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Abstract. A dust crystal consisting of charged dust grains of alténgatharge sign (.../+/-/+/-
/+/...) and mass is considered. Considering the equatifdosgitudinal motion, a linear dispersion
relation is derived from first principles, and then analyZBdo modes are obtained, including an
acoustic mode and an inverse-dispersive optic-like one.fidnlinear aspects of longitudinal dust
grain motion are also briefly addressed, via a Boussineq antkW&eg- de Vries description.

Introduction.One of the most astonishing novel characteristics of dusiynplex)
plasmas is the occurrence of strongly coupled dust contigmisg such as the sponta-
neous formation of crystalline-like periodic arrangenseim the sheath region (above
the negative electrode) in gas discharge experimentstadggmation and dynamics
have been studied in numerous experiments, in which ‘dustigles were essentially
created by injecting artificial (e.g. formaldehyde) misheres, which subsequently
acquire a fixed (negative, usually) charge via inherent dyaaharging mechanisms.
More recent experimental studies have been devoted teestatlalternating charge sign
(positive-negative) dust configurations [1].

Formulation of the problem — a model dust bi-crystalthis study, we consider@ne
dimensionalkorizontal chain (assumed infinite, for simplicity) cotisig of negative
and positive dust grains, located at equidistant siteigq¢gatonstanty). Odd (even)
sites, i.e. ax = (2n+ 1)rp (X = 2nrg; n € .47), are occupied by negative (positive)
charge dust grains, of chargeQ; (+Q.) and mas; (M, respectively); we assume
that M1 > My, with no loss of generality. Vertical force equilibrium issured by (a
balance between) gravity and electric/magnetic forcely, lmmgitudinal displacement
OXn = Xp — Nro (Wheren € _47) is permitted in this simplified model.

The electrostatic binary interaction forE¢r) exerted on two grains situated at a dis-
tancer is derived from a potential functidd (r), viz. F(r) = —dU (r)/dx. Considering
the (attractive) interaction between first neighbors onéy,rni1 = Xn41 —Xn =ro+
OXn+1— OXn, We may Taylor expand (r) aroundrg, to account for grain displacements.
We formally haveF (1) a —U"(ro)(r —ro) — 3U"(ro) (r —ro)? — 2U""(ro)(r —ro)* (the
prime denotes differentiation). In the following, we shegt:U" (rg) = G, U (rg)/2 =
GAandU"(rp) /6 = GB. The description of our dust crystal dynamics is thus effebt
reduced to a problem of longitudinal atom motion in a diaatiain, characterized by
an anharmonic coupling ‘spring’ potential. Our dust bidaynay therefore be analyzed
by making use of standard analytical tools from solid stéigsics [2, 3].



For the sake of clarity, one may consider a Debye-type iotEna poten-
tial (energy) Up(r) = Qi1Q.e "/ /r = (Q1Q2/Ap)e ¥/k, for which: Uj(ro) =
—(Q?/A3)e ™ (1+K)/K?, Ul(ro) = +(2Q2/A3) e X (1+ k + K?/2) /K%, U (o) =
—(6Q%/A3)e K (1+k +k2/2+k3/6) /K%, andUY" (ro) = +(24Q%/A3)e X (1 + K +
k2/2+k3/6+k%*/24)/k®, where the lattice parameteris=ro/Ap.

Equations of motionDenoting the odd (even) grain displacement, within theh
pair, by dzon11 = 74 (022n = W), the resulting equations of motion read:

d?z,

Mz = G(Wn — 2Zn +Wn_1) + GA[(Wn — zn)2 — (Zn — Wn_1)?]
+GB[(Wn — z)3— (z —Wn,l)ﬂ
d?w,
MzTZH = G(Zn1—2Wn+2n) +GA[(Znr1 — Wn)? — (Wh — 20)?]

+GB(z041—Wn)® — (Wn—2n)%] . 1)

Linear vibrations. Assuming a plane waveplonorn solution in the form:
z = Zexpi[(2n + 1)krp — wt]+c.c. (for the heavy negative grains) and =
W expi(2nkrp — wt)+c.c (for the lighter positive grains), one finds that the frecyw
is related to the wavenumblkwia the dispersion relation
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where we have defined tlheduced masg = M1M,/(M1 + My). This relation defines
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FIGURE 1. The dust bi-layer dispersion relatian. (normalized byG/u) is depicted vs. the
reduced wavenumbdéry, for M1 = 2M, = 1 andG = 1 (indicative arbitrary values).

a two-fold dispersion curve. The lower branah defines amacoustic modeat low
k, it satisfies:w_ ~ (Mlszz)l/Zkro = Cok, and thus both the group velocity, - =
w’_(k) and the phase velocity,, — = w_/k tend to the (constantyound velocity’ g
for low k. The upper branchw, defines aroptic mode at low k, it satisfies:w_ ~

(w2 /2 =constant, and thugy, . = &, (k) = 0 andvph ;. — o for long wavelengths

A = 2m/k. The frequency band scanned by the two modesare [0, \/2G/M;| and




w; € [\/ZG/MZ, \/ZG/u]. We note the appearance off@bidden frequency range
betweenw_ (k = £71/2rg) = W_ max= 1/2G/M1 and w; (k = £71/2rg) = W} min =
\/2G/M,. Furthermore, we point out that the optic moae is characterized by an
inversedispersion, thusy, ; = &/, (k) < 0 everywhere in the first Brillouin zone (1BZ)
[0, 11/ 2r]. The dispersion curve is depicted in Fig. 1.

