
30th ICPIG, August 28th - September 2nd, 2011, Belfast, UK Topic number ’A4’

Modelling of ion-acoustic shocks in superthermal plasmas
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We have undertaken a theoretical and numerical investigation of ion-acoustic shock wave

dynamics in nonthermal plasmas characterized by finite ion viscosity. The non-thermality

of the plasma modeled by a κ-type distribution for the electrons. Shock evolution is mod-

eled by a 1-dimensional Korteweg-de Vries – Burgers equation, obtained via a multiscale

perturbation technique. The parametric dependence of the shock amplitude and width on

plasma non-thermality (via the κ parameter) is investigated. A stability criterion for the

shock profile is analytically derived and tested by numerical integration.

1. Introduction

Space plasma observations [1–6] as well as lab-
oratory experiments [7–10] provide abundant ev-
idence for the occurrence of nonthermal (non-
Maxwellian) plasmas, mostly due to the presence
of accelerated particles or superthermal radiation
fields [11]. Plasma distributions involving a pop-
ulation of superthermal particles feature a power-
law behavior [1, 11], which is efficiently described
by a kappa- (κ-) parametrized distribution func-
tion [5,12,13]. The value of κ lies in the range κ ∈
(3/2,∞): small κ values account for a stronger de-
viation from the Maxwellian distribution, which
is recovered for κ → ∞ (see, e.g., Fig. 1 in [13]).
The nonlinear propagation of electrostatic excita-
tions is known to be dramatically modified by the
presence of a superthermal electron component,
as confirmed by experiments [6, 10].

This paper presents an analytical treatment of
the propagation of ion-acoustic shock waves in
collisionless superthermal plasmas in the presence
of ion viscosity, by means of a Korteweg-de Vries
– Burgers equation. The geometric characteristics
of the shock are found to be significantly affected
by the non-thermality of the background plasma,
as corroborated by numerical simulations.

2. The model

We consider an unmagnetized electron-ion (e-i)
plasma with cold ions (Ti ≪ Te) and superther-
mal electrons, which are described by a κ− type
distribution function. Since we focus on plasma
dynamics at the ion-acoustic scale, electron iner-
tia is neglected by assuming vth,i ≪ vph ≪ vth,e,
where vth,i (vth,e) and vph are the ion (electron)

thermal speed and the ion-acoustic phase velocity,
respectively. The ion dynamics is thus described,
in a one-dimensional geometry, by the fluid evo-
lution equations:
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where nonthermality is taken into account by as-
suming for the electron density [12]:

ne = ne0

[

1−
eφ

(κ− 3
2)kBTe

]

−κ+1/2

. (2)

An ad hoc damping term was introduced in the
momentum equation, involving the (ion) kine-
matic viscosity ηi. In our analysis, we have scaled
the ion number density ni, the velocity ui and
the electrostatic potential φ by the equilibrium
ion number density ni0, the ion sound speed
cs = (ZikBTe/mi)

1/2 and φ0 = kBTe/e, respec-
tively (lower case symbols n, u and φ will be used
for the scaled state variables below). Space and
time are normalized by the ion plasma Debye
length λDi = [kBTe/(4πne0e

2)]1/2 and the inverse
ion plasma frequency ω−1

pi = (4πni0Z
2
i e

2/mi)
−1/2,

respectively. Quasi-neutrality is assumed at equi-
librium (viz., ne0 = Zini0). The normalized (ion)
kinematic viscosity variable is η = ηi/(ωpiλ

2
Di).

3. Evolution equation for shock waves

Assuming a weak dissipation, a linear disper-
sion relation is obtained by linearizing Eqs. (1),
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in the form:

ω2 =
k2ω2

pi

k2 + c1/λ2
Di

, (3)

where c1(κ) =
κ−1/2
κ−3/2 (> 1). Eq. (3) is essentially

the dispersion relation for ion-acoustic waves in a
Maxwellian plasma, provided that yet correcting

the Debye length by a factor c
−1/2
1 (< 1). Non-

thermality therefore induces a reduction of the

Debye length λ
(κ)
Di = λDi/

√
c1, as compared to

the Maxwellian result (which is recovered in the
limit κ → ∞; see Fig. 1). The (real) sound speed
is also reduced (in comparison to the Maxwellian
value) by the same (κ-dependent) factor. In the
long wavelength limit (i.e., for k ≪ 1), Eq. (3)
reduces to:

v
(κ)
ph =

ω

k
≃ c

−1/2
1 cs . (4)

In order to gain insight into the shock dynam-
ics, we now proceed by considering a weak electro-
static perturbation in the plasma (φ ≪ kBTe/e):
we adopt a multiscale technique [14, 15] by in-
troducing a dependence of the anticipated shock
solutions on the stretched (slow) coordinates ξ =
ǫ1/2(x− Vst) and τ = ǫ3/2t, where Vs denotes the
shock propagation speed. Damping is introduced
via the ion kinematic viscosity which is assumed
to be weak, viz. η = ǫ1/2η0. The state variables
are expanded near their equilibrium values in a
power series of ǫ (≪ 1) as

ni = 1 + ǫn1 + ǫ2n2 + ǫ3n3 + · · · ,

ui = ǫu1 + ǫ2u2 + ǫ3u3 + · · · ,

φ = ǫφ1 + ǫ2φ2 + ǫ3φ3 + · · · . (5)

We now substitute the expansion relations
given in (5) into the fluid model above and sepa-
rate different orders of ǫ. The first-order relations
lead to n1 = φ1/V

2
s , u1 = φ1/Vs and Vs =

√

1/c1,
in agreement with the linear model (all quantities
here and below are in dimensionless form).

