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Abstract. The nonlinear aspects of charged dust grain motion in a one-dimensional dusty plasma
(DP) monolayer are discussed. Both horizontal (longitudinal, acoustic mode) and vertical (trans-
verse, optic mode) displacements are considered, and various types of localized excitations are
reviewed, in a continuum approximation. Dust crystals are shown to support nonlinear kink-shaped
supersonic longitudinal solitary excitations, as well as modulated envelope (either longitudinal or
transverse) localized modes. The possibility for Discrete Breather (DB-) type excitations (Intrin-
sic Localized Modes, ILMs) to occur is investigated, from first principles. These highly localized
excitations owe their existence to lattice discreteness, in combination with the interaction and/or
substrate (sheath) potential nonlinearity. This possibility may open new directions in DP- related
research. The relation to previous results on atomic chains as well as to experimental results on
strongly-coupled dust layers in gas discharge plasmas is discussed.

1. Introduction. A number of recent theoretical studies have been devoted to col-
lective processes in dusty plasmas (DP), in relevance with experimental observations.
Dust (quasi-)lattices (DL) are typically formed in the sheath region above the negative
electrode in discharge experiments, horizontally suspended at a levitated equilibrium po-
sition, at z = z0, where gravity and electric (and/or magnetic) forces balance. The linear
regime of low-frequency oscillations in DP crystals, in the longitudinal (acoustic mode)
and transverse (in-plane, shear acoustic mode and vertical, off-plane optical mode) direc-
tion(s), is now quite well understood. However, the nonlinear behaviour of DP crystals is
little explored, and has lately attracted experimental [1-3] and theoretical [1-8] interest.

Recently [4], we considered the coupling between the horizontal (∼ x̂) and vertical
(off-plane, ∼ ẑ) degrees of freedom in a dust mono-layer; a set of nonlinear equations
for longitudinal and transverse dust lattice waves (LDLWs, TDLWs) was thus rigorously
derived [4]. Here, we review the nofnlinear dust grain excitations which may occur
in a DP crystal (assumed quasi-one-dimensional and infinite, composed from identical
grains, of equilibrium charge q and mass M, located at xn = nr0, n ∈N ). Ion-wake and
ion-neutral interactions (collisions) are omitted, for simplicity. This study complements
recent experimental investigations [1-3] and may hopefully motivate future ones.



2. Transverse envelope structures (continuum) & discrete breathers. The vertical
(off-plane) n−th grain displacement δ zn = zn− z0 in a dust crystal obeys the equation1,2

d2δ zn

dt2 +ν
d(δ zn)

dt
+ ω2

T,0 (δ zn+1 + δ zn−1−2δ zn)+ω2
g δ zn +α (δ zn)2 +β (δ zn)3 = 0 . (1)

The characteristic frequency ωT,0 =
[−qU ′(r0)/(Mr0)

]1/2 is related to the interaction
potential3 U(r). The gap frequency ωg and the nonlinearity coefficients α ,β are defined
via the potential Φ(z) ≈ Φ(z0) + M[ω2

g δ z2
n/2 + α (δ zn)3/3 + β (δ zn)4/4] + O[(δ zn)5]

(expanded near z0, in account of the electric and/or magnetic field inhomogeneity
and charge variations4), related to the overall vertical force F(z) = Fel/m(z)−Mg ≡
−∂Φ(z)/∂ z [recall that F(z0) = 0]. Linear excitations, viz. δ zn ∼ cosφn (here φn =
nkr0−ωt; k and ω are the wavenumber and frequency) obey the optic-like discrete dis-
persion relation5: ω2 = ω2

g −4ω2
T,0 sin2(kr0/2

)≡ ω2
T . Transverse vibrations propagate

as a backward wave [see that vg,T = ω ′
T (k) < 0], for any form of U(r) in agreement with

recent experiments [2]. Notice the lower cutoff ωT,min = (ω2
g − 4ω2

T,0)
1/2 (at the edge

of the Brillouin zone, at k = π/r0), which is absent in the continuum limit.
Assuming a weakly nonlinear continuum amplitude, one obtains, via a multiple scale

technique [5]: δ zn ≈ ε (Aeiφn +c.c.) + ε2 [
w(2)

0 + (w(2)
2 e2iφn +c.c.)

