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The occurrence of amplitude-modulated electrostatic and electromagnetic
wavepackets in pair plasmas is investigated. A static additional charged back-

ground species is considered, accounting for dust defects or for heavy ion
presence in the background. Relying on a two-fluid description, a nonlinear
Schrödinger type evolution equation is obtained and analyzed, in terms of the

slow dynamics of the wave amplitude. Exact envelope excitations are obtained,
modelling envelope pulses or holes, and their characteristics are discussed.

1. Introduction

In their widespread textbook picture, charge-neutral electron-ion (e-i) plas-

mas are modelled as large ensembles of electrons e− (charge qe = −e, mass
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me) and positive ions i+ (charge qi = +Zie, mass mi ≫ me). The small

ion-to-electron mass ratio is associated with e-i plasma features, which are

most often implicitly taken for granted: for instance, the electron and ion

plasma frequency ωp,s = (4πnsq
2
s/ms)

1/2 (for species s; here, s = e or

i) and cyclotron frequency ωc,s = qsB/msc are clearly different, thus al-

lowing for a clear distinction among corresponding time and (e.g., Debye)

length) scales and associated wave phenomena.1 Pair plasmas (p.p.) are

distinct from this picture, in that they consist of two ion populations (say,

1+ and 2−) of equal mass and opposite charge (i.e., q1 = −q2 = +Ze and

m1 = m2 = m). The pair ion densities at equilibrium, although equal in

a symmetric (“pure”) p.p. configuration, may differ if the charge balance

is affected by a 3rd population, e.g. a massive charged defect species 3±

(e.g. dust2), assumed present as a stationary background. No plasma or cy-

clotron frequency separation occurs in p.p.; furthermore, a variety of novel

physical phenomena (e.g. absence of Faraday rotation) characterizes electro-

static (ES) and electromagnetic (EM) wave propagation in such plasmas.3

Although this simple description of pair plasmas was originally introduced

to model (for Z = 1, here) electron-positron (e-p) plasmasa (yet oversee-

ing e-p annihilation-recombination processes, here neglected throughout),

it may claim to provide a consistent model of fullerene-ion pair plasma

configurations which were recently successfully produced in experiments.4

Significant research effort has recently focused on the properties of linear

and nonlinear wave propagation in such plasmas.

Plasma wave observations, both in Space and in the laboratory, provide

abundant evidence for the existence of spatially localized propagating wave

structures, e.g. in the form of a localized envelope pulse confining (modulat-

ing) a fast carrier wave.5 Modulated wavepackets of this form may occur as

a result of modulation instability (MI), when nonlinearity at the first stages

of the amplitude instability is balanced by group dispersion. This physical

mechanism is reminiscent of energy localization phenomena in nonlinear

optics, hydrodynamics and biophysics.6 As regards pair plasmas, nonlinear

modulated wavepackets may occur either as ES7,8 or electromagnetic EM9

wavepackets.

The aim of this brief report is to review existing results on linear waves

and nonlinear envelope structures propagating in pair plasmas. A two-fluid

plasma model is introduced for this purpose, for the pair species; a third

massive component is taken to be stationary, referring to three-component

aThe 3rd species type then represents ions, in electron-positron-ion (e-p-i) plasmas.
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pair plasmas of, say, either the type i+i−3± (i.e., p.p. “doped” with dust

defects) or e−p+i+. No assumption is made on the density ratio n+/n− or

the temperature ratio T+/T−, since one of our intentions is to point out the

role of a possible pair-component asymmetry in the plasma configuration

(also, of the fixed background species 3±) on the properties of nonlinear ES

waves. High frequency ES waves in e-p-i plasmas are also included in this

picture.

2. A two-fluid model for ES wavepackets in pair plasmas

Consider a two-plasma-fluid model, described by the dynamical equations

∂nj

∂t
+ ∇ · (nj uj) = 0 , (1)

∂uj

∂t
+ uj · ∇uj = −sj

Ze

m
∇φ− 1

mnj
∇pj , (2)

for the density nj and the velocity uj of the j-th particle species (j =

1+, 2− ≡ +,−). The equation of state pj ∼ nγ
j is assumed for the pressure

pj (γ = 1 + 2/f is the specific heat ratio, for f degrees of freedom), while

pj,0 = nj,0kBTj is assumed at equilibrium (the Boltzmann constant kB

preceding the temperature Tj will be omitted where obvious). The difference

in charge sign is expressed by sj = qj/|qj | = ±1. The system is closed by

Poisson’s equation

∇2Φ = −4π
∑

s

qs ns = 4π e (Z n− − Z n+ − s3Z3 n3) (3)

Note that s3 = ±1 may account for either positive or negative background

ionsb. The charge balance, as expressed via the neutrality hypothesis (at

equilibrium): Zn+,0 − Zn−,0 + s3Z3 n3 = 0, is obviously affected by the

presence of the 3rd background species (of density n3 =cst.). The case of

“pure” pair (two-component, e.g. e-p) plasmas is thus recovered for n3 = 0

(i.e. n+,0 = n−,0), while n3 6= 0 in general (in e−p+i+ or, say, X+X−d±

type plasmas). A one-dimensional geometry will be adopted here (hence

f = 1 and ∇ = ∂/∂x), although a (richer) multi-dimensional description

may also be found in the bibliography.8

In the following, reduced expressions will be implicitly assumed for

all quantities, scaling space x and time t units are the Debye length

λD,− = cs/ωp,− and the inverse plasma frequency ω−1
p,−, respectively; also,

bi.e., for dust d± (viz. s3 = ±1) in “doped p.p.”, or for ions (s3 = +1) in e-p-i plasmas.
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the density, velocity and electric potential variables are scaled by n−,0,

cs = kBT−/m and kBT−/Ze, respectively.