Combining the first-order expressions into the
second order equations, we obtain a Korteweg–de
Vries Burgers (KdVB) type equation in the form:

dφ1

dτ
+Aφ1

dφ1

dξ
+B

d3φ1

dξ3
− C

d2φ1

dξ2
= 0 , (6)

where the nonlinearity (A), dispersion (B) and
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Fig. 1: Ratio between the κ−dependent and related

Maxwellian Debye length as a function of κ.
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Fig. 2: Variation of the nonlinear coefficient A and the

dispersion coefficient B with superthermality param-

eter κ.

dissipation (C) coefficients read:

A =
2(κ− 1)

2κ− 1

√

1 +
2
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,
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2

(
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2

2κ− 3
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η0
2

.

The coefficients A and B, both positive, are
thus functions of the superthermality parameter
κ: in fact, the former (A) increases, while the
latter (B) decreases, if one considers stronger
superthermality (i.e., for lower κ): see Fig.
2. The expected Maxwellian limit A = 1 and
B = 1/2 is recovered for κ → ∞, in agree-
ment with Eq. (28) in Ref. [16] (considering
α = A, β = B, δ = ni0/ne0 = 1 and σ = 0
therein, to bridge the notation).

4. Travelling wave solutions

Different types of solutions are possible, de-
pending on the interplay between the coefficients
in the KdVB equation (6). A monotonic, kink-
like shaped, solution is obtained via the hyper-
bolic tangent method [17,18] in the form:

φ1(ξ, τ) =
V

A
− Φ0

[

(1 + tanh ζ)2 − 2
]

, (7)
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Fig. 3: Evolution of an ion-acoustic shock wave, as

given by Eq. (6), propagating in (a) a “superthermal”

plasma (κ = 3) [where Eq. (7) is taken as an ini-

tial condition with V = 0.1]; and (b) a “Maxwellian”

plasma (κ = 100) [where Eq. (7) is taken as an initial

condition with V = 0.25]. In both cases, C = 0.5 is

considered.

where we have performed a transformation of the
coordinates ζ = α(ξ−V τ) and τ = τ ; here V rep-
resents the excitation propagation velocity (in a
frame moving at the sound speed), i.e., the incre-
ment in speed above the sound speed, α−1 repre-
sents the shock width and Φ0 represents the shock
amplitude.

As a preliminary result, it is interesting to note
that both the spatial extension (width) of the
shock L = α−1 and its maximum amplitude Φ0
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Fig. 4: Threshold for monotonic shock profiles as given

in Eq. (10).

are now expressed as functions of κ:

α−1 =
10

η0

(

1 +
2

2κ− 3

)

−3/2

,

Φ0 =
3η20
100

(2κ − 1)2

(κ− 1)(2κ − 3)
. (8)

We point out that this type of solution bears a
strictly monotonic form, regardless of the values
of the relevant parameters.
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Fig. 5: Evolution of the shock solution given in Eq.

(9) for (a) a superthermal plasma (κ = 3, with B =
0.23) and (b) a Maxwellian plasma (κ → ∞, with

B = 0.5). We have assumed C = 0.4 and V = 1.

In the dispersionless limit (B ≪ C), a shock-
like solution is exactly obtained – upon setting
B = 0 in (6) – in the form [19]

φ1(ξ, τ) = Φ1

(

1− tanh[(ξ − V τ)/L1]

)

. (9)

Eq. (9) represents a shock structure with speed
V , amplitude Φ1 = V/A and width L1 = 2C/V .

Considering a small periodic perturbation
around the solution in Eq. (9), and investigating
the stability of the solution against dispersion, an
explicit condition is obtained

C

V 3/2
≪

κ− 3/2
√

2(κ− 1)(2κ − 1)
, (10)

for an oscillatory profile to dress the shock in re-
sponse to an external perturbation (linear stabil-
ity; see Fig. 4). In the opposite lime, a purely
monotonic shock front occurs.
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Fig. 6: Evolution of the shock solution given in Eq.

(9) for (a) a superthermal plasma (κ = 3) and (b) a

Maxwellian plasma (κ → ∞). We have taken C =
0.4 and V = 1.

We have studied the shock behavior by numer-
ical simulation of Eq. (6), taking as initial condi-
tion Eq. (9). Our results, depicted in Figs. 5 and
6, confirm the above condition.

5. Conclusions

We have investigated the nonlinear propagation
of ion-acoustic shock waves in a plasma character-
ized by a superthermal (non-Maxwellian) electron
population. Our study relies on a KdV/Burgers
equation, obtained via a multiscale technique,
which models the evolution of a weak perturba-
tion in the electrostatic potential. The intrinsi-
cally competing plasma nonlinearity and disper-
sion mechanisms were shown to be modified due
to plasma superthermality, entailing a significant
influence on the dynamics of electrostatic shocks.
The shock profile is seen to increase its ampli-
tude and narrow its width with superthermal-
ity. Numerical simulations suggest that a shock
wave maintain its robustness while crossing the
interface between a Maxwellian and a superther-
mal plasma. In the inverse case (superthermal to
Maxwellian), oscillatory structures are generated
in its downstream part in agreement with analyt-
ical findings.
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