Electrostatic mode envelope excitations in warm pair ion plasmas with a small fraction of stationary positive ions - application in e-p-i and doped fullerene plasmas

A. Esfandyari-Kalejahi*, I. Kourakis† and P. K. Shukla **

Abstract. The nonlinear propagation of electrostatic wave packets in electron-positron-ion (e-p-i) plasmas, or pair- (e.g. fullerene) ion plasmas in the presence of a small fraction of uniform and stationary positive ions is studied. A two-fluid plasma model is employed. Two distinct electrostatic modes are obtained, namely a quasi-ion-thermal lower mode and a Langmuir-like optic-type upper one, as in pure pair plasmas, in agreement with previous experimental observations and theoretical studies of equal-temperature pair plasmas. The basic set of model equations is reduced to a nonlinear Schrödinger equation for the slowly varying electric field perturbation amplitude. The analysis reveals that the stability range of lower (acoustic) mode increases as the positive-to-negative-ion (or positron-to-electron) density ratio increases, so this quasi-thermal mode may propagate in the form of a dark-type envelope soliton (i.e. a potential dip, or a void) modulating a carrier wave packet for small wave-numbers, for a fixed value of the positive-to-negative-ion (or positron-to-electron) temperature ratio. On the other hand, the upper mode is modulationally unstable, and may thus favor the formation of bright-type envelope soliton (pulse) modulated wave-packets in the same wave-number region.

Keywords: Pair plasma, Electron-Positron-Ion Plasma, Modulational Instability, Envelope soliton

PACS: 52.27.Ep, 52.27.Aj, 52.35.Mw

THE MODEL EQUATIONS

The present study is devoted to an investigation of the nonlinear amplitude modulation of electrostatic modes [1] propagating parallel to the external magnetic field, in e-p-i plasmas, which is an extension to our previous work on pure pair plasma [2]. Recently, the production of pair fullerene-ion plasmas in laboratory [3, 4] has enabled experimental studies of pair plasmas rid of intrinsic problems involved in electron-positron plasmas, namely pair recombination processes and strong Landau damping. Here, we consider the nonlinear propagation of electrostatic wave packets in e-p-i plasmas or pair- (e.g. fullerene) ion plasmas in the presence of a small fraction of uniform and stationary positive ions, by employing a two-fluid plasma model. The two-fluid plasma-dynamical (moment) equations for our three-component plasma include the two density (continuity) equations

$$\frac{\partial n_{\alpha}}{\partial t} + \frac{\partial (n_{\alpha}U_{\alpha})}{\partial x} = 0,$$

(1)

and the two momentum equations

$$\frac{\partial U_{\alpha}}{\partial t} + (U_{\alpha} \cdot \nabla)U_{\alpha} = -\alpha \nabla \phi - \frac{\gamma T_{\alpha}}{T_{-}} (n_{\alpha})^{\gamma - 2} \nabla n_{\alpha},$$

(2)

where the subscript α denotes either species 1 (i.e. the positive ions, or positrons) for $\alpha = +$, or species 2 (i.e. the negative ions, or electrons) for $\alpha = -$. The moment variables n_{α}, U_{α} denote the density and fluid velocity of species α, respectively. The electric field is provided by the electric potential ϕ, which obeys Poisson’s equation

$$\nabla^2 \phi = (n_{-} - n_{+} - \frac{Z_{1}}{Z} n_{3}).$$

(3)

where Z (Z_{1}) denote the charge states of positrons and electrons (background ions, respectively). In equations (1)-(3), all quantities are normalized: the time and space variables as $t' \equiv \omega_{ph} t$ and $x' \equiv x/\lambda_{D_{-}}$, respectively, where the
characteristic scales are defined by the plasma frequency \(\omega_{p,a} = (4\pi n_0 q_a^2 / m_a) \) and the Debye frequency \(\lambda_0 = (k_B T_a / m_0) \). The density, velocity and electric potential state variables are scaled as \(n'_a = n_a / n_{-0}, u'_a = u_a / c_s \) and \(\phi' = \phi / \phi_0 \) respectively, where we have defined the characteristic (sound) speed \(c_s = (k_B T_a / m)^{1/2} \) (for negative ions) and the characteristic potential scale \(\phi_0 = (k_B T_a / Z e) \); the primes will be dropped for simplicity. It is assumed that the neutrality condition holds in equilibrium and the background ion density \(n_0 \) is constant.

