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Abstract. A dust crystal consisting of charged dust grains of alternating charge sign (.../+/-/+/-
/+/...) and mass is considered. Considering the equations of longitudinal motion, a linear dispersion
relation is derived from first principles, and then analyzed. Two modes are obtained, including an
acoustic mode and an inverse-dispersive optic-like one. The nonlinear aspects of longitudinal dust
grain motion are also briefly addressed, via a Boussineq and Korteweg- de Vries description.

Introduction.One of the most astonishing novel characteristics of dusty (complex)
plasmas is the occurrence of strongly coupled dust configurations, such as the sponta-
neous formation of crystalline-like periodic arrangements, in the sheath region (above
the negative electrode) in gas discharge experiments. Crystal formation and dynamics
have been studied in numerous experiments, in which ‘dust’ particles were essentially
created by injecting artificial (e.g. formaldehyde) micro-spheres, which subsequently
acquire a fixed (negative, usually) charge via inherent dynamic charging mechanisms.
More recent experimental studies have been devoted to studies of alternating charge sign
(positive-negative) dust configurations [1].

Formulation of the problem – a model dust bi-crystal.In this study, we consider aone
dimensionalhorizontal chain (assumed infinite, for simplicity) consisting of negative
and positive dust grains, located at equidistant sites (lattice constantr0). Odd (even)
sites, i.e. atx = (2n+ 1)r0 (x = 2nr0; n ∈ N ), are occupied by negative (positive)
charge dust grains, of charge−Q1 (+Q2) and massM1 (M2, respectively); we assume
that M1 > M2, with no loss of generality. Vertical force equilibrium is ensured by (a
balance between) gravity and electric/magnetic forces; only longitudinal displacement
δxn = xn−nr0 (wheren∈ N ) is permitted in this simplified model.

The electrostatic binary interaction forceF(r) exerted on two grains situated at a dis-
tancer is derived from a potential functionU(r), viz. F(r) = −∂U(r)/∂x. Considering
the (attractive) interaction between first neighbors only,i.e. rn,n+1 = xn+1− xn = r0 +
δxn+1−δxn, we may Taylor expandU(r) aroundr0, to account for grain displacements.
We formally have:F(r)≈−U ′′(r0)(r−r0)− 1

2U ′′′(r0)(r−r0)
2− 1

6U ′′′′(r0)(r−r0)
3 (the

prime denotes differentiation). In the following, we shallset:U ′′(r0) = G, U ′′′(r0)/2 =
GAandU ′′′′(r0)/6= GB. The description of our dust crystal dynamics is thus effectively
reduced to a problem of longitudinal atom motion in a diatomic chain, characterized by
an anharmonic coupling ‘spring’ potential. Our dust bi-layer may therefore be analyzed
by making use of standard analytical tools from solid state physics [2, 3].



For the sake of clarity, one may consider a Debye-type interaction poten-
tial (energy) UD(r) = Q1Q2e−r/λD/r ≡ (Q1Q2/λD)e−κ/κ , for which: U ′

D(r0) =
−(Q2/λ 2

D)e−κ (1 + κ)/κ2, U ′′
D(r0) = +(2Q2/λ 3

D)e−κ (1 + κ + κ2/2)/κ3, U ′′′
D (r0) =

−(6Q2/λ 4
D)e−κ (1+ κ + κ2/2+ κ3/6)/κ4, andU ′′′′

D (r0) = +(24Q2/λ 5
D)e−κ (1+ κ +

κ2/2+κ3/6+κ4/24)/κ5, where the lattice parameter isκ = r0/λD.