3. Linear electrostatic wave dispersion properties

The linear (small amplitude) approach consists in assuming perturbations

of all elements, say Sl, of the state vector S = ({nj , uj ; };φ) (here l =

1, ..., 5; j = 1, 2) near equilibrium S0 = ({nj,0, 0; }; 0), in the form ǫSj ≈
S

(1)
1,l exp i(kx− ωt); here S

(1)
1,l is the wave amplitude (assumed constant for

a while), while k and ω denote(s) the carrier wavelength and frequency,

respectively. Inserting into Eqs. (1)-(3), one obtains the dispersion relation:

1

ω2 − 3k2
+

β

ω2 − 3σβ2k2
= 1 , (4)

where β = n+,0/n−,0 is the density ratioc and σ = T+/T− is the tempera-

ture ratio, among the pair components. A bi-quadratic polynomial equation

is thus obtained and is straightforward to solve, providing two branches,

say ω = ωL(k) and ω = ωU (k). The exact expressions are presented and

analyzed in Ref.7 The lower branch ωL describes an acoustic mode, as

ωL(0) = 0, while the upper one bears a Langmuir-type form, featuring a

cutoff frequency ωU (0) = (1 + β)1/2 (in units of ωp,−; see above). Inter-

estingly, no acoustic mode in principle exists for perfectly symmetric p.p.

configurations; to see this, set β = σ = 1 in (4)d, to obtain ω2 = 2 + 3k2

(cf. literature4). Asymmetric p.p. are henceforth implicitly assumed every-

where. Considering the behavior of both branches near k = 0, we obtain

ωL(k) ≈ c2sk
2 , ωU (k) ≈ (ω2

c + c2sk
2)1/2 . (5)

We note that the cutoff frequency ωc = (1 + β)1/2 depends on the

background (third) species’ concentration (via β), while the sound speed

cs = [3β(1 + σβ)/(1 + β)]1/2 also depends on the pair component temper-

ature asymmetry via σ. This behavior is depicted in Fig. 1. The dispersion

reported in fullerene experiments4 is recovered for β = σ = 1, as expected.

The amplitudes of the linear oscillations are obtained in terms of the

electric potential perturbation φ
(1)
1 = ψ as

n
(1)
+,1 =

βk2

ω2 − 3σβ2k2
ψ =

βk

ω
u

(1)
+,1 , n

(1)
−,1 = − k2

ω2 − 3k2
ψ =

k

ω
u

(1)
−,1 . (6)

cNote that neutrality at equilibrium leads to β = n+,0/n−,0 = 1 − s3Z3 n3/(Zn−,0),
so a value above (below) unity implies a negatively (positively) charged third species
presence in the background, viz. s3 = −1 (+1). Obviously, β = 1 in “pure” p.p.
dThis seems to suggest an asymmetry among the pair ion species in the experiment of
Oohara and Hatakeyama4 where the observation of an acoustic mode was reported.
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Fig. 1. The two dispersion curves defined by Eq. (4) are depicted: frequency ω vs.
wavenumber k (reduced quantities; see in the text). After Ref. 7.

The subscripts +/− will be used, where obvious, to distinguish the posi-

tive/negative ions (or, positrons/electrons). These expressions may be used

in plasma diagnostics, to trace the presence of charged defects in the back-

ground and/or pair-ion asymmetry in real (experimentally produced) p.p.

4. Multiple scales theory for modulated ES wavepackets

We shall now consider a small (yet finite) deviation from the equilibrium

state S0, by allowing for a weak time and space dependence (modulation)

of the wave’s amplitude Aj . All state variables Sl (l = 1, ..., 5) are as-

sumed to vary as Sl(x, t) = S0,l +
∞
∑

m=1
ǫn

∞
∑

L=−∞

S
(n)
L,l (ξ, τ) exp[iL(kx − ωt)]

where ǫ ≪ 1 is a (real) smallness parameter (the equilibrium state vector

S0 was defined above). Here, the superscript n (subscript L, respectively)

denote(s) the expansion order in ǫ (the phase harmonic order m). The re-

ality condition S
(n)
L,l = (S

(n)
−L,l)

