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Abstract. The nonlinear propagation of electrostatic wave packets in electron-positron-ion (e-p-i) plasmas, or pair- (e.g.
fullerene) ion plasmas in the presence of a small fraction of uniform and stationary positive ions is studied. A two-fluid plasma
model is employed. Two distinct electrostatic modes are obtained, namely a quasi-ion-thermal lower mode and a Langmuir-
like optic-type upper one, as in pure pair plasmas, in agreement with previous experimental observations and theoretical
studies of equal-temperature pair plasmas. The basic set of model equations is reduced to a nonlinear Schrödinger equation
for the slowly varying electric field perturbation amplitude. The analysis reveals that the stability range of lower (acoustic)
mode increases as the positive-to- negative-ion (or positron-to-electron) density ratio increases, so this quasi-thermal mode
may propagate in the form of a dark-type envelope soliton (i.e. a potential dip, or a void) modulating a carrier wave packet for
small wave-numbers, for a fixed value of the positive-to-negative-ion (or positron-to-electron) temperature ratio. On the other
hand, the upper mode is modulationally unstable, and may thus favor the formation of bright- type envelope soliton (pulse)
modulated wave-packets in the same wave-number region.
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THE MODEL EQUATIONS

The present study is devoted to an investigation of the nonlinear amplitude modulation of electrostatic modes [1]
propagating parallel to the external magnetic field, in e-p-i plasmas, which is an extension to our previous work on pure
pair plasma [2]. Recently, the production of pair fullerene-ion plasmas in laboratory [3, 4] has enabled experimental
studies of pair plasmas rid of intrinsic problems involved in electron-positron plasmas, namely pair recombination
processes and strong Landau damping. Here, we consider the nonlinear propagation of electrostatic wave packets
in e-p-i plasmas or pair- (e.g. fullerene) ion plasmas in the presence of a small fraction of uniform and stationary
positive ions, by employing a two-fluid plasma model. The two-fluid plasma-dynamical (moment) equations for our
three-component plasma include the two density (continuity) equations

∂nα
∂ t

+
∂ (nα ~Uα)

∂x
= 0, (1)

and the two momentum equations

∂ ~Uα
∂ t

+( ~Uα .~∇) ~Uα =−α~∇φ − γTα
T−

(nα)γ−2~∇nα , (2)

where the subscript α denotes either species 1 (i.e. the positive ions, or positrons) for α = +, or species 2 (i.e. the
negative ions, or electrons)for α = −. The moment variables nα , ~Uα denote the density and fluid velocity of species
α , respectively. The electric field is provided by the electric potential φ , which obeys Poisson’s equation

~∇2φ = (n−−n+− Z3

Z
n3). (3)

where Z (Z3) denote the charge states of positrons and electrons (background ions, respectively). In equations (1)-
(3), all quantities are normalized: the time and space variables as t ′ ≡ ωpt and x′ ≡ x/λD,−, respectively, where the



characteristic scales are defined by the plasma frequency ωp,α = (4πn0q2
α/mα) and the Debye frequency λD,α =

(KBTα/mωp,α)1/2. The density, velocity and electric potential state variables are scaled as n′α = nα/n−,0, u′α = uα/cs

and φ ′ = φ/φ0 respectively, where we have defined the characteristic (sound) speed cs = (KBT−/m)(1/2) (for negative
ions) and the characteristic potential scale φ0 = (KBT−/Ze); the primes will be dropped for simplicity. It is assumed
that the neutrality condition holds in equilibrium and the background ion density n3 is constant.

THE PERTURBATIVE ANALYSIS.

