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Abstract. The influence of dust charge polarization (dressing) on lattice vibrations is investigated. Both one-dimensional
(1D) and hexagonal (2D) monolayer configurations are considered. It is shown that dressed interactions lead to a reduction
(increase) in the frequency of lattice vibrations, as regards longitudinal (transverse) degrees of freedom. The possibility of a
new crystal instability (melting) entirely due to the dressing effect is pointed out. On the other hand, the occurrence of crystals
consisting of opposite (...+-+-+-+...) charge dust grains may be anticipated via this mechanism.
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It is now established that the presence of massive mesoscopic (micron-sized, typically) particulates (“dust grains”)
may modify plasma properties substantially [1]. Of particular importance is the occurrence of strongly-coupled
crystalline-like dust configurations, due to strong inter-grain interactions [2]. These dust quasi-lattices are now known
to support a variety of linear and nonlinear excitations, which may be of potential use in future applications.

At a first approach, ab initio studies show that inter-grain electrostatic interactions may be considered to be of
the screened Coulomb (Debye - Hückel) type [3]. More refined theoretical studies have later shown that taking into
account plasma polarization due to the sheath region (near the grain surface) associated with the grains [4, 5] results
in a strong modification of the (oppositely charged) charge cloud surrounding the particles. This “dressing” effect
leads to a change in the very nature of the inter-particle interactions, which may even become attractive for equal-sign
charged particles (inversely, repulsive interactions may appear in the case of opposite neighboring grain charges).

The influence of dust charge polarization (dressing) on lattice vibrations is investigated in this brief report. Both one-
dimensional (1D) and hexagonal (2D) monolayer configurations are considered. It is shown that dressed interactions
lead to a reduction in the frequency of lattice vibrations [6, 7], as regards both longitudinal and transverse degrees of
freedom. The possibility of a new crystal instability (melting) entirely due to the dressing effect is pointed out. On the
other hand, the occurrence of crystals consisting of opposite (...+-+-+-+...) charge dust grains may be anticipated [8].

DUST-LATTICE WAVES IN ONE-DIMENSIONAL (1D) DUST CRYSTALS

The potential (energy) of interaction between two particles (charges Q1 and Q2) located at a distance r reads [1, 4, 5]
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where x = r/λD ≡ κr′, and λD denotes the effective Debye radius [1, 3]; here, we have defined the lattice parameter
κ = r0/λD and the reduced space variable r′ = r/r0. The parameter s = sgn(Q1Q2) = ±1 is equal to 1 (-1) for
equal- (opposite-)-charge-sign particles, respectively. The parameter δ simply takes the values 1 (for “dressed” Debye
interactions) and 0 (recovering the familiar unperturbed Debye form); unless otherwise stated, δ = 1 in the following.

The potential form (1), studied in Refs. [4, 5], is depicted in Fig. 1. For s = 1 (equal charge-sign grains), it changes
sign at x = 2, shifting from repulsive to attractive interactions (among equal charge signs, here). Furthermore, it bears
a minimum at x = 1 +

√
3 ≈ 2.732, which may play the role of a potential well for neighboring particles located at

an appropriate distance; naturally, this potential form was suggested as a simple model for dust molecule formation in
earlier works [1, 5].
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FIGURE 1. The interaction potential (energy) U , as given by Eq. (1) [scaled by |Q1Q2|/λD] vs. space x = r/λD. Here, s = +1
(equal-sign grain charges) and δ equals, respectively, 0 (1), for simple (dressed) Debye interactions, in the upper (lower) curve.