∗ is implied; the star superscript denotes the

complex conjugate. The wave amplitudes S
(m)
L,l depend on the stretched

(“slow”) coordinates ξ = ǫ (x− λ t) and τ = ǫ2t, where λ = vg = dω/dk is

the wave group (envelope propagation) velocity. We proceed by substituting

into Eqs. (1)-(3) and isolating various orders (in ǫn), for the L−th harmonic

contributions; details (omitted here for brevity) can be found elsewhere.5

The algebra is tedious yet straightforward. The equations for n = 1

reproduce the solution and dispersion characteristics presented in §3. The

equations for n = 2 produce the (amplitudes of the) 2nd order harmonics,

as well as a zeroth order (direct current) term. The solution thus obtained,

φ ≈ ǫ ψ cos θc + ǫ2
[

φ
(2)
0 + φ

(2)
1 cos θc + φ

(2)
2 cos 2θc

]

+ O(ǫ3) , (7)
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e.g., for the electric potential φ, represents a carrier wave (fast phase θc =

kx−ωt); a set of similar expressions are obtained for n+/− and u+/−. At this

stage, one is after an evolution equation for the potential correction ψ; once

this is solved, anticipating a (complex) solution in the form ψ = ψ0 exp iΘ,

the first-order corrections to all quantities directly follow from (6) above.

The real variables ψ0 and Θ physically represent the potential (wavepacket)

real (i.e., measurable) amplitude and a (small) phase correction, leading to

a weakly varying total phase θ = θc + ǫ2Θ + O(ǫ3).

A nonlinear Schrödinger -type equation (NLSE) arises, at order n = 3,

as a compatibility equation (ensuring secular term annihilation). It reads

i
∂ψ

∂τ
+ P

∂2ψ

∂ξ2
+Q |ψ|2 ψ = 0 . (8)

The dispersion coefficient P is related to the dispersion characteristics as

P = d2ω/2dk2, as obtained from (4) above (for each branch, separately).

The lengthy expression for the nonlinearity coefficient Q = Q(k;β, σ) (here

omitted, for brevity) is given by Eq. (19) in Ref. 7. Different expressions

are obviously obtained for waves obeying the upper and lower dispersion

curves (see in §3 above).

5. Modulational instability & localized envelope excitations

The evolution of the electric potential amplitude ψ depends on the coeffi-

cients P and Q,5 whose analytical behavior is straightforward to investigate

in terms of the physical parameters involved. The key element in this anal-

ysis, as discussed below, turns out to be the quantity P/Q: its sign (+/-)

determines the regions where harmonic oscillations are unstable/stable, as

well as the generic type (bright/dark, respectively, to be explained in the

following) of envelope excitations, while its magnitude tunes their charac-

teristics (amplitude ψ0, width L) via a relation in the form L ∼ ψ0(P/Q)1/2.

Modulational instability. Summarizing all physically relevant informa-

tion – yet omitting details5 – one may consider a harmonic solution of (8)

in the form ψ = ψ0 exp(iQ |ψo|2 τ); the standard (linear) stability analysis

then leads to the dispersion relation: ω̃2 = P k̃2(P k̃2 − 2Q|ψ̃0|2) , where

ω̃, k̃ and ψ̃0 denote the frequency, wavenumber and amplitude perturba-

tion(s), respectively. One sees that, for PQ > 0, a critical wavenumber

threshold k̃cr = |ψ̃0|(2Q/P )1/2 exists, below/above which, the envelope

is unstable/stable (i.e., for perturbation wavelengths longer/shorter than

2π/kc); the maximum instability growth rate |Imω̃|max = Q|ψ̃0|2 occurs at

km = kc/
√

2. If PQ < 0, the amplitude will be stable to perturbations. This
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is essentially the Benjamin-Feir instability mechanism in hydrodynamics.6
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Fig. 2. Bright type modulated wavepackets (for PQ > 0), for two different (arbitrary)
sets of parameter values. After Ref. 5.

Envelope excitations. The NLSE (8) defines an integrable dynamical sys-

tem, which possesses various types of stationary profile spatially localized

solutions, in the form of envelope solitons; the analytical form of the lat-

ter can be rigorously obtained via the Inverse Scattering Transform (IST)

method. The remarkable properties of solitons (e.g. longevity and robust-

ness against perturbations, shape-invariance through collisions), enumerat-

ing which goes far beyond our scope here (refer to specialized literature6)

makes these solutions a loyal working horse for ES wavepacket theories.
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Fig. 3. Dark-type modulated wavepackets (for PQ < 0) of the black (left) and grey

(right) kind. See that the amplitude never reaches zero in the latter case. After Ref. 5.

The modulated (electrostatic potential) wave amplitude forms resulting

from the above analysis may be obtained via an ansatz of the form ψ(ξ, τ) =

ρ(ξ, τ) exp[iΦ(ξ, τ)], where ρ and Φ are analytical (real) functions, to be

determined upon substitution into the NLS. A number of exact solutions

are thus obtained.5,10 Omitting algebraic details5,10 the physically relevant

information of importance to us here is summarized in the following.

For positive values of the coefficient product PQ > 0 (or, of the ratio
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P/Q)e, the NLSE (8) possesses bright-type soliton solutions representing

a propagating potential envelope pulse (vanishing at infinity), which en-

closes the fast carrier wave oscillation; see Fig. 2. This type of solution is

reminiscent of signal pulses in optical fibres.6

For negative values of the coefficient product PQ < 0, we find dark-

type soliton solutions, representing a propagating potential envelope void

(i.e., a potential hole); these excitations bear a finite (constant) value at

infinity; see Fig. 3. Localized envelope solitons of this kind exist in the form

of black solitons, bearing a vanishing value in the center (see Fig. 3a), or

grey solitons, bearing a finite potential value everywhere (see Fig. 3b).

