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Nonlinear electromagnetic waves in magnetized plasmas that are complex, with a number of ion 
species, or charged dust grains, or pair plasmas, are of increasing interest for laboratory, space and 
astrophysical  applications. Imbalanced electron and positron number densities occur (1) in the 
plasma of a rotating pulsar magnetosphere, or (2) due to background additional ions or dust grains. 
In each case the background charge may be considered to be due to effectively infinitely massive 
particles. Imbalance of the electron and positron number densities leads to circularly polarized, 
rather than linearly polarized, modes propagating along the magnetic field. Here we analyse the 
unique features of nonlinear waves in the example of pair plasmas, and find general conditions for 
modulational instabilities, firstly for propagation parallel to the magnetic field, and then for 
perpendicular propagation of ordinary (O) modes. 

 
1. Introduction 

Pair-plasmas, i.e., plasmas consisting of 
negatively and positively charged particles bearing 
the same mass and (absolute) charge, have been 
gathering increasing interest among plasma 
researchers in the last years. Magnetized electron-
positron plasmas exist in pulsar magnetospheres [1], 
in bipolar outflows in active galactic nuclei, at the 
center of the Galaxy, in the early universe, and in 
inertial confinement fusion schemes using 
ultraintense lasers [2]. Nonrelativistic pair plasmas 
have been created in experiments [3]. There is the 
possibility of pair production in large tokamaks due 
to collisions between multi-MeV runaway electrons 
and thermal particles [4]. Plasmas composed of two 
populations of fully ionized particles with the same 
mass and absolute charges of opposite charge 
polarity, have recently been created in the laboratory 
[5] by creating a large ensemble of fullerene ions, in 
equal numbers, thus allowing for a study of pair 
plasma properties with no concern for mutual 
annihilation which limits electron-positron plasma 
lifetime. 

The physics of pair plasmas is substantially 
different from that of electron-ion plasmas, since the 
large time and space scale separation among 
constituents due to the large ion-to-electron mass 
ratio, in an electron-ion plasma, is absent in a pair 
plasma. In magnetized pair plasma, besides the 
electrostatic upper-hybrid waves, we have the 
perpendicularly propagating ordinary and 
extraordinary modes as well as electromagnetic 

waves propagating parallel to the magnetic field, 
featuring a linear polarization. However, when the 
number densities of the equal mass, oppositely 
charged particles are unequal, due to a background 
charge such as due to very heavy particles, the 
natural small amplitude modes are circularly 
polarized. Imbalanced electron and positron number 
densities can occur either due to the Goldreich-
Julian charge in the plasma of a rotating pulsar 
magnetosphere [1], or due to background additional 
(relatively massive) ions or dust grains [6]. In each 
case the background charge may be considered to be 
due to effectively infinitely massive particles. Here 
perturbation theory is employed for a fluid model of 
such a plasma and shown to lead to a Nonlinear 
Schrödinger-type equation for the wave amplitude. 
The linear stability of the wave envelope and the 
occurrence of envelope solitons are discussed. 
 
2. The Model and Solution 

A non-relativistic two-fluid plasma model is 
used, with the momentum equations for each of the 
two oppositely charged fluids with equal mass 
particles, but allowing for unequal number densities:  

 

                    (1)  
  

    The total equilibrium charge is ensured to be zero 
by including a background of neutralising infinitely 
massive particles. Maxwell’s equations complete the 
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set. Full details of the model equations are found in 
Ref [7]. 

A reductive perturbation technique is used, with 
stretched time and space variables. The first order 
solution is the well known linear mode dispersion 
relation. Ensuring that secular terms in the second 
order solution vanish produces a compatibility 
condition, taking the form of the nonlinear 
Schrödinger-type equation (NLSE) for the magnetic 
field component perpendicular to the background 
field: 

 

    (2) 
 
Here τ=ε2t is the slow time scale, and ξ= ε(x-vgt) 

is the moving envelope space coordinate, with vg  
the linear wave group velocity. The dispersion 
coefficient P is related to the curvature of the 
dispersion relation ω(k): 

 

                                                     (3) 
 

which becomes for perpendicular propagation 
 

                                                        (4)  
 
The nonlinearity coefficient Q is a complicated 
function of the plasma parameters (see [7] for 
details), but simplifies for the balanced case for 
perpendicular propagation: 
 

                                            (5) 
 
Here Ω is the electron cyclotron frequency, ωp,eff  is 
the plasma frequency based on the sum of the 
electron (n-) and positron (n+)  number densities, 
and ωp is the electron or positron plasma frequency 
for the balanced case. 