]
+ ... (where w(2)

0 ∼
|A|2, w(2)

2 ∼ A2); the amplitude A obeys the nonlinear Schrödinger equation (NLSE):

i
∂A
∂T

+P
∂ 2A
∂X2 +Q |A|2 A = 0 , (2)

where {X ,T} are the slow variables {ε(x− vgt),ε2t}. The dispersion coefficient PT =
ω ′′

T (k)/2 takes negative (positive) values for low (high) k. The nonlinearity coefficient
Q =

[
10α2/(3ω2

g )− 3β
]
/2ωT is positive for all known experimental values of α , β

[3]. For small wavenumbers k (where PQ < 0), TDLWs will be modulationally stable,
and may propagate in the form of dark/grey envelope excitations (hole solitons or voids
[5]. For larger k, modulational instability may lead to the formation of bright (pulse)
envelope solitons. Exact expressions for these excitations can be found in [5].

Intrinsic Localized Modes (ILMs), i.e. highly localized Discrete Breather (DB) and
multi-breather-type few-site vibrations, were also shown to occur in transverse DL mo-
tion [6], and are currently being investigated from first principles [7]. These excitations
have recently received increased interest among researchers in solid state physics, due to

1 Only first neighbor interactions are considered here. See in [4] for details and coefficient definitions.
2 Coupling anharmonicity, expressed by a term ∼ [

(δ zn+1−δ zn)3− (δ zn−δ zn−1)3
]
, is omitted here.

3 No specific form is assumed here for U ; for a Debye-Hückel potential: UD(r) = (q/r)e−r/λD , one has
ω2

0,D = ω2
DL exp(−κ)(1+κ)/κ3 ; ωDL = [q2/(Mλ 3

D)]1/2 is the characteristic dust-lattice frequency; λD is
the Debye length; κ = r0/λD is the DP lattice parameter.
4 We follow exactly the definitions in [4, 5], not reproduced here.
5 The damping term is neglected by setting ν = 0 here; for ν 6= 0, an imaginary part appears, in account
for damping, in both the dispersion relation ω(k) and the resulting envelope equations.



their omnipresence in periodic lattices and remarkable physical properties [8]. Remark-
ably, the existence of such DB structures at a frequency ωDB) generally requires the
non-resonance condition nωDB 6= ω(k) (n ∈N ), which is indeed satisfied in all known
TDLW experiments [2].

3. Longitudinal envelope excitations. The nonlinear equation of motion1,6:

d2(δxn)
dt2 +ν

d(δxn)
dt

= ω2
0,L (δxn+1 +δxn−1−2δxn)

−a20
[
(δxn+1−δxn)2− (δxn−δxn−1)2] + a30

[
(δxn+1−δxn)3− (δxn−δxn−1)3] (3)

describes the longitudinal dust grain displacements δxn = xn − nr0. The result-
ing acoustic linear mode4 obeys: ω2 = 4ω2

L,0 sin2(kr0/2
) ≡ ω2

L . One now obtains

δxn ≈ ε
[
u(1)

0 + (u(1)
1 eiφn + c.c.)

]
+ ε2 (u(2)

2 e2iφn + c.c.) + ... , where u(1)
1/0 obey [9]

i
∂u(1)

1
∂T

+ PL
∂ 2u(1)

1
∂X2 + Q0 |u(1)

1 |2u(1)
1 +

p0k2

2ωL
u(1)

1
∂u(1)

0
∂X

= 0 , (4)

∂ 2u(1)
0

∂X2 = − p0k2

v2
g,L−ω2

L,0r2
0

∂
∂X

|u(1)
1 |2 . (5)

Here vg,L = ω ′
L(k), and {X ,T} are slow variables (as above). We have defined: p0 =

−r3
0U ′′′(r0)/M ≡ 2a20r3

0 and q0 = U ′′′′(r0)r4
0/(2M)≡ 3a30r4

0 (both positive, and similar
in magnitude for Debye interactions [4, 10]). Eqs. (4), (5) can be combined into an NLSE
in the form of Eq. (2), for A = u(1)

1 here, with P = PL = ω ′′
L (k)/2 < 0. The exact form

of Q > 0 (< 0) [9] prescribes stability (instability) at low (high) k. Envelope excitations
are now asymmetric, i.e. rarefactive bright or compressive dark envelope structures.

