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Abstract. Real plasmas are often caracterized by the presence of excess energetic particle popu-
lations, resulting in a long-tailed non-Maxwellian distribution. In Space plasma physics, this phe-
nomenon is usually modelled via a kappa-type distribution. This presentation is dedicated to an
investigation, from first principles, of the effect of superthermality on the characteristics of dusty
plasma modes. We employ a kappa distribution function to model the superthermality of the back-
ground components (electrons and/or ions). Background superthermality is shown to modify the
charge screening mechanism in dusty plasmas, thus affecting the linear dispersion laws of both low-
and higher frequency DP modes substantially. Various experimentally observed effects may thus be
interpreted as manifestations of superthermality. Focusing on the features of nonlinear excitations
(solitons) as they occur in different dusty plasma modes, we investigate the role of superthermality
in their propagation dynamics (existence laws, stability profile) and characteristics (geometry).
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Plasma environments in Space and in the laboratory are often characterized by the
presence of energetic particles in the background, due to various acceleration mech-
anisms [1]. Following the ubiquitous observation of a long-tailed behavior in Space
plasmas, a kappa- (κ) parametrized distribution function was proposed, and later widely
employed to fit observed data with higher accuracy than the widespread Maxwellian
approach [2]. It has been shown from first principles that the omnipresent superther-
mal feature of plasmas may alter the propagation characteristics of plasma modes,
and modify the screening properties rather dramatically [3-6]. Recently, superthermal-
ity was employed to fit the observed data in experiments on electron-holes [7], while
non-Maxwellian electron distribution was also observed in high-power laser plasma in-
teractions, where electron acceleration was induced by plasma expansion into tenuous
plasma [8]. Superthermality was thus shown to be an ubiquitous feature of real plasmas.
Dusty plasmas (DP), where the dust component evolves against a background of light
particles, often in a nonthermal (off-Maxwellian) state, should be no exception.

We have recently carried out a series of investigations, from first principles, of the
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effect of superthermality on the characteristics of dusty plasma modes [3-6, 9-10]. We
have employed the kappa-distribution paradigm to model the influence of superthermal-
ity of the plasma components (electrons and/or ions) on nonlinear waves, e.g., soliton
pulses and shocks. In a generic manner, for all DP modes considered, superthermality
is shown to modify the charge screening mechanism in dusty plasmas, thus affecting
the linear dispersion laws of both low- and higher frequency DP modes substantially.
Various experimentally observed effects, in particular deviating from the expected theo-
retical prediction, may thus be interpreted as manifestations of superthermality. Focusing
on the features of nonlinear excitations as they occur in different dusty plasma modes,
we have investigated the role of superthermality in their propagation dynamics (soliton
existence laws, stability profile) and characteristics.

In this article, we shall limit ourselves to pin-pointing the combined effect of su-
perthermality and dust on dust-ion acoustic (DIA) waves, as a fundamental paradigm for
our purpose. Superthermality affects the wave characteristics via the dynamical charge
balance, which takes into account a non-Maxwellian distribution for the electrons (in
the former case). The results presented below are generic, in that the same qualitative
features are encountered in other modes as well.

DIA solitary waves in superthermal dusty plasmas.. We consider an unmagnetized
collisionless three-component dusty plasma consisting of electrons, ions and negatively
charged mobile dust. The dynamics of dust-ion acoustic waves is described by a fluid
model modelling the ionic inertia, i.e., adopting exactly Eqs. (1)-(5) in [11]. Given
the (ionic) scale of interest, the dust is assumed to be stationary (fixed). The electron
density, modeled via a superthermal κ− type electron distribution, has the form [2]:
ne = ne0

{
1− eΦ/[(κ− 3

2)kBTe]
}−κ+1/2

, where the index “0" denotes the unperturbed
(equilibrium) number density values and the spectral index κ measures the strength of
the distribution function. Small values of κ correspond to a strong deviation from the
Maxwellian distribution, which is recovered in the limit κ → ∞ (and practically, in fact,
for finite values of κ above ' 10).

In the following, we scale the state variables by the equilibrium ion num-
ber density ni0, the ion sound speed cs = (ZikBTe/mi)1/2 and Φ0 = kBTe/e, re-
spectively. Space and time will be normalized by the ion plasma screening
length λD,e f f = [kBTe/(4πZini0e2)]1/2 and by the inverse ion plasma frequency
ω−1

pi = (4πni0Z2
i e2/mi)−1/2, respectively. We also define the dimensionless (Havnes)

dust parameter µ = Zdnd0/(Zini0) = 1− ne0
Zini0

. Note that µ takes values between zero
(dust-free limit) and unity (for complete electron depletion, i.e. in ion-dust plasma).

