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Abstract. Ion-acoustic solitary waves in a collisionless plasma consisting of adiabatic warm ions, a weakly relativistic
electron beam and non-isothermal electrons, are studied by using the reductive perturbation method. The basic set of model
equations is reduced to a modified Korteweg-de Vries equation (mKdV) for the first order electric potential correction, and to
a linear inhomogeneous equation for its second-order counterpart. It is remarked that the effect of higher order nonlinearity
results in an increased soliton amplitude for one of these modes, in addition to deforming the soliton’s shape (from a simple
positive pulse to a W-shaped excitation), while in the case of the three other modes, the effect of higher-order nonlinearity is
to increase the soliton’s amplitude without deforming its shape (a simple pulse is obtained). The effects of the electron beam
density and the ion temperature on the existence and propagation of solitary waves are also briefly studied.
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THE MODEL EQUATIONS

We assume a collisionless plasma consisting of warm ions, non-isothermal electrons and weak (for the sake of
simplicity) relativistic electron beam. We shall consider the lowest-order ion-acoustic solitary waves, anticipating
the effect of higher-order nonlinearity on them. A reductive perturbation method will be employed. Wave propagation
parallel to the external magnetic field is considered. The basic set of fluid equations for ions and the electron beam
[1, 2] are as follows:
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in which all quantities have been normalized as in [1], except for Te → Te f . It is supposed that the expression for the
electron density [3, 4] is given by
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in which Te f denotes the constant temperature of the free electrons and Tet that of the trapped electrons. The third term
in relation (2) introduces the contribution of the resonant electrons (both free and trapped) to the electron density.



REDUCTIVE PERTURBATION ANALYSIS

Anticipating the derivation of a KdV-type equation describing the propagation of nonlinear ion-acoustic waves from
the basic system of Eqs (1)-(6), we expand all state variables around the equilibrium state, by defining a smallness
parameter ε , viz.
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To the lowest power of ε we obtain
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We also obtain the dispersion relation
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which is quartic in S, so that four distinct modes can propagate in this plasma system. It must be stressed that S 6= v0
and S 6= 3σ . For v0 = 0, the dispersion relation is quadratic in S2, so S2
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the fast ion-acoustic one.
From the next-order equations in ε , we obtain the modified KdV equation

ϕ1τ +bAϕ
1
2

1 ϕ1ξ +
A
2

ϕ1ξ ξ ξ = 0 , (9)

with

A =
(S2−3σ)2(v0−S)3

S[S(1+α)(v0−S)3− α
µi

(S2−3σ)2(1− 3
2

v2
0

c2 )]

(to be compared to the KdV equation obtained in the isothermal case [2]). For S = v0 and S = 3σ , the coefficient A
becomes zero and thus ion-acoustic (mKdV) solitons do not exist at sonic velocities.

A better agreement between theory and experiments is expected by taking into account higher-order nonlinearity
effects [6, 7]. Therefore, proceeding to the next order in ε , we obtain
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Expressions for the quantities P, Q and R are given in the Appendix. In order to solve Eqs. (9) and (10), we use the
renormalization method of Kodama and Taniuti [5], according to which Eqs. (9) and (10) are modified as
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where s(ϕ̃1) is the right hand side of Eq. (10). In Eqs. (11) and (12), the parameter δλ is introduced in such a way that
the resonant term in s(ϕ̃1) is cancelled by the term δλ ∂ ϕ̃1

∂ξ in (12). In order to obtain stationary profile travelling wave
solutions, we defining the new variable η as
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Under this transformation, and using the boundary conditions ϕ̃1 = ϕ̃2 = ∂ ϕ̃2
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Now, in order to cancel the secular terms in s(ϕ̃1), we set the second expression in the second line of the right-hand
side of Eq. (15) equal to zero. We therefore immediately get
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In order to solve Eq. (15), we introduce a new variable µ = tanh( η
D ) and use the method of variation of parameters.

We therefore obtain the complementary and particular solutions as
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respectively, where Z1 and Z2 are given in appendix. The first term in Eq. (17) is the secular one, which can be
eliminated by renormalizing the amplitude. Also, c2 = 0 as a result of vanishing boundary conditions for ϕ̃2(η) as
|η | → ∞. Therefore, only the particular solution (18), contributes to ϕ̃2(η) so that the stationary solution for the
potential for ion-acoustic wave is given by
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NUMERICAL ANALYSIS AND CONCLUSION

The dispersion relation (8) is quartic in S, and thus shows that the inclusion of a finite ion temperature, non-
isothermal electrons and relativistic electron beam gives rise to four ion-acoustic modes propagating with different
phase velocities S1, S2, S3 and S4. For instance, the dispersion relation has only two real roots S1, S2 for v0 = 1.8,
c = 30, µ = 1/1836, λ = 0.5, b =−0.99; α = 0.0001 and σ = 0.2−0.3. Figures (1)-(2) show curves for the lowest-
order modified KdV soliton (8) and for the second-order one soliton solution (19). It is remarked that the effect of
higher order nonlinearity results in an increased soliton amplitude for one of these modes S1, while deforming the
soliton’s shape (from a simple positive pulse to a W-shaped excitation), whilst in the case of the second mode S2, the
effect of higher-order nonlinearity is to increase the soliton’s amplitude without deforming its shape (a simple pulse
is obtained). In addition, increasing the value of σ increases (decreases) the soliton’s amplitude in the case of mode
S1 (S2), for fixed α . Generally, the analysis reveals that four distinct ion-acoustic modes, which propagate at different
phase velocities, may occur in this plasma system. Two of these modes exist for all values of the electron beam to
background electron density ratio α and ion to free electron temperature ratio σ . The amplitude of (mKdV ) solitons
decreases (increases) as α (σ , respectively) increases, while the inverse behavior is witnessed by the soliton width,
for these two modes. On the other hand, the two remaining modes exist only for small values of α and high values of
σ ; in fact, the phase speed of these modes becomes complex at some range of values of α and σ . The amplitude and
width associated to these modes decreases (increases) as α( σ , respectively) increases. Finally, it is remarked that the
effect of higher order nonlinearity results in an increased soliton amplitude for one of these modes, while deforming
the soliton’s shape (from a simple positive pulse to a W-shaped excitation), while in the case of the (three) remaining
modes, the effect of higher-order nonlinearity is to increase the soliton’s amplitude without deforming its shape (i.e. a
simple pulse is obtained).
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FIGURE 1. From left to right: curves 1 and 3 show steady one-soliton solutions ϕ̃1 [Eq. (14)] versus η
D ; curves 2 and 4 show

second-order one-soliton ϕ̃ [Eq. (19)] versus η
D , for the first mode S1.
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FIGURE 2. From left to right: curves 1 and 3 (1/10000 scale) show steady one-soliton solutions ϕ̃1 [Eq. (14)] versus η
D ; curves

2 and 4 (1/10000 scale) show second-order one-soliton ϕ̃ (Eq(19)) versus η
D , for mode S2.
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APPENDIX
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