4. Longitudinal solitons & Intrinsic Localized Modes. Equation (3) is essentially
identical to the equation of atomic motion in a chain with anharmonic springs, i.e. in the
celebrated FPU (Fermi-Pasta-Ulam) problem. At a first step, one may adopt a contin-
uum description, viz. δxn(t)→ u(x, t). This leads to different nonlinear evolution equa-
tions (depending on the simplifying hypotheses adopted), some of which are critically
discussed in [10]. What follows is a summary of the lengthy analysis therein.

Keeping lowest order nonlinear and dispersive terms, u(x, t) obeys1:

ü + ν u̇− c2
L uxx− c2

L
12

r2
0 uxxxx = − p0 ux uxx + q0 (ux)2 uxx , (6)

where (·)x ≡ ∂ (·)/∂x; cL = ωL,0 r0; p0 and q0 were defined above. Assuming near-sonic
propagation (i.e. v≈ cL), and defining the relative displacement w = ux, one has

wτ − awwζ + âw2 wζ + bwζ ζζ = 0 (7)

6 Here, ω0,L = [U ′′(r0)/M)]1/2, e.g. ω2
L,0 = 2ω2

DL exp(−κ)(1+κ +κ2/2)/κ3 in the Debye case.



(for ν = 0), where a = p0/(2cL) > 0, â = q0/(2cL) > 0, and b = cLr2
0/24 > 0. Following

Melandsø [11], various studies have relied on the Korteweg - deVries (KdV) equation,
i.e. Eq. (7) for â = 0, to gain analytical insight in the compressive structures observed
in experiments [1]. Indeed, the KdV Eq. possesses negative (only, here, since a > 0)
supersonic pulse soliton solutions for w, implying a compressive (anti-kink) excitation
for u; the KdV soliton is thus interpreted as a density variation in the crystal, viz.
n(x, t)/n0 ∼−∂u/∂x≡−w. Also, the pulse width L0 and height u0 satisfy u0L2

0 = cst.,
a feature which is confirmed by experiments [1]. However, â≈ 2a in real Debye crystals
(for κ ≈ 1), which invalidates the KdV approximation â ≈ 0 [10]). Instead, one may
employ the extended KdV Eq. (eKdV) (7), which accounts for both compressive and
rarefactive lattice excitations (exact expressions in [10]). Alternatively, Eq. (6) can be
reduced to a Generalized Boussinesq (GBq) Equation [10]; again, for q0 ∼ â ≈ 0, one
recovers a Boussinesq (Bq) equation, widely studied in solid chains. The GBq (Bq)
equation yields, like its eKdV (KdV) counterpart, both compressive and rarefactive (only
compressive, respectively) solutions; however, the (supersonic) propagation speed v now
does not have to be close to cL. The lengthy analysis [10] is not reproduced here.

Following existing studies on Discrete Breathers (ILMs) in FPU chains [cf. (3)
above], it is straightforward to show the existence of such localized excitations in the
longitudinal direction. A detailed investigation, in terms of real experimental parameters,
is on the way and will be reported soon.

Concluding, we have reviewed recent results on nonlinear excitations (solitary waves
and discrete breathers) occurring in a (1d) dust mono-layer, due to sheath and coupling
nonlinearity. One encounters modulated envelope TDL and LDL structures. Both com-
pressive and rarefactive longitudinal excitations are predicted and may be observed by
appropriate experiments. Finally, highly localized discrete excitations may also occur,
and should be sought for by appropriate experiments.
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