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Abstract. A generalized linear theory for electromagnetic waves in a homogeneous dusty mag-
netoplasma is presented. The waves described are characterized by a frequency which is much
smaller (larger) than the electron gyrofrequency (dust plasma and dust gyrofrequencies), and a long
wavelength (in comparison with the ion gyroradius and the electron skin depth). The generalized
Hall-magnetohydrodynamic (GH-MHD) equations are derived by assuming massive charged dust
macroparticles to be immobile, and Fourier transformed to obtain a general dispersion relation. The
latter is analyzed to understand the influence of immobile charged dust grains on various electro-
magnetic wave modes in a magnetized dusty plasma.

Within the framework of the ideal magnetohydrodynamic (MHD) theory, Alfvén elec-
tromagnetic (EM) waves [1] are governed by the continuity and momentum equations
for the plasma mass flow, together with Faraday’s law, in which the electric field and
the mass flow velocity are related by Ohm’s law. The restoring force is provided by the
magnetic pressure, while inertia is provided by the ion mass. The Alfvén wave disper-
sion [2] describes finite frequency ω (< ωci, where ωci is the ion gyrofrequency), finite
ion Larmor radius, finite ion polarization, and finite electron inertia effects. In dispersive
Alfvén waves, the frozen-in field lines are broken, and linear coupling between various
modes (e.g. among Alfvén, magnetosonic, shear Alfvén waves, and whistlers) may oc-
cur. The dynamics of the dispersive Alfvén waves within the fluid model is governed by
the Hall-MHD equations [3], in which one uses the generalized Ohm’s law to include the
J×B force, where J is the plasma current and B is the total magnetic field in the plasma.
Of interest here is also the existence of a new cut-off frequency for circularly polarized
EM ion-cyclotron Alfvén waves and for magnetosonic waves in a dusty plasma [4, 5].

In this report, we present the linear dispersion properties of intermediate-frequency
(ωp,d, ωc,d < ω < ωc,e), long wavelength (λ > ρL,i/e, ωp,e/c) electromagnetic waves1

in a multi-component warm dusty magnetoplasma whose constituents are electrons,
ions, and immobile charged dust macroparticles. At this range, the massive dust may

1 Here, ωp,α = (4πnα q2
α/mα)1/2, ωc,α = qα B0/(mα c) and ρL,α = vth,α/ωc,α respectively denote the

plasma frequency, cyclotron frequency and Larmor radius (where vth,α = (kBTα/mα)1/2 is the thermal
velocity, and Tα is the temperature) associated with species α = e, i,d.



be considered to be immobile (i.e. the dust density nd is constant, and the dust velocity
ud vanishes), and electron inertia may be neglected. A three-component, fully ionized
dusty plasma is considered, composed of electrons, ions, and immobile charged dust
particulates, with masses me, mi and md , and charges qe =−e, qi = +Zie and qd =−Zde,
where e is the magnitude of the electron charge, Zi is the ion charge state, and Zd is the
number of electrons residing on a dust grain. Both the mass and charged of the heavy
dust particles are assumed to be constant. The plasma is immersed in a homogeneous
magnetic field B0 = B0 ẑ along the z axis (B0 =constant).

We adopt the MHD system of equations for the electrons and ions. The electron
and ion number densities ne,i and velocities ue,i are governed by the continuity and
momentum equations
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The pressure(s) Pe/i is (are) assumed to obey Pe/i ∼ n
γe/i
e/i , where γ is the adiabatic index

(i.e. γ = 3 for adiabatic compression, γ = 5/3 in three dimensions, and γ = 1 for
isothermal compression), thus ∇Pe/i = γe/iTe/i∇ne/i. Also, E is the wave electric field
and B is the sum of the static and wave magnetic fields, viz. B = B0 +b. The system is
closed with the Maxwell equations. Ampère’s and Faraday’s laws read
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The displacement current was neglected in the Eq. (5), since low phase speed (ω/k �
c) EM waves are considered here. At equilibrium, the overall neutrality condition is
ne,0−Zi ni,0 + Zd nd = 0; the subscript 0 denotes the unperturbed densities.