Linear dispersion relation.. The fluid system introduced above leads to the
dispersion relation: ω2 = k2/(k2 + c1) , i.e., restoring dimensions for a minute,
ω2 = k2ω2

pi/[k2 +(
√

c1/λD,e f f )2] , where the constant parameter c1 is defined

by c1 = (1 − µ)κ−1/2
κ−3/2 . We see that the charge (Debye) screening mechanism is

strongly affected by both the dust concentration (via µ) and by superthermality.
Defining the (κ-dependent) modified screening length as λ (κ)

Di = λD,e f f /
√

c1 ={
(κ − 3/2)/[(κ − 1/2)(1− µ)]

} 1
2 λD,e f f , we notice that a stronger deviation from



the Maxwellian (i.e., for lower κ) leads to a reduced charge screening length, viz.,
λ (κ)

Di < λ (Max)
Di , which even reaches zero at κ → 3/2. On the other hand, a stronger

dust concentration (i.e., lower µ) leads to a larger Debye sphere, thus somehow com-
peting with superthermality, for negative dust (it is straightforward to see that this
effect should be reversed for positive dust). We stress the fact that superthermality
results in a modified sound speed, since the real sound speed in the plasma becomes
c(κ)

s = ωpiλ
(κ)
Di = c(κ→∞)

s /
√

c1, i.e. it is reduced by a factor
√

c1. It is straightforward to
obtain ω2 ' csk/

√
c1 in the large wavelength limit, thus vph = c(κ)

s defined above is the
real phase speed vph = ω/k of ion-acoustic waves (in the cold ion model).

Nonlinear Korteweg - de Vries description for small-amplitude solitary waves..
Adopting the so-called reductive-perturbation technique, one may consider the stretched
(slow) coordinates ξ = ε1/2(x− vpht) , τ = ε3/2t , where ε ¿ 1 and vph is the phase
speed defined above, and expand the dependent variables (n, u and φ ) near equilibrium
as φ = εφ1 +ε2φ2 +ε3φ3 + · · · (along with analogous expressions for n and u near 1 and
0, respectively), in order to obtain the nonlinear Korteweg - de Vries (KdV) equation

dφ1

dτ
+Aφ1

dφ1

dξ
+B

d3φ1

dξ 3 = 0 , (1)

for the potential disturbance φ1. The nonlinearity (A) and dispersion (B) coefficients read

A =
3µ +κ(4−6µ)−4

2
√

(2κ−3)(2κ−1)(1−µ)
, B =

1
2

[
(2κ−1)(1−µ)

2κ−3

]−3/2

, (2)

or, in the Maxwellian electron limit (κ → ∞), A = 2−3µ
2
√

1−µ , B = 1
2

( 1
1−µ

)3/2
. In the

dust-free limit (i.e. for µ = 0), one recovers for ordinary ion-acoustic waves A =
2(κ−1)√

(2κ−3)(2κ−1)
, B = 1

2

(2κ−1
2κ−3

)−3/2, which yields A = 1 ,B = 1/2 as expected [12] in

the (dust-free) Maxwellian limit. The KdV equation (1) bears the soliton solution

φ1(ξ ,τ) = φ0 sech2[(ξ −V τ)/L0
]

, (3)

where the pulse amplitude φ0 and the pulse width L0, defined as φ0 = 3V/A and L0 =√
4B/V respectively satisfy the relation φ0L2

0 = 12B/A.
Numerical stability investigation. We note in Fig. 1 that nonlinearity is stronger while

dispersion is weaker for lower κ . The delicate balance between these two mechanisms –
for given, say, κ– is thus lost if the value of κ is altered. We have considered a numerical
investigation of the following scenario: an electrostatic pulse which propagates in a
Maxwellian plasma in a stable manner (see Fig. 2) enters a region which characterized
by a lower value of κ (here, κ = 3): see Fig. 3. We have observed that the energy stored
in the pulse allows for the pulse to decompose exactly into a faster (and thus taller and
thinner, as expected for KdV solitons) pulse, in addition to a weaker (and wider) pulse
following it at a slower speed: see Fig. 3. Of course, the soliton energy balance transfer
between one and two pulses which occurred here was rather accidental: in general,
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FIGURE 1. The nonlinearity coefficient A (left) and the dispersion coefficient B (right) defined in (2)
are depicted versus κ , for different values of the dust parameter µ : µ = 0.01 (dashed curve), µ = 0.05
(dot-dashed curve), and µ = 0.1 (solid curve).
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FIGURE 2. Stable propagation of an electrostatic pulse in a quasi-Maxwellian plasma (here κ = 100,
µ = 0.1): different time snapshots (left) and 3D plot vs space and time (right). The exact pulse solution
(3) was used as initial condition, for κ = 100, µ = 0.1 and V = 1, into the KdV (1) for κ = 100, µ = 0.1.

