modes, ILMs) are
highly localized oscillatory modes known to occur in Wigner crystals (e.g. atomic or
molecular chains) characterized by nonlinear inter-site coupling and/or substrate po-
tentials and a highly discrete structure [1]. The properties of DB modes have recently
gathered an increasing interest in modern nonlinear science. An exciting paradigm of
such a nonlinear chain is provided by dust lattices, i.e. chains of mesoscopic size heavily
charged, massive dust particulates, gathered in a strongly coupled arrangements sponta-
neously formed during plasma discharge experiments. In earth laboratory experiments,
these crystals are subject to an (intrinsically nonlinear [2]) external electric and/or mag-
netic field(s), which balance(s) gravity at the levitated equilibrium position, and are held
together by electrostatic (Debye type) interaction forces. Although the linear properties
of these crystals now seem quite well understood, the elucidation of the nonlinear mech-
anisms governing their dynamics is still in a preliminary stage. This study is devoted
to an investigation, from first principles, of the existence of DB excitations, associated
with transverse (off-plane, optical mode) dust grain oscillations in a dust mono-layer.

2. The model. The vertical (off-plane) grain displacement in a dust crystal (assumed
quasi-one-dimensional, composed from identical grains of charge ¢ and mass M, located
at T, = nry, n € N) obeys an equation of the form

d*6z,
dt?

+ Wi (0241 4 Ozn1 — 202,) + W, 02n + @ (02,)° + 5 (02,)* = 0, (1)

where 0z, = 2, — 2y denotes the small displacement of the n—th grain around the
(levitated) equilibrium position zg, in the transverse (z—) direction. The characteristic
frequency wy = [—q®'(ro)/(Mrg)]"/? results from the dust grain (electrostatic) interac-
tion potential ®(r), e.g. for a Debye-Hiickel potential: ®p(r) = (¢/r)e~"/*P, one has
wip = @/(Mr§) (1 +r9/Ap) exp(—ro/Ap) (where Ap denotes the effective DP Debye
length). The gap frequency w, and the nonlinearity coefficients «, § are defined via the
overall vertical force F(z) = Fom — Mg~ —M[w2dz, + o (02,)° + B (020)°] + O[(62,)"],
which has been expanded around zq by formally taking into account the (anharmonicity
of the) local form of the sheath electric and/or magnetic field(s), as well as, possibly,
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grain charge variation (refer to the definitions in [2, 3], not reproduced here). The elec-
tric/magnetic levitating force(s) F./m balance(s) gravity at z,. Notice the difference in
structure from the usual nonlinear Klein-Gordon equation used to describe 1d oscillator
chains: ‘phonons’ in this chain are stable only thanks to the field force F,/,, (via wy).
Collisions with neutrals and coupling anharmonicity are omitted, at a first step, in this
simplified model.

Eq. (1) leads to the discrete dispersion relation w? = w? —4w§ sin®*(kro/2) . The wave
frequency w decreases with increasing wavenumber k = 27/ (or decreasing wavelength
A), implying that transverse vibrations propagate as a backward wave (see that v, =
w'(k) < 0), in agreement with recent experiments [4]. We notice the gap frequency wy,
as well as the cutoff frequency wWmin = (w? — 4w?)'/? (obtained at the end of the first

9
Brillouin zone k = 7/rq), which is absent in the continuum limit.

3. A discrete envelope evolution equation. Following Ref. [5] (and drawing
inspiration from the quasi-continuum limit [2, 3]), one may adopt the ansatz

0z N € (u§131 e"™t fcc) + € [ugo,)l + (ug2n e" 2ot p )] + ..., (2)
where we assume: w, a, § ~ 1 and d/dt,wg ~ €, implying a high w,/w, ratio (this
condition is clearly satisfied in recent experiments; cf. [4]). Inserting into Eq. (1), one
obtains the discrete nonlinear Schrodinger equation (DNLSE)

Cduy,

"t

+ P (Upy1 + Up 1 — 2u,) + Q |up > u, =0, (3)
where u,, = u(llgl(t), along with the relations uéQT)L = [a/(3w])] u* and uéUT)L = —(2a/w}) |ul?
and the definitions P = —wj/(2w,) and Q = (10a*/3w] — 383)/2w, for the discreteness
and nonlinearity coefficients P and (), respectively. Note that P < 0; the sign of (), on
the other hand, depends on the sheath characteristics and cannot be prescribed.

Eq. (3) yields a plane wave solution u, = ugexp(if,) = ug exp[—i(nkro — @t)]+ c.c.,
where the envelope frequency @ obeys the dispersion relation

w(k) = —4Psin?(kro/2) + Qluo|? . (4)

The (envelope) frequency band lies between @i = |Q||ug|? and Gyar = |Q|uol? — 4P).