Transverse dust-lattice waves. The dispersion relation for transverse 1D dust-lattice (TDLW) oscillations is [1, 9]

ω2
T = ω2

g −4ω2
T,0 sin2(kr0/2), (2)

where r0 is the lattice spacing and k is the wavenumber. The gap frequency ωg = limk→0 ωT (k) is related to the plasma
sheath environment (assumed to form a parabolic potential in the transverse direction, centered at the crystal levitation
height), and need not be discussed here; we retain the condition ω2

g /ω2
T,0 > 4, which should be imposed for stability

(so that ω2
T > 0 in the entire Brillouin zone [0,π/r0]). The characteristic constant ω2

T,0 is related to U(r) as

ω2
0,T =−U ′(r0)/(Mr0) , (3)

where M denotes the dust grain mass. Combining with Eq. (1), one obtains
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The right-hand side changes sign at the potential extremum, viz. U ′(r0) = 0. Specifically, for s = 1 (equal-sign charges),
ω2

0,T (drD)
will be a positive (negative) quantity for values of κ below (above) κ1 = 1 +

√
3 ≈ 2.732 (and the inverse

qualitative picture holds for s =−1). This behaviour is depicted in Fig. 2a. This change in sign is not possible for δ = 0
(simple Debye case), where the well-known (positive) form ω2

0,T = [|Q1Q2|/(Mλ 3
D)]e−κ (1+κ)/κ3 is recovered [1, 9].

It is clear from (2) and (4) that ωT increases for δ = 1, as compared to δ = 0 (ordinary screening). The change in
the sign of ω2

0,T (drD)
at κ = κ1 results in a structural change in the dispersion curve, which obtains a normal (inverse)

optic-like form for negative (positive) values of ω2
0,T (drD)

∼−U ′(r0). This behavior is depicted in Fig. 2b. Transverse
dust-lattice waves may thus lose their long-discussed (and experimentally confirmed) backward-wave property (viz.
group and phase velocities of opposite signs) if the lattice parameter κ attains values higher than κ1.
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FIGURE 2. The TDLW characteristic constants ω2
T,0 and ω2

L,0, as given by Eqs. (4) and (7) respectively [scaled by
|Q1Q2|/(Mλ 3

D)] vs. κ = r0/λD. Here, s = +1 and δ is 0 (1), for simple (dressed) Debye interactions, in the upper (lower) curve.

Longitudinal dust-lattice waves. The dispersion relation for longitudinal 1D dust-lattice (LDL) oscillations is

ω2
L = 4ω2

L,0 sin2(kr0/2) , (5)



where r0 and k have been defined above. Contrary to TDLWs, here ωL(k) goes to zero as ωL(k)≈ωL,0r0k≡ csk, where
cs is the LDL sound speed. The characteristic constant ω2

T,0 is related to the interaction potential as [1, 9]

ω2
0,L = U ′′(r0)/M. (6)

Combining with Eq. (1), one obtains
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Clearly, dressing (i.e. δ = 1) leads to a decrease in the LDL vibration frequency. The RHS in (7) changes sign at
the potential deflection point, viz. U ′′(r0) = 0. In specific, for s = 1 (equal-sign charges), ω2

0,L(drD)
will be a positive

(negative) quantity for values of κ below (above) κ2 ≈ 3.48 (and the inverse qualitative picture holds for s =−1). This
behaviour is depicted in Fig. 2b. Again, this change in sign is not possible for δ = 0 (simple Debye case), where the
known (positive) expression ω2

0,L = 2[|Q1Q2|/(Mλ 3
D)]e−κ (1+κ +κ2/2)/κ3 is recovered [1, 9].

We see that, for κ values above κ2, i.e. resulting in negative values of ω2
0,L(drD)

∼U ′′(r0), LDL oscillations will be
unstable. For lower κ values, LDLWs will be stable (recall that κ ≈ 1 or slightly higher in today’s experiments).
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FIGURE 3. The TDLW dispersion curve: the square frequency ω2
T , as given by Eq. (2) (scaled by ω2

g ) vs. the reduced
wavenumber kr0), for arbitrary values of all parameters except s (here s = +1) and δ . δ = 0 (1) in the lower (upper) curves.

Stabilization of LDL waves in crystals of alternating charge-sign grains. An interesting consequence of the
electrostatic potential “dressing” effect is the following. Let us consider the 1D alternating charge sign pattern:

...,+,−,+,−,+,−,+,−,+...

