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1. Introduction. Strongly-coupled dusty plasma (DP) lattices occur in low-temperature gas

discharge experiments, in the form of horizontal hexagonal two-dimensional (2D) quasi-crystal-

line arrangements, generally [1], though a honeycomb structure was also recently observed

in experiments [2]. Transverse (off-plane, vertical, along gravity) dust-lattice (TDL) vibra-
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Figure 1: 2D structures in a dusty plasma crystal: (a) a hexagonal and (b) a honeycomb lattice.

tions are associated with an inverse-dispersive, backward propagating optic-like mode [3], viz.

ω2 = ω2
g −4ω2

0 sin2(kr0/2). Discrete periodic media are today known to support single- and

multi-siteDiscrete Breather (DB) excitations, a direction not yet explored in DP crystal experi-

ments. Applying existing methodology [4, 5], we have recently been investigating [6, 7, 8] the

occurrence of DBs in 2D DP crystals, and explored their stability properties, in terms of the

dimensionless parametersε = ω2
0/ω2

g , α ′ = α r0/ω2
g andβ ′ = βr2

0/ω2
g (damping is omitted).

Hereωg andω0 are the TDL mode eigenfrequency and (linear) coupling frequency,r0 is the

lattice spacing andα andβ are related to the anharmonicity of the plasma sheath potential –

details in [9] – (the primes will be dropped below). Our main results are summarized in the

following.

2. The Klein-Gordon methodology. We consider a 2D array of nonlinear point mass oscil-

lators, modelling dust grains, in an on-site potentialV (x) with V ′′(x) > 0. Each oscillator is

linearly coupled to its nearest neighbors. The Hamiltonian for both configurations is of the form

H = ∑i
p2

i
2 +V (xi)−

ε
2 ∑i, j(x j −xi)

2, where indicesi and j run over all sites and their first neigh-
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bors, respectively. The minus sign in the coupling term is dueto the inverse-dispersive character

of TDL oscillations. The corresponding discrete equations of motion read

ẍi = −V ′(xi)− ε(∑
j∈N

x j −Nxi) , (1)

whereN is the set of neighbors of thei-site andN is the cardinality ofN which is 6 in the case

of the hexagonal lattice and 3 in the case of the honeycomb lattice.

Hexagonal lattice. Consider a hexagonal lattice with a quartic on-site potentialV (x) = x2/2+

ax3/3+ bx4/4 anda = 0.01,b = −0.04 [10]. We consider single particle vibrations inV (an-

ticontinuum limit), and then switch on the coupling via a continuation of orbits forε 6= 0. The

stability of a single site breather is determined by its Floquet multipliers i.e., the breather re-

mains stable as long as they remain in the unit circle of the complex plane. The numerical

investigation shows that the single site breather configuration remains stable for allε < 0.05

(which includesε = 0.034, as in [10]). For details see in [6].
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Figure 2: Evolution of (a) a single site breather and (b) its Floquet multipliers (varyingε).

Consider now three moving adjacent central oscillators. The conditions for the phase dif-

ferenceφi among successive oscillators for three-site breathers to exist readφi = 0, φi = π or

φi = 2π/3, which correspond to anin-phase, anout of phase and avortex three-site breather

respectively. In the case of [10], for the latter two configurations, either one or two pairs of

multipliers leave the unit circle for arbitrary smallε. Thus, the only stable configuration is the

in-phase one and it remains stable until the multipliers of the central sites collide with the linear

spectrum and leave the unit circle [6], which in our case occurs forε = 0.017. Stablein phase

3-breathers are excluded in [10] (whereε = 0.034).

Honeycomb lattice. Consider now six adjacent central oscillators forming a unit cell in a

honeycomb lattice; see Fig.1b. The conditions for six-site breathers to exist are [8]:φi = 0,

φi = π, φi = π
3 or φi = 2π/3. The first two cases correspond to anin-phase and anout of phase

six site breather. The latter two correspond to the “charge-one" and the “charge-two" vortex

six-site breathers respectively. In this case the linearly stable configurations forε small enough

are the in-phase breather and the charge-one vortex.

35th EPS 2008; I.Kourakis et al. : Discrete breathers, multibreathers and vortices in two-dimensional Debye cr... 2 of 4



-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ε = 0.01 ε = 0.025

(a) (b)

Figure 3: (a) An in-phase 3-site breather (b) The corresponding Floquet multipliers (varyingε).

3. The Discrete Nonlinear Schrödinger (DLNS) description. To illustrate the generality of

our findings, we also consider the discrete nonlinear Schrödinger (DNLS) model [11].

In the DNLS setting, a unified treatment of six-site and three-site excitations relies on

i
dum,n

dt
= ε

(

∑
<m′,n′>∈N

um′,n′ −|N|um,n

)

−|um,n|
2um,n, (2)

where the summation is over the setN of nearest neighbors (denoted by< m′,n′ >) of the site

(m,n), andum,n represents the relevant complex field; notice that for the inter-site couplingε,

the opposite than the standard sign has been used, as explained also above in the KG case.

In the, so-called, anti-continuum limit ofε → 0 explicit solutions over contours of nodes

indexed byj can be represented without loss of generality asu j = exp(iθ j)exp(it), whereθ j ∈

[0,2π). Then, following the considerations of [5], for such solutions withM excited adjacent

sites to persist forε 6= 0, the relationg j ≡ sin(θ j−θ j+1)+sin(θ j−θ j−1) = 0, should be satisfied

for all j = 1, . . . ,M. The stability can also be determined from the eigenvaluesγj of the|M|×|M|

Jacobian J jk = ∂g j/∂θk. In particular, it can be proved that the eigenvaluesλ j of the full

problem satisfyλ j = ±
√

−2γjε. In the case of phase increments of|θ j+1 − θ j| = ∆θ, it is

in fact possible to compute the relevant Jacobian eigenvalues explicitly and obtain for the full

problem (near-zero) eigenvalues the general, analytical expression

λ j = ±

√

−8ε cos(∆θ)sin2
(

π j
|M|

)

, (3)

This expression can be usedboth for hexagonal and for honeycomb lattices. Furthermore, it can

be used both forM = 3 site and forM = 6 site configurations. In the defocusing case of interest

herein, it predicts that the in-phase configuration will be the only stable 3-site configuration,

while among 6-site configurations the in-phase and the vortex of charge 1 are going to be the

stable ones (while the out-of-phase and charge 2 vortex will be unstable). Typical examples of

the 6-site waveforms are shown with their eigenvalue (λ = λr + iλi) analysis in Fig. 4.
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Figure 4: Vortices of charge 1 and 2 (1st and 2nd column; top rowshows the real part and

middle the imaginary part), in-phase and out-of-phase hexapoles (third and fourth column). The

waveforms and the spectrum of linearization around them (bottom row) are shown forε = 0.05.

4. Conclusions. We have presented a series of novel results regarding nonlinear breathing

excitations in 2D dusty plasma lattice arrangements. Both Klein-Gordon and discrete nonlinear

Schrödinger models were used to illustrate the stability of in-phase structures for 3-site contours

and in-phase, as well as single-charge vortex excitations in 6-site contours. We suggest that it

would be extremely interesting to consider such configurations in experiments.
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