The envelope stability may be studied by setting ug — ug 4 Eig exp|—i(nkro — t)]
and 6, — 0, + €0y exp[—i(nkro — &t)], where £ < 1, and then linearizing in &; one thus
obtains the perturbation dispersion relation

[0 — 2P sin kro sin kro)? = 4 P sin®(kry/2) cos kro [AP sin?(kro/2) cos kro — 2Q|uo ] .

The wave envelope will be unstable to external perturbations (viz. Ima # 0) if PQ cos kro
> 0 and (in the same time) the amplitude uy exceeds some critical value u,, (k). Other-
wise, the wave envelope will be stable.

4. Bright-type localized gap modes. It is known that modulational instability,
here possible e.g. for Q < 0 and 0 < k< 7 /2ry, may result in the formation of localized
modes in the linear frequency gap region. Following previous works (see Refs. in [5]),
single-mode (fixed w) odd-parity localized periodic solutions may be sought in the form
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un(t) = fnug cosQt, assuming fo =1, f_, = f, and |f,| < f; for |n| > 1. One thus
obtains a localized lattice pattern of the form:

un(t) = ug cosQt{...,0,0,17,1,1,0,0,...}, (5)

(see Fig. 1a) where Q ~ |Q|u2/4 and n = 4P/(Qu3) < 1 (n > 0). We see that Q lies
outside the (amplitude) frequency band prescribed by Eq. (4).

Figure 1: Localized discrete breather dust lattice excitations of the bright type, obtained
for @ < 0; the successive lattice site displacements are depicted at maximum amplitude: (a)
odd-parity solution, as given by Eq. (5); (b) even-parity solution, given by Eq. (6).

For Q > 0, the modulational stability profile is reversed (instability occurs for k>
7/2rg). The same procedure then leads to an even parity solution of the form

un(t) = ug cos Qt{...,0,0,—n,1,-n,0,0,...}, (6)

where n = —P/(Qud) satisfies 0 < n < 1 and Q ~ —4P + Qu3 (see Fig. 1b).

5. Dark/grey-type localized gap modes. Dark-type solutions (voids) may also be
sought. For @ < 0, for instance, one should look into the region k > 7/(2r¢), e.g. near
the cutoff frequency @, 5. One thus finds [6] the discrete pattern

un(t) =24 cosQt{...,1,-1,1,—(1—1n), 0,1 —n,—-1,1,—1,...}, (7)

where Q = 4P — Q|A|? and n = P/(QA?) satisfies 0 < n < 1; see Fig. 2a.

Focusing in the middle of the Brillouin zone, i.e. at k = m/2r; (where odd sites
remain at rest, while even ones oscillate out of phase; cf. the analysis in [5, 7]), one
obtains [5, 6] the pattern

up(t) =24 cost{..., 1,0, =1,0,1—n, 1—n,0, =1, 0, 1,..}, (8)

where Q = 2P — Q|A|> and n = P/2QA? satisfies 0 < < 1. This grey-type discrete
lattice excitation (known in solid lattices [5]), is depicted in Fig. 2b.

6. Breather control. The stability of a breather excitation may be controlled via
external feedback, as known from one-dimensional discrete solid chains [8]. The method
consists in using the knowledge of a reference state (unstable breather), say §z{0) = 2, (¢),
e.g. obtained via an investigation of the homoclinic orbits of the 2d map obeyed by the
main Fourier component [9], and then perturbing the evolution equation (1) by adding
a term +K|[2,(t) — dz,] in the right-hand side (rhs), in order to stabilize breathers
via tuning of the control parameter K. This method relies on the application of the
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Figure 2: Localized discrete breather dust lattice excitations of the (a) dark type; (b) grey-type
(obtained for @ > 0): successive dust grain displacements.

continuous feedback control (cfe) formalism (see the Refs. in [9]). Alternatively, as
argued in [9], a more efficient scheme should instead involve a term +Ld[2,(t) — §z,]/dt
in the rhs of Eq. (1) (dissipative cfc), whence the damping imposed results in a higher
convergence to the desired solution Z,(¢). Preliminary work in this direction is being
carried out and progress will be reported later.

The highly localized excitations discussed here correspond to a localization of the en-
ergy stored in the lattice. The perspective is thus open of the generation and subsequent
manipulation of localized modes in a DP crystal, in view of applications.

7. Conclusions. We have examined, from first principles, the conditions for the oc-
currence of intrinsic localized modes (discrete breather excitations) in a dust mono-layer.
This preliminary study needs to be confirmed by a rigorous investigation of the stability
and dynamical properties of these excitations. An extended study, complementing these
first results [6], is under way and will be reported soon. These theoretical predictions
may hopefully motivate appropriately designed experimental studies of pulse localization
phenomena in DP crystals.
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