Fig. 4. The NLSE coefficient ratio P/Q corresponding to the lower (acoustic) dispersion

branch ωL is depicted against the (reduced) wavenumber k. (a) σ = 1 and different values
of β are considered; (b) β = 0.95, and σ varies. Note that curves overlap. After Ref. 7.

Pair plasmas – parametric investigation. As regards pair plasmas, the

stability profile can be determined along the above guidelines. The analysis

shows that the lower (acoustic) mode ωL is stable (viz. P/Q < 0; see Fig.

4) in all cases, for long wavelengthsf , while the upper (optic-type) branch

ωU is generally modulationally unstable (viz. P/Q < 0; see Fig. 5). As a

consequence, the lower mode favors the propagation of dark-type envelopes

(Fig. 3), while bright envelopes (pulses; see Fig. 2) are expected to occur

in the upper mode. Increasing β (i.e. for n+,0 > n−,0, implying a higher

concentration of, say, negative background defects, or dust) leads to smaller

(less extended) dark excitations (see Fig. 4a), while a positive background

leads to the opposite effect. Temperature asymmetry (i.e. β variation) is

also seen to affect the characteristics of dark envelopes (see Fig. 4b). On

eThe coefficient Q is assumed not to vanish here. For vanishing Q, nonlinearity does not
balance dispersion, so the analysis presented here fails. On the other hand, for vanishing
P , one needs to resort to higher-order dispersion effects, here omitted.
fLong wavelengths λ = 2π/k (i.e. small wavenumbers k) are relevant with a fluid model
(inevitably invalidated by overseen kinetic effects, e.g. Landau damping, for higher k).
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the other hand, bright envelopes, in the upper mode (though more likely

to be experimentally observed than the acoustic mode; see comment in §3)

bear no significant temperature asymmetry effect (notice the overlapping

curves in Fig. 5).

Fig. 5. JPA 4b and 4d. The NLSE coefficient ratio P/Q corresponding to the upper

(optic) dispersion branch ωU is depicted against the (reduced) wavenumber k. (a) σ = 1
and different values of β are considered; (b) β = 0.95, and σ varies. After Ref. 7.

6. A two-fluid model for EM wavepackets in pair plasmas

We shall now consider electromagnetic excitations propagating in a magne-

tized pair plasma (in a uniform ambient magnetic field B0). Retaining the

above notation (unless otherwise stated) we adopt, for the pair-component

fluids, the set of dynamical equations:

∂nj

∂t
+ ∇ · (nj uj) = 0 (9)

∂uj

∂t
+ uj · ∇uj =

qj
mj

(

E +
1

c
uj × B

)

, (10)

The (total) electric and magnetic fields, E = −∇φ and B, obey Maxwell’s

laws:

1

c

∂B

∂t
= −∇× E , (11)

1

c

∂E

∂t
= ∇× B − 4π

c

∑

j

njqjuj , (12)

and also obey Poisson’s equation and Gauss’ law(s):

∇ · E = −∇2φ = 4π
∑

j=1,2,3

qj nj , ∇ · B = 0 . (13)
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At equilibrium, overall charge neutrality is assumed. We take the direction

of wave propagation together with B0 to define the x− z plane, by taking

k = kx̂ and B0 = B0,xx̂ + B0,z ẑ = B0(cos θx̂ + sin θẑ); see Fig. 6. All

quantities are assumed to vary along the direction of propagation, i.e. ∇ →
∂/∂x (thus ∇ × · = x̂ × ∂ · /∂x). Eqs. (13b) and (11) thus imply a static

x-magnetic field component: Bx = Bx,0 = B0 cos θ =cst.

Fig. 6. The reference frame: EM wave propagation takes place along the x−axis, while
the ambient magnetic field lies in the xz−plane.

The generic model described here agrees with previous studies of oblique

EM wave propagation,11,12 as well as for parallel propagation.13

7. Linear EM waves in three-component pair plasmas

The (linear wave) dispersion relation obtained from (9)-(13) has the form

D(ω, k; θ) = d0(ω, k) + d1(ω, k) sin2 θ = 0 , (14)

where d0 and d1 are polynomial expressions given by

d0(ω, k) ≡ D(ω, k; θ = 0)

= (ω2 − ω2
p,eff )

×
{[

(ω2 − c2k2)(ω2 − Ω2) − ω2ω2
p,eff

]2 − ω2Ω2(ω2
p,1 − ω2

p,2)
2
}

= (ω2 − ω2
p,eff )

×
{

(ω + Ω)
[

−(ω2 − c2k2)(ω − Ω) + ωω2
p,1

]

+ ω(ω − Ω)ω2
p,2

}

×
{

(ω − Ω)
[

−(ω2 − c2k2)(ω + Ω) + ωω2
p,1

]

+ ω(ω + Ω)ω2
p,2

}

, (15)

and

d1(ω, k; θ) = −c2k2Ω2
{

c2k2ω2
p,eff (ω2−Ω2)+ω2[4ω2

p,1ω
2
p,2−(ω2−Ω2)ω2

p,eff ]
}

.