Letting ni ≈ ni,0 + n1 and ui = 0 + v, where n1 � ni,0 is a small perturbation in the
density, a reduced system of evolution equations can be obtained from Eqs. (1) to (6)
(see in [6] for details). These are the ion continuity equation ∂n1/∂ t +ni,0∇ ·v = 0, the
ion momentum equation
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and the magnetic field evolution equation
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where we have used the quasi-neutrality condition – here Zd > 0(Zd < 0) for negatively
(positively) charged dust grains – and defined the quantities ΩR = Zdndωci/ne,0 and
α = Zini,0/ne,0, where ωci = ZieB0/mic is the ion gyrofrequency. The modified ion

sound speed is cs =
[(

γini,0Ti + γeZ2
i n2

i,0Te/ne,0

)
/mini,0

]1/2
.

The latter equations form a closed system which describes the evolution of small ion
density, ion velocity and magnetic field perturbations in our dust Hall-MHD plasma
model. In a dust-free (e-i) plasma, where α = 1, the ion rotation frequency ΩR vanishes
and Eq. (7) describes ion acceleration by the J×B0 and ∇(Pe1 + Pi1) forces, while
Eq. (8) then simply depicts the evolution of the wave magnetic field in the presence
of a non-solenoidal electric field E = −ve ×B0. In a dusty Hall-MHD plasma with
negatively charged dust grains, where α > 1, an enhanced charge separation appears
due to the wave electric field. The resulting enhanced electron fluid velocity produces a
new Lorentz centripetal force [the first term in the right-hand side of Eq. (7)], which in
combination with the J×B0 and pressure gradient forces produces ion rotation around
the negatively charged static dust grains. The rotational force acting on the ions is then
responsible for a non-trivial coupling between various wave modes in dusty plasmas.
Furthermore, due to α > 1, we obtain an increased Alfvén wave phase speed and ion
skin depth.

Let us now consider small amplitude propagating electromagnetic waves. By lineariz-
ing and then Fourier transforming the reduced evolution equations (letting ∂/∂ t →−iω
and ∇→ ik, where ω and k = k⊥+ ẑkz denote the wave frequency and the wavevector,
respectively), we obtain the dispersion relation(
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where k2 = k2
x + k2

y + k2
z ≡ k2

⊥+ k2
z . We have defined the (dust-modified) Alfvén speed

VA = α B0/
√

4πmini,0 ≡ α vA. Note the effect of the dust expressed via ΩR and α . The
terms in the second line are due to the Hall-term, and thus disappear in the ideal MHD
limit (the first term in the right-hand side would then be the sole modification due to the
stationary dust). The same terms also disappear in the purely perpendicular propagation
limit (i.e. kz = 0).

Let us now check the above results in the vanishing dust limit. With ΩR = 0, α = 1
and VA = vA, we obtain(

ω
2− k2

z v2
A
)[

ω
4− k2(v2

A + c2
s )ω

2 + k2
z k2c2

s v2
A

]
= (ω2− k2c2

s )
ω2k2

z k2v4
A

ω2
ci

. (10)

This dispersion relation was derived in Ref. [7] and analyzed in Refs. [3, 8]; it in-
corporates the electromagnetic ion-cyclotron Alfvén modes, the fast and slow mag-
netosonic modes, the kinetic Alfvén waves, and long wavelength whistlers. For in-
stance, in the limit cs = 0 and k⊥ = 0, one obtains the magnetic field aligned dis-
persive electromagnetic ion-cyclotron-Alfvén wave, i.e. ω = kzvA (1±ω/ωci)

1/2 (here



+/− corresponds to right-/left-hand circularly polarized waves). The whistler frequency
ω = kzkc2ωce/ω2

pe is recovered for ω � kvA and cs = 0. The kinetic Alfvén waves, ω ≈
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)1/2 are obtained in the limits cs � vA, kzcs � ω � ωci,k⊥vA,k⊥cs.
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For perpendicular wave propagation, viz. kz = 0 and k = k⊥ ≡ (k2
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recovers from Eq. (9) the modified magnetosonic mode ω2 = Ω2
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A ). Note
the Rao frequency cutoff ω(k⊥ = 0) = ΩR [5], which is absent in electron-ion plasmas.

For wave propagation along the magnetic field direction (i.e. for k = kz, one obtains
from Eq. (9)(
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which can be exactly rewritten in the simpler form
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and which precisely agrees with the well known result [4] for the magnetic field aligned
circularly polarized electromagnetic waves, even in a warm magnetoplasma.

In a cold dusty plasma (cs = 0), the dispersion relation (23) reduces to
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These results are a prerequisite to understand the dispersion properties of
intermediate-frequency, long wavelength electromagnetic waves in laboratory and
space magnetoplasmas where a significant amount of charged dust grains is present.
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