In order to obtain an explicit evolution equation describing the propagation of modulated EA envelopes, from the model
Eqs (1)-(3), we shall employ the standard reductive perturbation (multiple scales) technique [5]. The independent
variables x and t are stretched as ξ = ε(x−λ t) and τ = ε2t , where ε is a small (real) parameter; here, λ is a free (real)
parameter, which is to be later determined as the wave’s group velocity by compatibility requirements. The dependent
variable vector Sα is expanded as

Sα = Sα,0 +
∞

∑
n=1

∞

∑
l=−∞

εnS(n)
α ,l(ξ ,τ)eil(kx−ωt) (4)

where Sα ,0 denotes the equilibrium case. Substituting the expansion ansatz (4) and the stretched variables ξ ,τ into
Eqs. (1)- (3), and then isolating distinct orders in ε , we obtain, in the lowest-order, n = 1 and l = 1

n(1)
−,1 =

k2

−ω2 +3k2 φ (1)
1 , n(1)

+,1 =
βk2

ω2−3σβ 2k2 φ (1)
1 , U (1)

−,1 =
ωk

−ω2 +3k2 φ (1)
1 , U (1)

+,1 =
βk2

ω2−3σβ 2k2 φ (1)
1 . (5)

The following dispersion relation is deduced

β
ω2−3σβ 2k2 +

1
ω2−3k2 = 1 (6)

as a compatibility requirement, where β = n+/n− and σ = T+/T−. Two real solutions are thus obtained for the
frequency square ω2, defined by

ω2
1 =

1+β
2

+
γ
2
(1+ σβ 2)k2− 1

2

√
γ2 k4(1−σβ )2 +2γ(β −1)(σβ 2−1)k2 +(1+β )2, (7)
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2
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γ
2
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1
2

√
γ2 k4(1−σβ )2 +2γ(β −1)(σβ 2−1)k2 +(1+β )2 (8)

which respectively denote a an acoustic mode (lower branch), and a Langmuir-like optical mode (higher branch). These
two dispersion curves are depicted in Figure 1. For the second-order (n = 2) equatins with l = 1 (1st harmonics), we
deduce the following compatibility condition

λ =
ω
k
− 1

kω[ 1
(ω2−3k2)2 + β

(ω2−3σβ 2k2)2 ]
. (9)

It is easy to show that λ = ∂ω
∂k .

Proceeding to n=2, l=2 in combination with n=3, l=0, 1, we obtain a compatibility condition in the form of the
nonlinear Schrödinger equation (NLSE) [6]

i
∂φ
∂τ

+P
∂ 2φ
∂ξ 2 +Q|φ |2φ = 0, (10)

which describes the slow evolution of the first-order amplitude of the plasma potential perturbation φ (1)
1 . The dispersion

coefficient P, which is related to the dispersion curve as P = ∂ 2ω
2∂k2 and the nonlinearity coefficient Q which is due to the

carrier wave self-interaction, are given in the Appendix. The localized solutions of the NLSE (10) describe (arbitrary
amplitude) nonlinear excitations, in the form of bright (for PQ > 0) or dark (i.e. black/gray, for PQ < 0) envelope



FIGURE 1. The two dispersion curves defined by Eq. (6) are depicted, as a frequency ω variation vs. the reduced wavenumber
k.

solitons. Exact expressions for these envelope structures can be found by substituting with φ =
√ρ eiθ into Eq.(10),

and then separating real and imaginary parts. The final formulae are exposed e.g. in Refs. [7, 8]. It is remarked that the
ratio P/Q determines the spatial extension of the localized envelope structures for a given maximum amplitude (and
vice versa), in an inverse-proportional manner. The stability of the NLS equation (10) consists in linearizing around
the monochromatic wave solution ψ = ψ̃eiQ|ψ̃ |2τ , i.e. by setting ψ̃ = ψ̃0 + εψ̃1, and then taking the perturbation ψ̃1 to
be of the form ψ̃1 = ˜ψ1,0ei(k̂ξ−ω̂τ)(the perturbation wave number k̂ and frequency ω̂ should be distinguished from the
carrier wave quantities k and ω). One thus obtains the dispersion relation ω̂2 = Pk̂2(Pk̂2−2 Q

P |ψ̃0|2). In order for the
wave to be stable, the product PQ must be negative.