Coulomb-like interactions are attractive here, giving rise to unstable longitudinal displacements [8].
Taking into account the dressed Debye potential given by Eq. (1), for opposite grain charge-signs, i.e. for s = −1,

one essentially obtains an reversed, qualitatively speaking, picture, as compared with the case s = +1 treated above;
cf. Fig. 1, upon setting U → −U , which yields the mirror-symmetric plot, with respect to the horizontal axis; the
corresponding figure is omitted here, for brevity. Most interestingly, considering this type of interaction among one
(any) grain and its first order neighbors, we see that the total force Fn = Fn−1,n + Fn+1,n felt by the n−th grain, viz.

Fn =−
[

∂Un−1,n
∂ zn

+ ∂Un+1,n
∂ zn

]
=− ∂

∂ zn
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∂
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, derives from a total potential,

say Utotal(x), which may here, for δ = 1, present a local minimum (hence a stable equilibrium position for the n−th
grain). It turns out that the extremum at x = 0, viz. U ′

total(0) = 0, is a local minimum (maximum), i.e. U ′′
total(0) is

positive (negative) for κ values above (below) a critical value κ3 ≈ 3.4798. This qualitative behavior is depicted in
Fig. 4a. Therefore, the electrostatic dressing effect may result in stabilization of longitudinal grain displacements in a
bi-lattice, consisting of oppositely charged neighboring grains. Remarkably, this possibility is inexistent in the absence
of the dressing effect. Indeed, analyzing the form of Utotal(x) in the case δ = 0 (i.e. for simple, unperturbed Debye
interactions), one sees that no stable equilibrium point occurs in this case; cf. Fig. 4b.

DUST-LATTICE WAVES IN TWO-DIMENSIONAL (2D) HEXAGONAL CRYSTALS

Let us now consider a 2D hexagonal dust monolayer; see in Fig. 5. Linear vibrations along the x− or the y−axis,
propagating in an arbitrary direction (0 < θ < π/2), have been studied for dressed interactions in [7]. Various
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FIGURE 4. The effective potential Utot(x) = Un−1,n(r0 + x) +Un+1,n(r0 − x) [here scaled by |Q1Q2|/λD], which is felt by a
dust grain in a alternating charge-sign bi-lattice, is depicted vs. the reduced position (displacement) variable x/λD. Here, s = −1
(opposite-sign grain charges) and δ = 1 (δ = 0) in the left (right) plot. The lattice κ is equal to 6, 5, 4, 3, in curves I, II, III, IV.

combinations exist; for instance, for longitudinal excitations [δxn ∼ exp i(kx−ωt), δyn = 0] propagating along the
principal axis x (i.e. θ = 0), we have [7]: ω2 ∼ ω2

0,L(drD)
sin2(kr0/4)[1 + 4cos2(kr0/4)] [cf. (7) above]. As in the 1D

case treated above, one finds out that taking the polarization effect into account results in a decrease in the vibration
frequency ω , in addition to a consequent slowing down in the phase speed. The same qualitative effect is witnessed
for transverse DL waves, for various values of θ . Finally, “dressing” yields a considerable effect on the characteristics
of nonlinear modulated envelope DL structures, as shown in [10].

FIGURE 5. (a) Elementary cell in a 2D hexagonal crystalline configuration. (b) The normalized LDL frequency ω2
L vs. kr0, for

wave propagation in the x direction. Here κ =2.5, and δ = 0 (1) in curve 1 (2).

In conclusion, charge polarization (electrostatic “dressing”) results in a significant modification of the propagation
characteristics of dust-lattice waves, which may even be destabilized (for high values of the lattice parameter κ ,
essentially). Furthermore, transverse off-plane 1D vibrations may shift from a backward- to a forward-propagating
wave, due to the polarization effect. There results may be investigated by appropriate experiments.
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