(16)

Here we have defined the effective (total) plasma frequency ωp,eff = (ω2
p,1+

ω2
p,2)

1/2 (cf. definitions in §1) and the (common among 1+ and 2−) cyclotron
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frequency Ω = ZeB0/(mc). Note that d0 is a 10th order polynomial in the

frequency ω, while d1 is a 4th order polynomial in ω; in both quantities,

only even terms are present, so that d0 (d1) is essentially a quintic (quartic)

polynomial in ω2. Therefore, up to 5 roots for ω2 may exist, hence 5 distinct

propagating modes for the (real part of the) frequency ω(k) (even in k),

depending on the angle θ and relevant parameter values.

Dimensionless form of the dispersion relation. The dispersion re-

lation may be cast into a reduced form, by defining appropriate scales.

Following Cramer et al ,14 we define the density mismatch parameter

η =
n+,0 − n−,0

n+,0 + n−,0
(17)

(see that ω2
p,1 − ω2

p,2 = ηω2
p,eff ), which measures deviation from pair-ion

neutrality (the “pure” pair plasma case is recovered for η → 0, i.e. ωp,+ =

ωp,−; the case η 6= 0 thus indicates the existence of a third species, or an

overall neutrality violation in the plasma composition, at equilibrium). We

define the reduced wave frequency, wavenumber and plasma frequency

f = ω/Ω , κ = ck/Ω , h = ω2
p,eff/Ω

2 = (ω2
p,1 + ω2

p,2)/Ω
2 , (18)

respectively; see that ω2
p,1/2/Ω

2 → (1 ± η)h/2. Eqs. (15, 16) thus become

d̂0(ω, k) ≡ d0/Ω
10

= (f2 − h2)
{[

(f2 − κ2)(f2 − 1) − f2h2
]2 − f2η2h2

}

= (f2 − h2)

×
{

(f + 1)
[

−(f2 − κ2)(f − 1) + f(1 + η)h/2
]

+ f(f − 1)(1 − η)h/2
}

×
{

(f − 1)
[

−(f2 − κ2)(f + 1) + f(1 + η)h/2
]

+ f(f + 1)(1 − η)h/2
}

,

(19)

and

d̂1(ω, k; θ) ≡ d1/Ω
4 = −κ2

{

κ2h(f2−1)+f2[(1−η2)h2−(f2−1)h]
}

, (20)

Parallel EM wave propagation. For θ = 0, expression (14) reduces to

d0 = 0, implying (temporarily recovering dimensions, for clarity):

ω4 − ω2(ω2
p,eff + Ω2 + c2k2) ∓ ωΩ(ω2

p,1 − ω2
p,2) + c2k2Ω2 = 0 , (21)

along with trivial plasma oscillations at ω = ωp,eff . A number of distinct

modes are therefore present. Note that the deviation from incompressibility

(i.e. for non-zero values of n1,0 −n2,0 ∼ ω2
p,1 −ω2

p,2), due to the existence of
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the third (fixed ion) species (e.g. ions in e-p-i plasmas, or “dust” defects in

pair-ion, e.g. fullerene, plasmas), leads to the appearance of extra branches

(which merge back into one another in the pure p.p. limit).

The modes described by Eq. (21) have been briefly analyzed in Ref. 14

(relying on Ref. 13). This equation may be cast in the form14

(f2 − 1)(f2 − κ2) − f2h± ηhf = 0 (22)

where all (dimensionless) quantities were defined above.

Interestingly, in the pure pair-plasma case (i.e. for η = 0), (22) can be

solved exactly for f2, leading (apart from f = ±h) to

f2 =
1

2
(1 + κ2 + h)

{

1 ±
[

1 − 4κ2/(1 + κ2 + h)2
]1/2}

, (23)

i.e.

f2 ≈ 1

2
(1 + κ2 + h)

{

1 ±
[

1 − 2κ2(1 − 2h)
]}

(24)

for small wavenumber κ (and, say, plasma frequency h). One thus obtains

(lower branch) acoustic mode:

f2
− ≈ (1 + κ2 + h)κ2(1 − 2h) ≈ (1 − 2h)κ2 + O(κ2) , (25)

and an (upper branch) optic-type mode:

f2
+ ≈ (1 + κ2 + h)

[

1 − κ2(1 − 2h)
]

. (26)

Switching back to η 6= 0, the effect of the density mismatch, which

results e.g. from the existence of a third (fixed ion) species, is to split the two

linearly polarized EM modes (present in p.p.12) to four distinct circularly

polarized modes.14 Focusing on the behavior near k = 0, one finds that

three out of these modes present a frequency cutoff, i.e. ω(k = 0) 6= 0, below

which no wave propagates. In the vicinity of f ≈ 0, and for small η and h,

one finds analytically that the Alfvén type wave which occurs for η = 0,

splits into two modes, one of which presents a cutoff at f0 = |η|h/(1 + h).

The behavior presented here is depicted in Fig. 7.

