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Abstract. The propagation of arbitrary amplitude nonlinear ion-acoustic waves in an electron-beam-plasma system consisting
of two temperature electrons (hot/cold) and warm ions is investigated by using a pseudopotential method, applied in a two-
fluid model. The effects of hot-to-cold electron temperature and density ratio (µ and ν , respectively) and beam-to-ion density
ratio (β ) are studied numerically. The conditions for the existence of large amplitude ion-acoustic waves in terms of these
parameters are investigated. It is remarked that the maximum Mach number M increases (decreases) as β (ν) increases, for
fixed σ and µ . Also, the maximum Mach number M increases (decreases) as β (µ) increases for fixed σ and µ . In addition, it
is found that the amplitude of compressive solitons increases as µ rises to a given limit, after which the compressive solitons do
not occur, provided other parameters remain fixed. On the other hand, increasing ν up to a given limit leads to an enhancement
in the amplitude of compressive solitons. However, if ν rises above this limit, the amplitude of solitons decreases again (very
low and very high values of ν have the same physical meaning, i.e. a single-electron species limit).
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INTRODUCTION

This study focuses on a situation of particular interest, when an electron beam is present in a two-electron-temperature
plasma. Such a situation is typically encountered in the upper layers of the magnetosphere, where a co-existence of
two different electron populations (say, cold inertial and warm energetic ones) has been reported by satellite missions
[1, 2]. Recently, a lot of research work has focused on plasmas in the presence of an electron beam e.g. [3, 4, 5, 6]
or two-temperature electrons e.g. [8, 7]. It is therefore tempting to investigate the existence of large amplitude ion-
acoustic solitary waves in a plasma consisting of warm ions, two distinct temperature electrons and an electron beam.
In the following, we shall adopt a pseudopotential (Sagdeev) method.

BASIC EQUATION AND FORMULATION

We consider a plasma consisting of warm ions, two temperature electrons and a non-relativistic electron beam.
Assuming a one-dimensional (1D) geometry, the basic set of normalized fluid equations for this system is as follows:
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FIGURE 1. The zero pseudopotential value V (φmax) = 0 (left) and curvature d2V (φ)/dφ 2|φ=0 = 0 (right) contours are depicted
versus the electron -beam-to-background-ion density ratio β and the Mach number M, for ν = 10, µ = 10, σ = 0.1, ub0 = 1.1 and
µ ′ = 1836. The black (white) region corresponds to negative (positive) values.

The Lorentz force term is neglected, since wave propagation parallel to the external magnetic field is assumed. The
electric field derives from an electric potential φ , which obeys Poisson’s equation
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where n, nb, nc and nh are the ion, electron beam, cold electron and hot electron density respectively, normalized to the
unperturbed ion density n0; the ion (also, electron beam) velocity u (ub), the ion pressure p and the electrostatic
potential φ are normalized to the ion acoustic speed Cs,e f f = (ZkBTe f f /m)1/2, n0kBTi and kBTe f f /e, respectively
(kB is Boltzmann’s constant); the space and time variables have been scaled by the effective Debye length λD,e f f =
(KBTe f f /4πZe2n0)1/2 and the ion plasma frequency ωpi = (4πZ2e2n0/m)1/2, respectively. The parameters σ , µ ′, β ,
α and α ′ are given by
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in which Ti is the ion temperature, Te f f = (nc0 + nh0)/(nh0/Th + nc0/Tc) is an effective temperature, m (me) is the
ion (electron) mass, Z is the ion charge state, µ ′ is the mass ratio mi/me, ν = nh0/nc0 (here nh0/c0 is the hot/cold
unperturbed electron density) and µ = Th/Tc (where Th/c is the hot/cold electron temperature).

Derivation of pseudopotential

Anticipating a solitary travelling-wave solution, we assume all the dependent variables to depend on a single
independent variable ξ = x−Mt, where M is the Mach number (the velocity of the solitary wave v normalized to ion
acoustic speed Cs,e f f ). Under appropriate boundary conditions for localized waves: φ → 0,n→ 1,u→ 0, p→ 1,nb → β
and ub → ub0at ξ →±∞, upon integrating Eqs. (1)-(3) we obtain
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FIGURE 2. The maximum Mach number M as a function of electron beam density β σ = 0.1, ub0 = 1.1 and µ ′ = 1836.

The densities n and nb are real if one of the following conditions is satisfied
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The region of the existence of φ is determined by these conditions. Now, integration of Poisson equation , Eq (6), gives
rise to
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whereV (φ) is the pseudopotential and given by
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)] and θ0 = θ(φ = 0) is the integration constant which V (φ) = 0 at φ = 0. The solitary

solution for nonlinear ion acoustic waves exists when the following two conditions are satisfied:
i) The pseudopotential V (φ) has a maximum at φ = 0, i.e. if (d2V (φ)/dφ 2|φ=0 < 0, so that the fixed point at the

origin is unstable, and
ii) V (φ) < 0 for 0 < φ < φmax, for positive solitary waves, or for 0 > φ > φmin, for negative solitary waves, where

φmax(min) is the positive (negative) value of φ for which V (φ) = 0; these values are here determined by
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It must be noticed that the first critical value does not depend on ν and µ , so the effects of physical parameters on the
existence of large amplitude ion-acoustic solitary waves will bear its origin in the second condition.



FIGURE 3. The pseudopotential V (φ) versus φ for β = 0.0000001, M = 1.2, σ = 0.1, ub0 = 1.1 and µ́ = 1836.

THE REGION OF THE EXISTENCE OF LARGE AMPLITUDE ION-ACOUSTIC
WAVES

We depict the zero-value contour plots for V (φmax) and d2V (φ)/dφ 2 at φ = 0 against the Mach number M and electron
beam to background ion density ratio β in Figs. 1a and 1b respectively, in the case ν = 10, µ = 10, σ = 0.1, ub0 = 1.1
and µ ′ = 1836. In Fig. 1a, the area in black/white represents the regions in the (M− β ) plane where V (φmax) is
positive/negative. We remark that there is a maximum and minimum limit for M. On the other hand, the area in
black/white in Fig. 1b represents the regions in the (M− β ) plane where V (φmax) < 0/ > 0. As it is mentioned in
previous section, fig. 1a does not modified as µ and ν change. Careful inspection Fig. 1a and 1b shows that large
amplitude ion-acoustic solitary waves occur when β is very very small, for instance β = 0.0000001, and |M| > 1
namely supersonic case.

We show the maximum Mach number M as a function of β in figure 2a(2b) in the case: µ = 10; ν = 0.05, ν = 0.6,
and ν = 20 (ν = 10; µ = 4.5, µ = 8, and µ = 25). It is remarked that the maximum Mach number increases (decreases)
as β (ν) increases for fixed µ . Also the maximum Mach number M increases (decreases) as β (µ) increases for fixed ν .
We illustrate dependence of V (φ) on the electrostatic potential φ when β = 0.0000001, M = 1.2, σ=0.1 for two case:
ν = 10 but different values µ , and µ=10 but different values ν in Figs. 3a-b. It is seen the amplitude of compressive
solitons increases as µ rises to a given limit, after which the compressive solitons do not occur (Fig .3a). On the other
hand, enhancing ν up to a given limit leads to an increase in the amplitude of compressive solitons. However, if ν rises
to more than this limit, amplitude of solitons will decrease (Fig.3b), since very low and very high valuesν have the
same physical meaning.
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