a pulse-shaped initial condition would be expected to evolve into a pulse soliton, if
energetically permitted, in addition to a background of oscillations lagging behind the
pulse. This was indeed the case when we considered the inverse scenario, i.e. assuming
that an exact soliton solution for κ = 3 enters a Maxwellian (high κ) region. The result
is depicted in Figs. 4 and 5, where we observe a(n) (initially stable) pulse propagating in
a low-κ plasma (see Fig. 4) enter into a Maxwellian region (see Fig. 5): the pulse slows
down slightly and extends itself laterally, while a sea of linear waves clearly appears to
follow the pulse, due to the energetic lack of balance between the exact soliton solutions
for high and for low κ . We note in the above paradigms an acceleration of pulses crossing
into a lower κ region, and a slowing down in the reverse case (in qualitative agreement
with earlier results [13, 14]), i.e., lower κ values support faster solitons.

Large-amplitude nonlinear theory. The occurrence and stability of large-amplitude
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FIGURE 3. High-to-low κ shift: a pulse initially moving in a quasi-Maxwellian plasma (at t = 0)
crosses into a superthermal dusty plasma region (here κ = 3, µ = 0.1) at t = 0: different time snapshots
(left) and 3D plot vs space and time (right). The same initial condition as in Fig. 2 was considered here.
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FIGURE 4. Stable propagation of an electrostatic pulse in a strongly superthermal plasma (here κ = 3,
µ = 0.1): different time snapshots (left) and 3D plot vs space and time (right). The exact pulse solution
(3) was used as initial condition, for κ = 3, µ = 0.1 and V = 1, into the KdV (1) for κ = 3, µ = 0.1.
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FIGURE 5. Low-to-high κ interface: evolution of a pulse initially moving in a superthermal (for κ = 3,
here) dusty plasma (at t = 0) crossing into a Maxwellian plasma region (here κ = 100, µ = 0.1) at t = 0:
different time snapshots (left) and 3D plot vs space and time (right). The exact pulse solution (3) was
considered as initial condition, for κ = 3, µ = 0.1 and V = 1, into the KdV (1) for κ = 100, µ = 0.1.

ion acoustic solitary waves was investigated in the past via a pseudopotential phe-
nomenology (known as the “Sagdeev” approach), both in dusty plasmas [13] and, ear-
lier, in the absence of dust [14]. These studies have shown that smaller κ values support
faster solitons, in agreement with our findings above. A positive-to-negative soliton po-
larity shift was predicted for high (negative) dust concentration, while the associated
dust density threshold was shown to be lower for smaller values of κ: superthermality
was thus shown to favour the existence of negative-potential ion-acoustic pulses. No
negative pulses may occur for positive dust though. As a matter of fact, a co-existence
of weak negative and large positive pulses may occur in the presence of negative dust,
as predicted by both Sagdeev and modified-KdV (mKdV) theories [13]. The existence
of solitons is generally permitted in specific regions in configuration space, which may
be conveniently expressed in terms of the Mach number M, i.e. the soliton speed scaled
by the (reference) sound speed. Generally, solitary waves occur in the region between
two boundary values, viz., for M1 < M < M2 (e.g., for 1 < M < 1.58 in the dust-free
ion-acoustic model), where M1 is essentially the sonic point (which depends on both
κ and dust via µ , as discussed above) –imposing supersonic soliton propagation– and
M2 is the infinite compression limit, imposed by reality requirements for the state vari-
ables. It was earlier shown [14] that both M1 and M2 decrease for lower κ (see Fig. 1
in [14]), hence the soliton existence region is significantly affected by superthermality,
and in fact shrinks to nil in the limit κ → 3/2. Furthermore, it was shown in [13] that a
stronger negative dust concentration results in higher (region of permitted) soliton speed
values, in apparent competition with superthermality. These considerations agree with
our numerical observations reported above.
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FIGURE 6. Low-to-high dust shift: a pulse initially moving in a superthermal (for κ = 3 and µ = 0.1,
here) dusty plasma (at t = 0) crosses into a higher-dust concentration region (here µ = 0.3) at t = 0:
different time snapshots (left) and 3D plot vs space and time (right). The exact pulse solution (3) was
considered as initial condition, for κ = 3, µ = 0.1 and V = 1, into the KdV (1) for κ = 3, µ = 0.3.

Summarizing, we have reported a series of extensive analytical and numerical inves-
tigations of the effect of superthermal particle on the propagation of electrostatic waves
in dusty plasmas. In particular, in the limited space available, we have briefly analyzed
the combined effect of superthermality and negative dust on (dust-)ion acoustic solitary
waves and envelope solitons. The two mechanisms were shown to cooperate, or some-
times compete, towards a strong modification of the stability characteristics of electro-
static excitations. Further investigations are currently underway and will be reported
elsewhere [16] soon.
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