THE PERTURBATIVE ANALYSIS.

In order to obtain an explicit evolution equation describing the propagation of modulated EA envelopes, from the model Eqs. (1)-(3), we shall employ the standard reductive perturbation (multiple scales) technique [5]. The independent variables \(x \) and \(t \) are stretched as \(\xi = \varepsilon (x - \lambda t) \) and \(\tau = \varepsilon^2 t \), where \(\varepsilon \) is a small (real) parameter; here, \(\lambda \) is a free (real) parameter, which is to be later determined as the wave’s group velocity by compatibility requirements. The dependent variable vector \(\mathbf{S}_a \) is expanded as

\[
\mathbf{S}_a = \mathbf{S}_{a,0} + \sum_{n=1}^{\infty} \sum_{l=-\infty}^{\infty} e^{i n \phi} \mathbf{S}_{a,n,l}(\xi, \tau) e^{i (k_l x - \omega_l t)}
\]

(4)

where \(\mathbf{S}_{a,0} \) denotes the equilibrium case. Substituting the expansion ansatz (4) and the stretched variables \(\xi, \tau \) into Eqs. (1)-(3), and then isolating distinct orders in \(\varepsilon \), we obtain, in the lowest-order, \(n = 1 \) and \(l = 1 \)

\[
\begin{align*}
n_{-1}^{(1)} &= \frac{k^2}{\omega^2 + 3 \alpha^2} \phi_1^{(1)}, & n_{-1}^{(1)} &= \frac{\beta k^2}{\omega^2 + 3 \alpha^2} \phi_1^{(1)}, & U_{-1}^{(1)} &= \frac{\omega k}{\omega^2 + 3 \alpha^2} \phi_1^{(1)}, & U_{-1}^{(1)} &= \frac{\beta k^2}{\omega^2 + 3 \alpha^2} \phi_1^{(1)}.
\end{align*}
\]

(5)

The following dispersion relation is deduced

\[
\frac{\omega}{\omega^2 - 3 \alpha^2} + \frac{1}{\omega^2 - 3 \alpha^2} = 1
\]

(6)

as a compatibility requirement, where \(\beta = n_+ / n_- \) and \(\sigma = T_+ / T_- \). Two real solutions are thus obtained for the frequency square \(\omega^2 \), defined by

\[
\begin{align*}
\omega_1^2 &= \frac{1 + \beta}{2} + \frac{\gamma}{2} (1 + \sigma \beta^2) k^2 - \frac{1}{2} \sqrt{\gamma^2 k^4 (1 - \sigma \beta^2)^2 + 2 \gamma (\beta - 1) (\sigma \beta^2 - 1) k^2 + (1 + \beta)^2}, \\
\omega_2^2 &= \frac{1 + \beta}{2} + \frac{\gamma}{2} (1 + \sigma \beta^2) k^2 + \frac{1}{2} \sqrt{\gamma^2 k^4 (1 - \sigma \beta^2)^2 + 2 \gamma (\beta - 1) (\sigma \beta^2 - 1) k^2 + (1 + \beta)^2}
\end{align*}
\]

(7)

(8)

which respectively denote an acoustic mode (lower branch), and a Langmuir-like optical mode (higher branch). These two dispersion curves are depicted in Figure 1. For the second-order \(n = 2 \) equatinos with \(l = 1 \) (1st harmonics), we deduce the following compatibility condition

\[
\lambda = \frac{\omega}{k} = \frac{1}{k\omega(\omega^2 - 3 \alpha^2)} \frac{1}{\sqrt{\lambda^2 (\omega^2 - 3 \alpha^2) + 2 \beta}}.
\]

(9)

It is easy to show that \(\lambda = \frac{\partial \phi}{\partial \tau} \).