Equations of motion.Denoting the odd (even) grain displacement, within then−th
pair, byδz2n+1 = zn (δz2n = wn), the resulting equations of motion read:

M1
d2zn

dt2
= G(wn−2zn+wn−1) +GA

[

(wn−zn)
2− (zn−wn−1)

2]

+GB
[

(wn−zn)
3− (zn−wn−1)

3]

M2
d2wn

dt2
= G(zn+1−2wn +zn) +GA

[

(zn+1−wn)
2− (wn−zn)

2]

+GB
[

(zn+1−wn)
3− (wn−zn)

3] . (1)

Linear vibrations. Assuming a plane wave (phonon) solution in the form:
z = Zexpi[(2n + 1)kr0 − ωt]+c.c. (for the heavy negative grains) andw =
Wexpi(2nkr0−ωt)+c.c (for the lighter positive grains), one finds that the frequencyω
is related to the wavenumberk via the dispersion relation

ω2
± =

G
µ

(

1±

√

1−
4µ2

M1M2
sin2kr0

)

, (2)

where we have defined thereduced massµ = M1M2/(M1 + M2). This relation defines
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FIGURE 1. The dust bi-layer dispersion relationω± (normalized byG/µ) is depicted vs. the
reduced wavenumberkr0, for M1 = 2M2 = 1 andG = 1 (indicative arbitrary values).

a two-fold dispersion curve. The lower branchω− defines anacoustic mode; at low
k, it satisfies:ω− ≈ ( 2G

M1+M2
)1/2kr0 ≡ c0k, and thus both the group velocityvgr,− =

ω ′
−(k) and the phase velocityvph,− = ω−/k tend to the (constant)‘sound velocity’ c0

for low k. The upper branchω+ defines anoptic mode; at low k, it satisfies:ω− ≈
( 2G

M1+M2
)1/2 =constant, and thusvgr,+ = ω ′

+(k) = 0 andvph,+ → ∞ for long wavelengths

λ = 2π/k. The frequency band scanned by the two modes areω− ∈ [0,
√

2G/M1] and



ω+ ∈ [
√

2G/M2,
√

2G/µ ]. We note the appearance of aforbidden frequency range
betweenω−(k = ±π/2r0) = ω−,max =

√

2G/M1 and ω+(k = ±π/2r0) = ω+,min =
√

2G/M2. Furthermore, we point out that the optic modeω+ is characterized by an
inversedispersion, thusvgr,+ = ω ′

+(k) ≤ 0 everywhere in the first Brillouin zone (1BZ)
[0,π/2r0]. The dispersion curve is depicted in Fig. 1.

The amplitude eigenmodes – i.e. the solutions of the linearized system of Eqs. (1),
for Z andW – satisfy:W/Z = (2G−M2ω2

±)/(2Gcoskr0). Therefore, in-phase (out-
of-phase) motion is prescribed for long wavelength acoustic (optic) vibrations, since
W/Z → 1 (W/Z →−M1/M2, respectively) fork→ 0.

Continuum approximation.Assuming a long excitation extensionL � r0, one may
substitute the discrete space variableszn(t) andwn(t) with continuous ones, sayz(x, t)
andw(x, t), by Taylor expanding, i.e.zn±1 ≈ z±2r0zx + 2r2

0zxx± 4
3r3

0zxxx+ 2
3r4

0zxxxx+

O [(2r0/L)5] (and the analogous expression forwn → w), where the subscript denotes
differentiation, e.g.zx = ∂z/∂x and so forth. Inserting into the discrete equations of mo-
tion (1), one thus obtains two coupled partial derivative equations (PDEs). For analyti-
cal manipulation purposes, the second one may be neglected by employing the‘Büttner
ansatz’[3]: w≈ σ [z+b1r0zx + b2

2 r2
0zxx+ b3

6 r3
0zxxx+

b4
24r4

0zxxxx+b0 f (z)]+O(ε5), where
σ is set equal to 1 (−M1/M2) for the acoustic (optic) mode, and the parametersb j and
the function f (z) are appropriately adjusted for compatibility. One thus remains with
one PDE, in terms ofz(x, t), while w(x, t) is defined accordingly.

In the following, we shall present some recent results regarding the acoustic mode.
The remaining results will be exposed in a detailed article,in preparation.

