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Introduction. Dusty plasma crystals (DPCs) are strongly-coupled charged particle
configurations, which occur in dysty plasmas (DP) [1] when the average electrostatic
potential energy substantially exceeds the mean kinetic energy. In laboratory, DPCs are
formed in low-temperature plasma discharges, wherein the charged dust particles are
suspended under the combined action of gravity and electric forces [2]. DPC configura-
tions typically consist of two-dimensional (2D) — hexagonal in general — layers, but also
one- (1D) chains, when appropriate trapping potentials are employed for lateral confine-
ment [3]. Our aim here is to revisit the nonlinear aspects of dust grain motion in 1D and
2D DPCs, from first principles, by reviewing earlier analytical results [4] and presenting
more recent ones [5, 6].

Origin of nonlinearity. Plasma discharges provide a nonlinear environmeat,
excellence. Let us briefly review what nonlinearity in DPCs originates from.

Coupling nonlinearity. Electrostatic inter-grain interactions are generally associated
with a Debye-type interaction potential. Assuming an infinite chain of oscillators (con-
fined at the boundaries by an appropriate trapping potential to ensure static stability),
the interaction force acting on the-th grain iskFy = —OUjnt(|rn — rn—1|). For small
displacements, the interaction potentig}; can be expanded near the equilibrium grain
position{xn,Yn, Z,} = {nro,mro,0} (n,m=0,+1,+2 ...; assuming gravity along), thus
yielding a polynomial in the (small) displacemeidts,, dy, anddz, [4, 7, 8].

Sheath “substrate” potential nonlinearity. The plasma sheath environment provides
an on-site substrate potential which is intrinsically nonlinear, and may (for low density
and pressure) be strongdyharmonigsee Figure 1):

@ (2)% B(z0) + ZMAB(82)+ SMar (520)° + MB (52 + OBz, (1)
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The anharmonicity coefficients oz and 3 may be obtained from experiments [9, 10, 11]
or from ab initio calculations.
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FIGURE 1. The (anharmonic) sheath potential ®(z) is depicted vs. the vertical distance z from the
negative electrode: (left) as results from ab initio numerical simulations (increasing from bottom to top)
(data courtesy of G. Sorasio); (Right) Based on the experimental data in [10].

Geometric effects. Dust-grain motion combines 2 or 3 degrees of freedom, and thus
introduces a nonlinear transverse-to-longitudinal mode-coupling effect [8].

Solitary waves. The intrinsic crystal characteristics provide the necessary ingredi-
ents for the formation of localized excitations, sustained via a mutual balance among
nonlinearity and dispersion. The nonlinear horizontal (longitudinal, acoustic) as well as
vertical (transverse, inverse-optic) dust grain motion in a 1D dust monolayer has been
studied thoroughly [4, 7], so results need only be summarized here.

Longitudinal solitons. Dust crystals are known to support supersonic longitudinal
solitary excitations (density solitons), related to longitudinal (in-plane) dust grain dis-
placement. In theory, these structures are associated with Korteweg - de Vries and/or
Boussinesq Equation soliton solutions [7, 12]. Experimentally they are observed as lo-
calized density perturbations, which sustain a stationary shape [13] and survive col-
lisions [14], as predicted by theory [4, 7]. Importantly, although only compressional
pulses have been sought for (and observed) experimentally [13], rarefactive solitons are
also predicted by the theory; see separate presentation [7].

Off-plane (transverse) envelope solitons. Modulated envelope wavepackets associ-
ated with backward-propagating (negative group velocity) transverse (off-plane) oscil-
lations are predicted by the nonlinear Schrédinger (NLS) theory in a quasi-continuum
lattice approximation [15]. Such wavepackets are also observed in experiments [16].
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FIGURE 2. Bright (asymmetric) longitudinal envelope solitons: (a) the zeroth-harmonic (pulse) and
first harmonic (kink) amplitudes; (b) the resulting asymmetric wavepacket.
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In-plane modulated envelope wavepackets. Asymmetric localized envelope solitons,
involving a non-zero zeroth harmonic contribution, occur in the longitudinal (in-plane,
acoustic mode) degree of freedom [17].

In 2D, hexagonal dust lattices sustain modulated envelope bell-shaped structures,
which may be formed as a result of modulational instability of in-plane vibrations [18].

FIGURE 3. (From left to right) (a) Time evolution of a stable (1D, 1:1 here) 2-breather for € = —0.016;
(b) The corresponding linear stability profile: all eigenvalues lie on the imaginary circle.
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FIGURE 4. (From left to right) (a) Time evolution of an unstable 1D breather: see that the excitation
is not localized anymore, after some time; (b) The corresponding linear stability profile: two eigenvalues
have departed from the imaginary circle.

Discrete dust-lattice modes. Intrinsic localized modes (Discrete Breathers) form a
topic of frontier research in present-time nonlinear science. They consist of highly
localized (only few sites moving) periodic oscillatory lattice eigenmodes, which owe
their stability to the crystal discreteness, in combination with nonlinearity [19].

Discrete Breathers (DBs) may occur, related with transverse dust lattice vibrations, as
can be shown from first principles, both in 1D [20, 21] and in 2D [22] crystals. A discrete
analysis of hexagonal crystals [6] from first principles suggests, apart from 1D discrete
modes, the occurrence of ultra-localized multipole modes (discrete vortices; see Fig. 5)
[22]. These may also be modelled as 2D discrete DNLS soliton modes [23]. The stability
profile of DBs depends on the discreteness parameter € = 60%70 / cog?, which is the (square)
ratio of the transverse mode eigenfrequency by the transverse gap frequency (related to
the sheath potential well as ~ @®”(0)). In general, the smaller the value of €, the “more
dicrete" a lattice system is. Detailed results will be reported soon [22].

Discrete dust lattice excitations, so far essentially unexplored, open new directions for
Debye crystal applications, once experimentally confirmed and eventually manipulated.

Conclusions. DPCs provide an excellent test-bed for continuum and discrete nonlin-
ear theories. With the exception of compressional (only) density solitons [13] and trans-
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FIGURES. Time snapshots of a multipole breather (a discrete vortex): 3 sites oscillating at A¢ =27/ 3;
preliminary results [5]; further results, based on a discrete NLS theory [6, 23], confirm these findings.

verse wavepackets [16] (and not overseeing observations of dust vortices [24], though
not in a crystalline phase), these theoretical predictions have still not rigorously been
tested in the laboratory. This provides a challenging direction for experimental investi-
gations, which will hopefully confirm these results.
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