Proceeding to \(n = 2, l = 2 \) in combination with \(n = 3, l = 0, 1 \), we obtain a compatibility condition in the form of the nonlinear Schrödinger equation (NLSE) [6]

\[
i \frac{\partial \phi}{\partial \tau} + P \frac{\partial^2 \phi}{\partial \xi^2} + Q |\phi|^2 \phi = 0,
\]

(10)

which describes the slow evolution of the first-order amplitude of the plasma potential perturbation \(\phi_1^{(1)} \). The dispersion coefficient \(P \) which is related to the dispersion curve as \(P = \frac{\partial \omega}{\partial k} \) and the nonlinearity coefficient \(Q \) which is due to the carrier wave self-interaction, are given in the Appendix. The localized solutions of the NLSE (10) describe (arbitrary amplitude) nonlinear excitations, in the form of bright (for \(P Q > 0 \)) or dark (i.e. black/gray, for \(P Q < 0 \)) envelope
The two dispersion curves defined by Eq. (6) are depicted, as a frequency ω variation vs. the reduced wavenumber k.

solitons. Exact expressions for these envelope structures can be found by substituting with $\phi = \sqrt{\rho} e^{i\theta}$ into Eq.(10), and then separating real and imaginary parts. The final formulae are exposed e.g. in Refs. [7, 8]. It is remarked that the ratio P/Q determines the spatial extension of the localized envelope structures for a given maximum amplitude (and vice versa), in an inverse-proportional manner. The stability of the NLS equation (10) consists in linearizing around the monochromatic wave solution $\psi = \psi_0 e^{iQ|\psi_0|^2\tau}$, i.e. by setting $\psi = \tilde{\psi}_0 + \varepsilon \tilde{\psi}_1$, and then taking the perturbation $\tilde{\psi}_1$ to be of the form $\tilde{\psi}_1 = \tilde{\psi}_1, e^{i(\tilde{k} \xi - \tilde{\omega} \tau)}$ (the perturbation wave number \tilde{k} and frequency $\tilde{\omega}$ should be distinguished from the carrier wave quantities k and ω). One thus obtains the dispersion relation $\tilde{\omega}^2 = P\tilde{k}^2(\tilde{k}^2 - 2\frac{P}{Q}|\psi_0|^2)$. In order for the wave to be stable, the product PQ must be negative.

NUMERICAL ANALYSIS

We have seen that two distinct electrostatic modes, namely a quasi-thermal lower mode and a Langmuir-like optictype upper one, may propagate in our plasma system in the linear approximation; see Eqs. (7) and (8). Now, We may investigate the numerical value of the quantities PQ and P/Q in terms of the relevant physical parameters, namely the positron-to-electron (or positive-to-negative ion) density and temperature ratio(s), β and σ, respectively, for these modes. The results of the calculations for the lower and higher modes are shown in Figs. 1 and 2 respectively. We conclude that the lower (acoustic) mode is generally stable, for realistic large wavelength situations (cf. Fig. 2) and may propagate in the form of a dark-type envelope soliton (i.e. a potential dip, a void). On the other hand, the upper (Langmuir-like) mode is modulationally unstable (cf. Fig. 3), and may favor the formation of bright-type envelope soliton (pulse) modulated wave packets at low wave-numbers. Fig.1 reveals that the stability range of the lower (acoustic) mode increases as the positive ion (or positron) to negative ion (or electron) ion density ratio β increases.

Furthermore, careful inspection of Figs. 1 and 2 shows that the temperature ratio σ is an important factor, from the point of view of stability, for both modes. In specific, one may anticipate that a local coexistence of positrons with a colder (warmer), say, population of negative electrons, viz. $\sigma < 1$ ($\sigma > 1$), may critically affect the stability profile of electrostatic modes, for instance by stabilizing the lower mode, or by destabilizing the upper mode.

Acknowledgments I.K. acknowledges partial support by the Deutsche Forschungsgemeinschaft (Bonn, Germany) through the Sonderforschungsbereich (SFB) 591.

REFERENCES

3. The NLSE coefficient product PQ (a and c) and ratio P/Q (b and d) corresponding to the lower dispersion branch, are depicted against the reduced wavenumber k (in abscissa everywhere).

4. The NLSE coefficient product PQ (a and c) and ratio P/Q (b and d) corresponding to the higher dispersion branch, are depicted against the reduced wavenumber k (in abscissa everywhere).

Appendix