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The existence and stability of solitary excitations associated with longitudinal dust 
grain motion in a dusty plasma crystal [1, 2] is considered in this investigation. The 
theoretical modelling of this problem has originally relied on a KORTEWEG - D E VRIES 

(KdV) type description [3], which predicted compressive solitary density excitations 
(only). Not surprisingly, such excitations were experimentally found to exist [4]. A more 
rigorous recent investigation of dust lattice dynamics, from first principles [5], has shown 
that the KdV picture, despite its analytical simplicity, appears to be rather incomplete: in 
specific, it neglects higher- (than cubic) order interaction nonlinearity [5]. Our aim here 
is to revisit the problem of nonlinear longitudinal dynamics in DP crystals and, in fact, 
to show that rarefactive solitons may also occur in dusty plasma crystals. 

The discrete equation of longitudinal motion for the «—th dust-grain in a crystal reads: 

d^{dx„) d{dx„) 2 

-«20 [{5x„+i-dx„f-{dx„-dx„_if]+a3o [(5x„+i - 5x„)^ - (5x„ - 5x„_i)^] , (1) 

~dfi ^ ^ dt" ^ ^""^ (^^n+l + S^n-i - 25x„) 

where 5x„ =x„ — nr^ is the longitudinal dust grain displacement; we have defined the 
longitudinal "sound" velocity c/, = coo^LrolM is the grain mass; ro is the lattice spacing. 
We shall henceforth neglect the damping coefficient v. Eq. (1) essentially defines a 
Fermi-Pasta-Ulam (FPU) type dynamical system, long-known from anharmonic spring-
chain models [6]. The coefficients WQ r, 020 and 030 are prescribed by the electrostatic 
inter-grain interaction law [2]; for Debye-type interactions, these are positive quantities. 

A standard procedure in lattice dynamics is the quasi-continuum approximation; 
anticipating excitations whose length, say L, is much larger than ro, this hypothesis 
consists in expanding 5x„ <C ro near zero; (1) is thus reduced to a PDE in the form 

- p - - C i M x j : - T | ' ' o « x c Q : = " 2a20' 'o "xMxx + 3 flsC^O («x)^ "xx , (2) 

where subscripts denote differentiation. Although it would be straightforward to work 
out a BoussiNESQ-type theory from (2) (which smoothly leads to the anticipated 
solitary wave excitations in an extended velocity range, as shown in [5] in full rigor), we 
shall follow Melandso [3] and seek for quasi-stationary near-sonic localized forms, by 
setting u = u{x—vtf) = u{^, T), where v c:^ ci. This leads to an EXTENDED KORTEWEG 
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DE VRIES ( E K D V ) equation in the form 

sawwr + aw wr + bw ccc 0, (3) 

for w = du/dt^. Here, a = \PO\/{2CL) > 0, a = qo/{2cL) > 0 and 6 = cz,r^/24 > 0, 
while s is the sign of po, i.e. s = po/\po\ = ±1- The characteristic quantities po = 
-rlU"'{ro)/M=2a2orl and qo = f/""(ro)r;J/(2M) = Sosor̂ J are related to cubic and 
quartic potential nonlinearity; for Debye-type interactions, both are positive quantities 
of similar order of magnitude, while 5 = +1 (see in [5] for details). 

Adopting the setting above, we may revisit the original nonlinear theory furnished 
by Melandso [3], which consisted in considering the cubic interaction nonlinearity (yet 
neglecting the quartic-order one) in (1) and, subsequently, in (2). Melandso's recipe 
essentially amounts to setting 030 = 0 in (1) and (2), and thus a = 0 in (3). This 
leads exactly to a KdV equation, bearing supersonic pulse soliton solutions in the 
form w{t^,T) = —swmSQch^[{t^ —Mr — t^o)/Lo], where 0̂ and M are arbitrary real 
constants. Obviously, in our case of interest (and for Debye interactions, viz. 5 = +1), 
the KdV description provides only negative pulses, i.e. the positive density excitations 
5«/«o '-̂  —Mx which were detected in [4]. 

KdV, s = +1 KdV, s = +1 

p o s i t i o n X p o s i t i o n X 

FIGURE 1. (a) The two localized pulse solutions of the EKdV Eq. (3) for the relative displacement 
w{x,t) -^ du{x,t) I dx are depicted for arbitrary (positive) values of the PQ and q^ coefficients (i.e. 5 = +1): 
the first, dashed (second, short-dashed) curve, represents the smaller negative (larger positive) pulses. The 
larger negative pulse (solid curve) denotes the solution of the KdV equation for the same parameter set. 
(b) The corresponding solutions for the particle displacement u{x,t). 

Advancing to a fourth-order theory, i.e. retaining a 7̂  0 in (3), it is straightforward to 
show that both rarefactive and compressive excitations [5] may occur in a dust crystal. 
An experimental investigation would hopefully confirm these challenging results. 

The description of DP crystals is, in fact, significantly modified if one takes into ac­
count interaction polarization ("dressing") effects [7]. A change in sign is thus possible, 
which leads to a structural change in the excitations supported by the crystal. 
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