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Abstract

Focusing on modulated electron-acoustic plasma waves in superthermal plasmas, a non-

linear Schrödinger equation with complex coefficients (otherwise known as the Complex

Ginzburg-Landau equation) is derived, by including an ad hoc dissipative term in the fluid

equation of motion. The existence of dissipative solitons is discussed, and the effect of the

supertherthermal electron component is investigated.

1. Introduction. Nonlinear amplitude modulation of electrostatic wavepackets in plasmas is

a widely studied phenomenon, usually occurring due to the nonlinear self interaction of the

carrier wave or to wave-plasma interactions. This mechanism is usually studied via a multi-

ple space and time scale technique, leading to a nonlinear Schrödinger equation (NLSE), which

possesses exact solutions in the form of envelope structures occurring when the spreading effect

of dispersion and the self-steepening effect of nonlinearity balance each other. In the presence

of dissipation (wave damping), the NLSE takes the form of a Complex Ginzburg-Landau equa-

tion (CGLE). Different types of solutions of the CGLE have been investigated, both in plasma

physics [1,2,3] and in nonlinear optics [4,5,6].

In this study, we focus on a plasma containing superthermal particles modelled by a κ−
distribution [7,8]. We study the modulational properties of electron-acoustic (EA) wavepackets

[7], by introducing dissipation via an ad hoc damping term in the fluid momentum equation.

2. Theoretical model. We consider a three component plasma consisting of inertial (“cold”)

electrons, κ− distributed superthermal (“hot") electrons and stationary ions. The density of

the superthermal (“hot”) electrons is given by nh = nh0

(
1− eφ

(κ−3/2)kBTh

)−κ+1/2

, where Th is

the characteristic (hot) electron temperature and the subscript “0” represents the unperturbed

number density. The scaled fluid moment equations for the inertial (cold) electrons read:

∂n
∂ t

+
∂ (nu)

∂x
= 0, (1)

∂u
∂ t

+ u
∂u
∂x

=
∂φ
∂x

−νu, (2)

∂ 2φ
∂x2 ≈ β (n−1)+ c1φ + c2φ 2 + c3φ 3, (3)
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where the fluid velocity u, the density n and the electrostatic potential φ are normalised to

the EA speed v0 = (kBTh/me)
1/2, to the unperturbed density of the inertial component nc0

and to kBTh/e, respectively. Time and space are scaled by ω−1
ph = (4πnh0e2/me)

−1/2 and by

λD,h =
(
kBTh/4πnh0e2)1/2. The phenomenological damping term ν = νc/ωph, arises due to

inter-particle collisions (char. frequency νc). We have defined the cold-to-hot electron density

ratio β = nc0/nh0 and the κ−related coefficients: c1 =
κ−1/2
κ−3/2 , c2 =

c1(κ+1/2)
2(κ−3/2) , c3 =

c2(κ+3/2)
3(κ−3/2) .

3. Modulated-amplitude electrostatic solitary excitations. Anticipating solitary excitations,

we adopt a multiple scales technique [9,10]. We consider small (ε ¿ 1) deviations of all state

variables, say S (= n,u,φ ), from the equilibrium state as S = S(0)+Σ∞
n=1εnSn. Secondary har-

monic generation is accounted for via the ansatz Sn = Σ∞
l=−∞S(n)l (X ,T )eil(kx−ωt); the reality

condition S(n)−l = S(n)∗l is met by all state variables. All the perturbed states depend on the fast

scales via the phase θ1 = kx−ωt only, while the slow scales only enter the l−th harmonic

amplitude S(n)l .

Linear dynamics: The first order (linear) expressions provide the dispersion relation

ω(ω + iν) =
βk2

k2 + c1
, (4)

or

ω =− iν
2
+

√
βk2

k2 + c1
− ν2

4
, (5)

(provided that k ≥ ( c1ν2

4β−ν2 )
1/2 - otherwise overdamping occurs; recall that c1 > 0). The 1st-order

perturbation amplitudes are: u(1)1 = ω
k n(1)1 =−ω(k2+c1)

βk φ (1)
1 .

Nonlinear envelope description: The 2nd order equations provide the compatibility condition:
∂φ (1)

1
∂T1

+vg
∂φ (1)

1
∂X1

= 0 along with the corresponding 0th, 1st and 2nd harmonic amplitudes (to ∼ ε2).

Interestingly, the group velocity is real-valued – cf. (5) – yet ν−dependent. Annihilating secular

terms in ε3, we obtain a damped NLSE in the form:

i
∂ψ
∂τ

+P
∂ 2ψ
∂ζ 2 +Qr | ψ |2 ψ + iQi | ψ |2 ψ = 0 , (6)

where ψ = φ (1)
1 and the (slow) independent variables are ζ = ε(x− vgt) and τ = ε2t.

P and Q(= Qr + iQi) are dispersion and nonlinearity coefficients respectively. The loss term

(involving the imaginary part Qi) arises due to damping (and cancels in the limit ν → 0).

Damped envelope solitons: Since there is no gain term (i.e., no imaginary part of P), coherent

propagation of stable Perreira-Stenflo [2-3] or Akhmediev [4] solitons cannot be sustained in
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Figure 1: Variation of the frequency ω and group velocity vg with wavenumber k, for different

values of ν ; here ν = 0.05 (black curve), 0.1 (red curve), 0.3 (blue curve), 0.5 (green curve)

and κ = 4, β = 0.5. We have chosen high values of ν , to emphasize the qualitative effect.
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Figure 2: Bright type solitary structures (for PQr > 0): time evolution (left panel) and variation

of maximum amplitude (right panel). Arbitrary parameter values; here, P = Qr = 1 and Qi = 2.

this model. Eq. (6) is thus to be viewed as a dissipative NLSE, accounting for envelope soliton

solutions [7] which are damped, i.e., they decay in time and space. This is obvious in Figures

2-3. The decay rate is expected to be related to the value of Qi, which may be quite high (order

∼ 1 or higher), even for small values of ν : see Fig. 4b. On the other hand, the damping effect

on the P/Qr ratio (Fig. 4a) is not dramatic, in that higher ν values only slightly increase P/Qr

(which affects the envelope soliton width [7]) for large wavelengths (small k) (yet bear almost

no effect for higher k; see the right part of Fig. 4a). We emphasize that EA waves survive Landau

damping in a wide wavenumber region [7], hence the range of values considered in our plots.

4. Modulational instability. The modulational instability (MI) of electrostatic wavepackets

can be investigated via a tedious algebraic calculation, omitted here for brevity (to be reported

elsewhere in detail [11]). Summarizing those results, the “traditional" criterion (PQr < 0 for

stability; MI otherwise [7]) is dramatically modified due to the damping term involving Qi in

(6). Although wavepacket decay cannot be avoided, as obvious (for ν ∼ Qi 6= 0), it may be

slowed down for a significant amount of time by wave growth due to modulational instability

occurring in a wider parameter region (and even partly for PQr < 0 as well). This interplay be-
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Figure 3: Dark-type solitary structures (PQr < 0): time evolution (left panel) and variation of

maximum amplitude (right panel). Arbitrary parameter values; here, P =−Qr = 1 and Qi = 2.
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Figure 4: Variation of the P/Qr ratio (left panel) and Qi/Qr ratio with carrier wavenumber k for

different collision frequency ν ; here κ = 3, β = 0.5.

tween amplitude growth (due to MI) and decay (due to damping) is clearly visible in numerical

simulations, to be reported elsewhere [12]. A link is thus established with dissipative soliton

theory, e.g., in nonlinear optics [4-6], to be explored further in future work.
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