The NLSE supports plane wave solutions, and it 
is well known that the solutions are stable to 
perturbations if PQ<0. If PQ>0 the solution is 
unstable for perturbation wavelengths greater than a 
critical value proportional to √(Q/P), the 
modulational instability. If the carrier wave is 
modulationally unstable, it can still lead to bright 
soliton solutions. If the wave is modulationally 

stable, it can give rise to dark soliton solutions, i.e. a 
propagating localized hole in a uniform wave energy 
region.  
 
3. Results 
3.1. Parallel propagating waves 

The dispersion relation for small amplitude 
waves of frequency ω and wave number k is 
 

 
                    (6) 
 

The parameter η = (n+-n-)/(n++n-) measures the 
imbalance of the two species. For η≠0 there are two 
oppositely circularly polarized modes, separated by 
a stop-band. 

Plots of the coefficients P and Q (normalized) 
against carrier wave frequency, normalized to the 
electron cyclotron frequency, are shown in Figure 1. 
The case of balanced electron and positron number 
densities (η=0) is shown, when the wave is linearly 
polarized. In addition, the cases of unbalanced 
electron and positron number densities are shown 
(η=0.5), when the waves are circularly polarized. 
The shaded regions indicate the stop-band range of 
frequency, with lower and upper cutoffs. For η=0 a 
modulational instability occurs for f<0.95. For  η>0, 
at low frequencies both the LHP and RHP waves 
become stable. 

 
3.2 Perpendicular propagating waves 

The small amplitude O-mode has a dispersion 
relation 

 
ω

2= ω2
p,eff

 +c2k2                  (7) 
 

Thus the dispersion relation is relatively simple, 
giving a single mode but the nonlinear behaviour 
shows some complexities. In this case the 
coefficient P is always positive, from equation (4). 
Some results are shown in Figure 2, where Q/P is 
plotted against normalized wavenumber for two 
fixed values of Ω/ωp. Balanced and unbalanced 
electron and positron numbers are considered: it is 
found that an imbalance tends to destabilize the 
wave envelope, and also affects the envelope width 
and form. 
 
4. Conclusions 

We have considered the propagation of nonlinear 
amplitude-modulated EM wave packets in a pair 
plasma, allowing for an imbalance of electron and 
positron numbers (assuming the background 



 
28th ICPIG, July 15-20, 2007, Prague, Czech Republic 

balancing charge is due to immobile particles). The 
carrier wave was assumed to be (a) a parallel 
propagating wave, or (b) a perpendicularly 
propagating ordinary-mode wave. The waves can be 

modulationally unstable, depending on the 
parameter range, and can lead to bright or dark-type 
solitons.  

 
 

 
 

 

      
Figure 1:  The nonlinear (Q) and dispersive (P) coefficients of the NLSE equation for waves propagating 

parallel to the magnetic field, as a function of normalized frequency, for balanced electron and positron 
numbers (η=0) (linearly polarized waves) (top two), and unbalanced numbers (η=0.5), for left hand 
circularly polarized (LHP) (middle two) and right hand circularly polarized (RHP) waves (bottom two). 
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                                             (b)

Figure 2: The coefficient ratio Q/P versus wavenumber for perpendicular propagation. (a)  Ω/ωp =2.1, for 
balanced electron and positron numbers (η=0) (solid curve) and unbalanced numbers (η=1/3) (dashed 
curves). (b) Ω/ωp =3.5, for η=0 (solid curve) and η=-1/3 (dashed curves). 
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