Perpendicular EM wave propagation. For θ = π/2, expression (14)

reduces to:

D(ω, k;
π

2
) = d⊥,1(ω, k) d⊥,2(ω, k) = 0 , (27)

where

d⊥,1(ω, k) = −ω6 + ω4[c2 k2 + 2(Ω2 + ω2
p,eff )]

−ω2[(Ω2 + ω2
p,eff )

2 − c2k2(2Ω2 + ω2
p,eff )]

+Ω2[c2k2 (Ω2 + ω2
p,eff ) + (ω2

p,1 − ω2
p,2)

2] (28)
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(a)

Fig. 7. Linear dispersion relation for EM waves in a three component pair-ion (or epi)
plasma: the reduced frequency f = ω/Ω is depicted against the reduced wavenumber
κ = ck/Ω; (a) full frequency range; (b) focusing near the origin. Here η = 0.5, h = 0.1
(definitions in the text).

and

d⊥,2(ω, k) = ω2 − ω2
p,eff − c2k2 (29)

The latter equation defines the ordinary (or O-) mode;1 this is a robust

perpendicular EM mode, whose dispersion characteristics do not depend on

the ambient magnetic field, i.e., it bears the same form for e-i plasmas and,

in fact, for unmagnetized plasmas. Adopting the O-mode has enabled us to

advance in analytical tractability, as regards nonlinear EM wave dynamics,9

as we shall see below. This study9 is reminiscent of an earlier study of the O-

mode, with respect to modulation effects, yet for unmagnetized plasmas.15

The “pure” pair-plasma limit for arbitrary θ. In the absence of the

3rd (fixed ion) species, one recovers, setting ωp,1 = ωp,2 = ωp) in (14):

D|p.p.(ω, θ) =
[

(ω2 − c2k2)(ω2 − Ω2) − 2ω2ω2
p

]

×
[

ω2(ω2 − c2k2 − 2ω2
p)(ω2 − Ω2 − 2ω2

p) − 2c2k2Ω2ω2
p cos2 θ

]

.(30)

Setting the first quantity within brackets to zero, one recovers:

ω4 − (c2k2 + Ω2 + 2ω2
p)ω2 + c2k2Ω2 = 0 , (31)

which coincidesg with Eq. (9) in Ref. 12 (also see (24)-(26) in Ref. 3a. Eq.

(31) represents the dispersion relation of an EM wave which propagates

gUpon a trivial difference in notation, though: see that ω2
p,eff

= ω2
p,1 + ω2

p,2 here is

denoted by ω2
p in Refs. 12 and 14.
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for any value of the pitch angle θ, and whose only non-vanishing electric

field component Ey is perpendicular to the plane spanned by the magnetic

field B0 and the wave vector k (i.e. Ex = Ez = 0); this mode is always

characterized by charge neutrality (ni = ne = n 6= n0, off equilibrium), for

θ 6= 0. For parallel propagation (θ = 0, or Bz = 0), this mode corresponds

to a splitting of the incompressible (ni = ne = n0), circularly polarized EM

waves (present in e-i plasmas) into two orthogonal, linearly polarized EM

waves, both obeying Eq. (31). For perpendicular propagation (θ = π/2, or

Bx = 0), this mode is part of the extraordinary (X) mode;1 also see (21)-

(22) in Ref. 3a, and the discussion therein. See that both relations (21)

merge into (31) for ωp,1 = ωp,2; vice versa, in the presence of a 3rd species

(e.g. in e-p-i plasmas), this mode splits into the 2 parts in (21).

On the other hand, upon setting the second quantity within brackets,

in rhs(30) to zero, one recovers exactlyg Eq. (10) in Ref. 12, representing

an EM mode propagating in pair plasmas, for which Ey = 0 (i.e. no electric

field is generated perpendicular to the plane defined by B0 and k). Inter-

estingly, for θ = π/2, one obtains a pair of (decoupled) dispersion relations,

namely ω2 = 2ω2
p + c2k2 (corresponding to an incompressibly, linearly po-

larized ordinary (O) mode,1 with Ez 6= 0) and ω2 = 2ω2
p +Ω2 (representing

a fixed frequency, pure upper-hybrid mode, with Ex 6= 0).12

The case of parallel EM wave propagation in p.p. is obtained either by

setting θ = 0 in (30), or by setting ωp,1 = ωp,2 = ωp in (15):

D0|p.p.(ω, θ = 0) = −i ω3 (ω2 − 2ω2
p) [ω4 − (c2k2 +Ω2 +2ω2

p)ω2 + c2k2Ω2]2 ,

thus recovering the Ey-mode discussed above, plus trivial (non-propagating,

since pressure effects are neglected) plasma oscillations at ω =
√

2ωp.

8. Nonlinear EM harmonic modes

The multiple scales technique presented in §4 above has been employed

for EM modes in p.p.. The results have been presented in Ref. 9, for the

ordinary (O-)mode, while part of the more general results16 have appeared

(yet in a preliminary form) in Ref. 17. In the following, we shall present

some essential results of the nonlinear analysis, while an interested reader

is referred to the references for details on the tedious calculation.