The amplitude eigenmodes — i.e. the solutions of the liredrsystem of Egs. (1),
for Z andW — satisfy:W/Z = (2G — Maw?)/(2Gcoskrg). Therefore, in-phase (out-
of-phase) motion is prescribed for long wavelength acousiptic) vibrations, since
W/Z —1W/Z— —M1/My, respectively) fok — O.

Continuum approximatiorAssuming a long excitation extensians- ro, one may
substitute the discrete space variatdg$) andwy(t) with continuous ones, sa&(x,t)
andw(x,t), by Taylor expanding, i.z,s1 ~ z+ 2roz+ 2r3z + 33200+ 51 82000+
0[(2ro/L)°] (and the analogous expression fay — w), where the subscript denotes
differentiation, e.gzx = dz/dx and so forth. Inserting into the discrete equations of mo-
tion (1), one thus obtains two coupled partial derivativaatgpns (PDES). For analyti-
cal manipulation purposes, the second one may be neglegtmploying theéButtner
ansatz’[3]: w~ g[z+byroz+ b—zzrgzxx+ b—grgzxxx+ %rgzxxxx+ bof(2)] + €(€>), where
o is set equal to 1{M1/My) for the acoustic (optic) mode, and the paramebgrand
the functionf(z) are appropriately adjusted for compatibility. One thus aers with
one PDE, in terms af(x,t), while w(x,t) is defined accordingly.

In the following, we shall present some recent results kiggrthe acoustic mode.
The remaining results will be exposed in a detailed artiol@reparation.

Nonlinear analysis: the acoustic modehe compatibility among the egs. of motion
is ensured by choosing [38r = by = 1, by = 2u /My, bz = 614(2M1 — M32) /(3M1My),
bs = 24u[1/(3My) — b3/(4M;)], andbg = 0 (for first-neighbor only interactions); see
that an ordinary Taylor expansion (viz, = 1) is recovered in the limi¥; = M.

The system of Eqgs. (1) now yield to the nonlinear PDE

4t — (%Zxx = PoZxZxx+ QOZ>2<ZXX‘|’ hoZuxxxs (3)
or (in an equivalent manner) the Generalizedl3SINESQequation

Ut — C(Z)UXX = p(uz)xx—l- CI(U3>xx+ NoUxxxx (4)

where we set =z, p= po/2 = GAlp /M1, q= (p/3 = GBlp /M1, andhg = fﬁ—?ré(% —
% + b—22 — %) (the sound velocitgy was defined above). The ordinary (modified, respec-
tively) BoussINESQequation is recovered from Eq. (4), upon setting 0 (p = 0), or
B=0 (A= 0), i.e. by neglecting quartic (cubic) interaction potahtiontributions.

The GBq Eq. (4) yields two distinct pulse soliton solutiomgh¢se exact form is
omitted here, for brevity); these lead (since- z) to thekink (shock-like) soliton:

X—wvt

6h0)1/ 2 arctar{Pil tanh(L—l +X0)] (5)

Z(x,t) = iZ(q—
o

whereP; = {[\/p%+ 6(vZ —c§)do + |Oo]/[\/|f%+6(v2 —c2)do T Po] } /% %o andv are
real constants, which determine the soliton center ande(sopic, since > cg) velocity,



respectively; the soliton width is expressedhy= 2, /hg/ (V2 — cg). Recall that; > rg

in order for the continuum theory to be valid. The two solof@bove correspond to a
rarefactive and a compressive localized excitation, pgapag in the dust bi-layer.

KdV acoustic soliton theoryBy assuming near-sonic propagation, ves ¢y, and
a very slow time variation (vizu;; < Ur,Ug), one obtains from the GBq Eq. (4) the
canonical form of the GeneralizeddRTEWEG - DE VRIES (GKdV) equation

Ur + 6uus + 6u2u5 +Uggs =0 (6)

[3], where we have defined: = po(X— Cot)/v/BRodo, T = pdt/[2co(600)%2ht/ %], and

U= Zs \/do/(6ho). The GKdV Eq. (6) yields two distinct exact soliton solutspmhich
may be inverted to; one thus obtains two differekink solitonsn the form:

X—vt

6ho)l/ 2 arctar{é tani‘(l_—2 +x)], (7)

z(x,t) = £2( 0
1/2,
whereP, = {[\/pcz)-i- 12co(V — Co)qo £ po]/[\/p%-i- 12co(V—Co)to F Po] } 5 X2 andv
are real constants; the soliton width is expressed.hy: 2./ho/[2co(V— Co). Again,
KdV vs. Boussinesq, M= 1.1
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FIGURE 2. Antikink KdV excitation (solid curve) vs. the (two) solutig obtained from the Bq
Equation (dashed curves); Debye interactions with 1.1, Mach numbeM = v/co = 1.25.

L2 > rg is assumed. These two solutions correspond to a rarefatidecompressive
localized excitation. Notice that Eq. (7) are recoverednfieq. (5), by settingy + ¢co ~
2¢o. We conclude that the KdV (and associated) equation relaiealy adds no extra
information to that obtained via the (less approximate) €mesq theory.
Similar results have been obtained for one-dimensiond ihasolayers [4]. These
theoretical considerations will hopefully be confirmed Ippeopriate experiments.
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