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Abstract. The modulational instability of dust-acoustic waves is investigated, relying on a recently proposed model for strong
electrostatic interactions between the highly charged dust particles. The resulting effect on the occurrence (threshold, growth
rate) of modulational instability is investigated. Our results can in principle be tested experimentally.
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Strong electrostatic interactions of highly charged mi-
croparticles, a common feature of complex plasma dy-
namics, have been shown to modify the behavior of dust
acoustic waves, which behave like thermal waves at large
wavenumbers [1]. Comparisons with recent experiments
seem to confirm this approach [2]. This work investigates
the amplitude modulation of dust-acoustic wavepackets
via a modified fluid approach presented earlier [2], rely-
ing on an anomalous pressure term which involves an ef-
fective dust temperature related to the dusty plasma char-
acteristics (namely, the lattice parameter and the plasma
coupling parameter).

We consider an unmagnetized collisionless three-
component plasma consisting of Maxwellian electrons
and ions and negatively charged mobile dust. The dy-
namics of dust-acoustic waves, whose phase speed lies
in the region between the dust thermal speed and the ion
thermal speed, is described by
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The effective dust temperatureT(e f f)
d is [2, 3]
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where Nnn, Γ and Td is the number of nearest neigh-
bors, coupling parameter and particle kinetic temper-

ature, respectively. It is stressed thatT(e f f)
d is here a

function of the plasma density and of the electric po-
tential [1], a fact missing in earlier works [4]. For our
analysis, we have scaled the dust number densitynd,
velocity ud and electrostatic potentialΦ by the equi-
librium dust number densitynd0, the effective dust

sound speedc(e f f)
d = (kBT0/md)

1/2 andΦ0 = kBT0/Zde,
respectively. The space and time variables are nor-
malized by the effective dust Debye lengthλDe f f =

(kBT0)/(4πe2Z2
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1/2 and the inverse dust plasma fre-
quencyω−1

pd = (4πe2Z2
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−1/2, respectively. We

have definedT0 = (Z2
dnd0TiTe)/(Tine0 + Teni0) and the

temperature ratiod = T(e f f)
d /T0.

We anticipate modelling localized wavepackets (mod-
ulated envelope multi-harmonic modes) asenvelope soli-
tonsof the bright/dark type [4]. A multiscale approach is
employed [4], to separate the fast carrier from the slow
envelope wave. We consider small (ε ≪ 1) deviations of
all state variables, sayS(= n,u,φ ) from equilibrium as
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andp denotes the Havnes parameterp = Zdnd0
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.
The first order expressions provide the (known [2])

dust-acoustic wavedispersion relation:
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FIGURE 1. Variation of dispersionP (left) and dissipationQ
(right) coefficient versus wavenumberk for κ0 = 2.5, p = 0.9,
d0 = 0.6, σ = 0.009, τ = 100.
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FIGURE 2. Variation of theP/Q ratio (left) and of the mod-
ulational instability growth rateΓ (right) for different p. Here
κ0 = 2.5, d0 = 0.6, σ = 0.009, τ = 100 for both cases.
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Combining the algebra upto third order inε, we obtain
a compatibility condition in the form of anonlinear
Schrödingerequation (NLSE)
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whereψ denotes the electric potential correctionφ (1)
1 and

the slow variables areζ = ε(x− vgt) andτ = ε2t. The
group velocityvg is given byvg = k

ω(k2+1)2 + k
ω d0. The
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which may change sign depending on the relevant plasma
parameters. In Fig.1 we give an example of the dis-
persion and the nonlinear coefficient for a typical set
of plasma parameters. The nonlinearity coefficientQ is
omitted here (lengthy expression, to be reported else-
where [5]). Considering a small harmonicamplitude per-
turbationψ̃1 = ψ1,0 ei(k̃ζ−ω̃τ)

ω̃2 = P2 k̃2 (k̃2 − 2Q
P

|ψ0|2) , (7)

where we have consideredψ = ψmeiθ with ψm = ψ0 +
εψ̃1 in (5). Eq. (7) implies that the carrier wave will be
modulationally stable forQ/P < 0, while modulational
instability occurs (i.e.,̃ω2 becomes negative and a purely
growing mode develops) forQ/P > 0, if k̃ lies below
k̃cr =

√

(2Q/P)|ψ0|. The instability growth rateσ(=

FIGURE 3. Propagation of a localized modulated pulse
(bright-type envelope soliton [5]) propagating in a plasmafor
d0 = 0.6,σ = 0.009,κ0 = 2.5, τ = 100: the pulse is stable for a
carrier wavenumber valuek = 0.7 (left panel) and unstable for
k = 0.6 (right panel).

|Imω̃(k̃)|) will attain a maximumσmax(= |Q||ψ0|2) at
k̃ = k̃cr/

√
2. Eq. 7 leads to an inter-grain-interaction

dependent (viaT(e f f)
d ) growth rate
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where Γ = ω̃/(Qm|ψ0|2), α = P/Pm, q = Q/Qm, and

x = k̃/(Qm/Pm)1/2|ψ0| with Pm = P(T(e f f)
d → 0) and

Qm = Q(T(e f f)
d → 0). A numerical study reveals that

the instability growth rate increases with the dust-to-
ion density ratiop (see Fig. 2, right panel), i.e. dust
enhances the instability. For comparison, the warm-dust
model (includingTe f f) increases the instability ratio (the
maximum forTe f f = 0 would occur at(1.4,1), in Fig. 2).

In order to test our prediction for (in)stability as de-
termined by Fig 2 (left), we have performed a numeri-
cal simulation of (5) (employing Runge-Kutta 4 method,
with spatial grid size and time interval 0.15 and 5×10−4,
respectively). It is seen in Fig. 3 that a localized pulse-
shaped wavepacket is stable (constant amplitude while
propagating) for a carrier wave with wavenumberk =
0.7, while it is unstable (amplitude decreases in time) for
k = 0.6, in complete agreement with Fig. 2 (left).

Our findings aim at inspiring purpose designed experi-
ments, meant to test and confirm our stability predictions.
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