The algebraic manipulation of the 1st order 1st harmonic (n = 1, l = 1)

amplitude evolution equations (9)-(13) provides a set of equations for the

fluid densities and velocities vs. the E/M field components. Furthermore,

a 2nd-order correction is obtained, for all quantities, incorporating a 2nd-
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and a zeroth-phase-harmonic(s)h. For the ordinary mode, the solution (up

to ∼ ǫ2) can be summarized as9

nj = nj,0 + ǫ c
(11)
j B′

y e
iφc + ǫ2[c

(22)
j B′2

ye
i2φc + n

(20)
j ]

uj = 0 + ǫ c
(11)
j,z B′

ye
iφc ẑ + ǫ2

{

c
(21)
j,z

∂B′
y

∂X1
eiφc ẑ +B′2

ye
i2φc [c

(22)
j,x x̂+ c

(22)
j,y ŷ] + uj

(20)

}

E = 0 + ǫ c
(11)
el,zB

′

ye
iφc ẑ + ǫ2

{

c
(21)
el,z

∂B′
y

∂X1
eiφc ẑ +B′2

ye
i2φc [c

(22)
el,x x̂+ c

(22)
el,y ŷ] + E(20)

}

B = B0ẑ + ǫB′

ye
iφc ŷ + ǫ2

[

c
(21)
B,y

∂B′
y

∂X1
eiφc ŷ + c

(22)
B,zB

′2
ye

i2φc ẑ + B(20)

]

. (32)

Here j = 1, 2 ≡ +,−), B′
y = B

(11)
y /B0 and φc = kx − ωt. The arbitrary

zeroth-order corrections satisfy

u
(20)
1,x = −u(20)

2,x = cE′

y
(20)

, u
(20)
1,y = −u(20)

2,y = −cE′

x
(20)

. (33)

It is worth mentioning that the compatibility conditions, imposed at

orders ǫ2 and ǫ3 for secular terms to annihilate, respectively take the form
(

∂

∂T1
+ vg

∂

∂X1

)

B̃⊥ = 0 , (34)

[vg here denotes the EM wave group velocity ω′(k) = −(∂D/∂k)/(∂D/∂ω),

as it results from the dispersion relation D(ω, k) = 0 – see (14) – obtained

previously i] and

i
∂B̃⊥

∂τ
+ P

∂2B̃⊥

∂ξ2
+Q |B̃⊥|2B̃⊥ = 0 . (35)

Here, B̃⊥ = [B
(11)
z +CB

(11)
y ]/B0 is a linear combination of the magnetic field

components ⊥ to the propagation direction, and C is a complex quantity:

C(ω, k; θ) = −2 i ωΩ(ω2
p,1 − ω2

p,2) cos θ
C1

C2
= 0 , (36)

where

C1 = 4c2k2(ω2 − Ω2)(ω2 − ω2
p,eff ) + 2Ω2ω2

p,eff (ω2 − ω2
p,eff − c2k2) sin2 θ

hThe structure of the lengthy algebra and the resulting expressions obtained at orders ǫ1

and ǫ2 is (are) reported in Sections V and VI, respectively, of Ref. 17. Details to appear
elsewhere.16
iIn specific, differentiating D(ω(k), k) = 0 with respect to k gives:

∂D

∂k
+

∂D

∂ω

dω

dk
= 0 , hence

dω

dk
= −

∂D
∂k
∂D
∂ω

.
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and

C2 = 8c2k2(ω2 − Ω2)(ω2 − ω2
p,eff )[ω2(ω2 − Ω2 − ω2

p,eff ) − c2k2(ω2 − Ω2)]

+ 4Ω2ω2
p,eff sin2 θ

×[2c4k4(ω2 − Ω2) − i ωΩ(ω2
p,1 − ω2

p,2)(ω
2 − ω2

p,eff − c2k2) cos θ] . (37)

Interestingly, for parallel EM wave propagation (i.e. for θ = 0), C → ±i =

e±iπ/2, suggesting a phase difference of ±π/2 among By and Bz, specifi-

cally when the frequency ω obeys the (parallel EM wave) dispersion rela-

tion (15). The slowly evolving transverse magnetic field component is then

Bz ± iBy = ±i(By ∓ iBz) ≡ ±iB∗

⊥
. The (anticipated) circular polarization

encountered for modulated EM wavepackets propagating parallel to B0 (see

e.g. in Ref.13) in multi-component plasmas is thus recovered. Also note, for

rigor, that the quantity C vanishes for perpendicular EM wave propagation

(i.e. for θ = π/2), for ωp,1 6= ωp,2, and also in the pure pair-ion plasma case

(i.e. for ωp,1 = ωp,2, ∀ θ).
The dispersion coefficient in Eq. 35 is given by P = d2ω(k)/2dk2. The

nonlinearity coefficient Q is a complicated function of the angle θ and of

the characteristic frequencies ωp,1/2 and Ω. For the O-mode, it has the form

Q = Q1 +Q2, with

Q1 = QA/QB

QA = 3ω2
p,eff

{

−4ω2(Ω2
1ω

2
p,1 + ZΩ2

2ω
2
p,2) + Ω1ω

2
p,1[Ω1Ω

2
2 + (Ω1 + Ω2)ω

2
p,2]