Nonlinear analysis: the acoustic mode.The compatibility among the eqs. of motion
is ensured by choosing [3]:σ = b1 = 1, b2 = 2µ/M2, b3 = 6µ(2M1−M2)/(3M1M2),
b4 = 24µ[1/(3M2)−b2

2/(4M1)], andb0 = 0 (for first-neighbor only interactions); see
that an ordinary Taylor expansion (viz.b j = 1) is recovered in the limitM1 = M2.

The system of Eqs. (1) now yield to the nonlinear PDE

ztt −c2
0zxx = p0zxzxx+ q0z2

xzxx+h0zxxxx, (3)

or (in an equivalent manner) the Generalized BOUSSINESQequation

utt −c2
0uxx = p(u2)xx+ q(u3)xx+h0uxxxx, (4)

where we set:u= zx, p= p0/2= GAb2/M1, q= q0/3= GBb2/M1, andh0 = 2G
M1

r4
0(

b4
24−

b3
6 + b2

2 − 1
3) (the sound velocityc0 was defined above). The ordinary (modified, respec-

tively) BOUSSINESQequation is recovered from Eq. (4), upon settingq = 0 (p = 0), or
B = 0 (A = 0), i.e. by neglecting quartic (cubic) interaction potential contributions.

The GBq Eq. (4) yields two distinct pulse soliton solutions (whose exact form is
omitted here, for brevity); these lead (sinceu = zx) to thekink (shock-like) soliton:

z(x, t) = ±2
(6h0

q0

)1/2 arctan
[ 1
P1

tanh
(x−vt

L1
+x0

)]

, (5)

whereP1 =
{

[
√

p2
0 +6(v2−c2

0)q0± p0]/[
√

p2
0+6(v2−c2

0)q0∓ p0]
}1/2

; x0 andv are
real constants, which determine the soliton center and (supersonic, sincev> c0) velocity,



respectively; the soliton width is expressed byL1 = 2
√

h0/(v2−c2
0). Recall thatL1 � r0

in order for the continuum theory to be valid. The two solutions above correspond to a
rarefactive and a compressive localized excitation, propagating in the dust bi-layer.

KdV acoustic soliton theory.By assuming near-sonic propagation, i.e.v ≈ c0, and
a very slow time variation (viz.uττ � uτ ,uξ ), one obtains from the GBq Eq. (4) the
canonical form of the Generalized KORTEWEG - DE VRIES (GKdV) equation

uτ +6uuξ +6u2uξ +uξξξ = 0 (6)

[3], where we have defined:ξ = p0(x−c0t)/
√

6h0q0, τ = p3
0 t/[2c0(6q0)

3/2h1/2
0 ], and

u = zξ
√

q0/(6h0). The GKdV Eq. (6) yields two distinct exact soliton solutions, which
may be inverted tou; one thus obtains two differentkink solitonsin the form:

z(x, t) = ±2
(6h0

q0

)1/2
arctan

[ 1
P2

tanh
(x−vt

L2
+x2

)]

, (7)

whereP2 =
{

[
√

p2
0 +12c0(v−c0)q0± p0]/[

√

p2
0+12c0(v−c0)q0∓ p0]

}1/2
; x2 andv

are real constants; the soliton width is expressed byL2 = 2
√

h0/[2c0(v−c0). Again,
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KdV vs. Boussinesq, M = 1.1

FIGURE 2. Antikink KdV excitation (solid curve) vs. the (two) solutions obtained from the Bq
Equation (dashed curves); Debye interactions withκ = 1.1, Mach numberM = v/c0 = 1.25.

L2 � r0 is assumed. These two solutions correspond to a rarefactiveand compressive
localized excitation. Notice that Eq. (7) are recovered from Eq. (5), by settingv+c0 ≈
2c0. We conclude that the KdV (and associated) equation relatedtheory adds no extra
information to that obtained via the (less approximate) Boussinesq theory.

Similar results have been obtained for one-dimensional dust monolayers [4]. These
theoretical considerations will hopefully be confirmed by appropriate experiments.
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