NUMERICAL ANALYSIS

We have seen that two distinct electrostatic modes, namely a quasi-thermal lower mode and a Langmuir-like optic-
type upper one, may propagate in our plasma system in the linear approximation; see Eqs. (7) and (8). Now, We may
investigate the numerical value of the quantities PQ and P/Q in terms of the relevant physical parameters, namely
the positron-to-electron (or positive-to-negative ion) density and temperature ratio(s), β and σ , respectively, for these
modes. The results of the calculations for the lower and higher modes are shown in Figs. 1 and 2 respectively. We
conclude that the lower (acoustic) mode is generally stable, for realistic large wavelength situations (cf. Fig. 2) and
may propagate in the form of a dark-type envelope soliton (i.e. a potential dip, a void). On the other hand, the upper
(Langmuir-like) mode is modulationally unstable (cf. Fig. 3), and may favor the formation of bright-type envelope
soliton (pulse) modulated wave packets at low wave-numbers. Fig.1 reveals that the stability range of the lower
(acoustic) mode increases as the positive ion (or positron) to negative ion (or electron) ion density ratio β increases.
Furthermore, careful inspection of Figs. 1 and 2 shows that the temperature ratio σ is an important factor, from the
point of view of stability, for both modes. In specific, one may anticipate that a local coexistence of positrons with a
colder (warmer), say, population of negative electrons, viz. σ < 1 (σ > 1), may critically affect the stability profile of
electrostatic modes, for instance by stabilizing the lower mode, or by destabilizing the upper mode.
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FIGURE 2. The NLSE coefficient product PQ (a and c) and ratio P/Q (b and d) corresponding to the lower dispersion branch ,
are depicted against the reduced wavenumber k (in abscissa everywhere).

FIGURE 3. The NLSE coefficient product PQ (a and c) and ratio P/Q (b and d) corresponding to the higher dispersion branch ,
are depicted against the reduced wavenumber k (in abscissa everywhere)
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Appendix

P = (ω2−kλω)2(ω−kω)
2ω2k2 [ ω2+3k2

(ω2−3k2)3 + β (ω2+3σk2β 2)
(ω2−3σk2β 2)3 ]+ 3(ω2−kλω)2

ω [ 1
(ω2−3k2)3 + σβ 3

(ω2−3σk2β 2)3 ]

− (ω2−kλω)
2ωk2 − (ω2−kλω)2λ

k [ 1
(ω2−3k2)3 + β

(ω2−3σk2β 2)3 ] ,

Q =− k3(2ω+kλ )(ω2−kλω)
2λω [ (ω2+3k2)

(ω2−3k2)4 + β (ω2+3σk2β 2)
(ω2−3σk2β 2)4 ]− 3k4(ω2−kλω)

4ω [ (ω2+3k2)(ω2+k2)
(ω2−3k2)5 + β (ω2+3σk2β 2)(ω2+σk2β 2)

(ω2−3σk2β 2)5 ]

− 3k4(ω2−kλω)
4ω [ (ω2+k2)[ω2+k2+6k2(ω2−3k2)]

(ω2−3k2)6 + β 2(ω2+σk2β 2)[ω2+σk2β 2+6σk2β (ω2−3σk2β 2)]
(ω2−3σk2β 2)6 ]

+ 3βk4(ω2+k2)(ω2+σk2β 2)(ω2−kλω)
2ω(ω2−3k2)3(ω2−3σk2β 2)3 + (2kλω+ω2+3k2)(ω2−kλω)

2ω[λ 2−3σβ 2+(λ 2−3)β ] {
2ωk3(λ 2−3σβ 2−3β )−k2βλ (ω2+3k2)

λ (ω2−3k2)4

− 4ωk3λβ
(ω2−3k2)2(ω2−3σk2β 2)2 − k2β (2ω2+3k2+3σk2β 2)

(ω2−3k2)2(ω2−3σk2β 2)2 + 2ωk3β 2(λ 2−3σβ−3)−k2βλ (ω2+3σk2β 2)
λ (ω2−3σk2β 2)4 } .