+ZΩ2ω
2
p,2[Ω2Ω

2
1 + (Ω1 + Ω2)ω

2
p,1]

}

QB = ω(c4ω
4 + c2ω

2 + c0)

c4 = 48ω2
p,eff

c2 = −4[3ω4
p,eff + 3ω2

p,eff (Ω2
1 + Ω2

2) + ω2
p,1Ω

2
1 + ω2

p,2Ω
2
2]

c0 = 3(ω4
p,1Ω

2
2 + ω4

p,2Ω
2
1) + 2Ω1Ω2ω

2
p,1ω

2
p,2 + 4(Ω2

1 + Ω2
2)ω

2
p,1ω

2
p,2 + 4Ω2

1Ω
2
2ω

2
p,eff

Q2 = − 1

2ω

(

n
(20)
1

n1,0
ω2

p,1 +
n

(20)
2

n2,0
ω2

p,2

)

(Ω1 = Ω2, yet ωp,1 6= ωp,2, is understood here, for three component p.p.).

By further assuming ωp,1 = ωp,2 = ωp (“pure” p.p., no third component),

we obtain the simple expressions:

P =
c2ω2

p

ω3
, Q =

3Ω2ω2
p

2ω(Ω2 − 3ω2)
− 1

2ω

ω2
p

n0
(n

(20)
1 + n

(20)
2 ) . (38)

Concluding, the important quantity to deal with, as regards EM

wavepackets in pair plasmas, is B̃⊥ (defined above), which obeys the NLSE

(35). The coefficients in the latter may be used for an investigation of the
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modulation stability profile of EM waves (and associated envelope struc-

tures predicted), along the general directions set in §5.

Modulational stability profile of EM waves in pair plasmas. The

coefficients of the NLSE (35) are depicted in Fig. 8, for the case of θ = 0, i.e.

for EM wave propagation parallel to the external magnetic field. Note the

forbidden frequency region (gap) near f = 1 (i.e. near ω = Ω); cf. Fig. 7. We

see that, for pure p.p. (for η = 0, i.e. in the absence of a third species), the

coefficient product PQ is positive at small frequencies (i.e. for the Alfvén

type p.p. mode lying below the cyclotron frequency Ω), thus prescribing

modulational instability and bright-type envelope excitations. However, PQ

becomes negative as one approaches f = 1 from below, so high frequency

waves will tend to be stable, and propagate as dark-type envelope solitons

(envelope holes). A similar alternating (positive, then negative) behavior is

obtained by gradually increasing ω (above Ω).

By “switching-on” the existence of the 3rd massive background species,

the product PQ (αβ in Fig. 8), becomes negative for low a frequency, thus

apparently stabilizing the two sub-cyclotron modes (see in Fig. 7). This is

due to a shift in sign of the dispersion coefficient (right column in Fig. 8, 2nd

and 3rd rows) at low ω. We have seen (cf. Fig. 7) that the linearly polarized

(pure) p.p. EM acoustic mode splits into two modes (one presenting a gap;

see Fig. 7b) if a 3rd species is present. Both of these mode, namely a left-

hand- and a right-hand-polarized one, exhibit the described behavior.

For perpendicular propagation (O-mode), the result (38) can be em-

ployed to investigate the nonlinear amplitude profile. Neglecting n
(20)
j , we

see that the ratio ω/Ω bears a threshold 1/
√

3, below (above) which disper-

sion is anomalous (normal) – borrowing terminology from nonlinear optics,

implying bright (dark) type excitations and modulational instability (sta-

bility) of the wavepacket amplitude. A detailed investigation of the ordinary

mode in pair plasmas is carried out in Ref. 9, so lengthy details (reported

therein) were chosen to be omitted here, for brevity.

9. Summary and conclusions

We have considered the propagation of nonlinear amplitude-modulated EM

wavepackets in a multi-component plasma. By adopting a multiple scales

technique, we have investigated the linear oscillation profile (arising to first

order) and have succeeded in showing how secondary harmonic generation,

modulational instability and envelope soliton formation may occur in pair

plasmas. Both ES and EM waves have been considered.
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Fig. 8. The nonlinearity (left column) and dispersion (right column) coefficients in the
NLS Eq. (35) for parallel EM wave propagation (θ = 0) are plotted against the reduced
frequency f = ω/Ω: (a) Pure pair plasma [η = 0; recall def. in (17)] - linear polarization

(1st row); (b) Three-component pair plasma (η = 0.5) - left-hand polarization (2nd row);
(c) Three-component pair plasma (η = 0.5) - right-hand polarization (3rd row). Note
the frequency gap near f = 1, i.e. near ω = Ω; cf. Fig. 7. From Ref. 14.

We have shown that either a temperature difference among the two

pair components or the presence of a third massive species (in “doped”,

say, pair-ion plasmas, or e-p-i plasmas) may affect the stability profile of

plasma waves. For instance, parallel EM Alfvén-like waves may be stabilized

by the background component, also recovering circular polarization (lost in

“pure”, symmetric p.p., where the respective mode is linearly polarized).

These results are of relevance with fullerene experiments4 and e-p-i

plasma related observations, where they may be tested and (hopefully)
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confirmed).
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