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Introduction

In 1986 Ikezi [1] predicted that a dusty plasma can enter the strongly coupled regime due to

the high charge number and low temperature of the dust. Here, the coupling parameter, Γ� 1

where we have

Γ =
Z2

de2

4πε0kBTdad
, (1)

with Zd , Td and ad = nd
−1/3 being the charge number, temperature and mean interparticle dis-

tance of the dust particles, respectively. There have subsequently been many approaches used

to theoretically study dust-acoustic waves in strongly coupled plasmas, but the model on which

this paper is based is the fluid approach presented by Gozadinos et al. [2], which was developed

to numerically model crystalline dusty plasmas under microgravity conditions. In their paper

they formulated an equation of state for this regime given by

P? '
Nnn

3
ΓkBTdnd(1+κ)exp(−κ), (2)

where Nnn is the number of nearest neighbours that determine the dusty plasma’s structure

and κ is the lattice parameter, defined as the mean interparticle distance n−1/3
d , divided by the

dynamical Debye screening length, λD such that

κ =
1

3
√

ndλD
, λD =

√
ε0kBTiTe

e2(niTe +neTi)
, (3)

where Ts and ns are the temperature and number density of species s = e, i, respectively. This

model, although originally developed for crystalline plasma structures, has recently been ap-

plied as an approximation to the equation of state for strongly coupled plasmas near to the

liquid-crystal phase transition. This theory is seen to be in excellent agreement with the ex-

perimental observations of the linear wave mode, as elegantly demonstrated by Yaroshenko et
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al., for example Fig. 5 in Ref. [3]. By considering the form of Eqns. (1) and (2), an effective

electrostatic ‘temperature’ was defined such that

kBT? =
NnnZ2

de2

12πε0

3
√

nd(1+κ)exp(−κ). (4)

In doing so, they demonstrated that this model predicts the transition to an effective thermal

mode at high wavenumbers, which was observed in experimentally obtained dispersion curves,

that the dust kinetic temperature, kBTd alone was not able to explain. It was shown that the

electrostatic repulsion of similarly charged dust particles produces an effect similar to that of a

temperature, with a magnitude greater than kBTd by typically a few orders of magnitude [3].

In this paper, we investigate nonlinear dust-acoustic solitary waves by a derivation of the

Korteweg-de Vries (KdV) equation, accounting for strong coupling between the dust particles

using the electrostatic temperature approach of Yaroshenko et al. [3]. We note that Eqns. (3)-

(4) show that the electrostatic temperature is a function of the dust, ion and electron densities.

For Maxwellian distributed electrons and ions, whose densities are functions of electrostatic

potential, Φ such that ne = ne0exp(eΦ/kBTe) and ni = ni0exp(−eΦ/kBTi), we therefore have

T? ≡ T?(nd,Φ). In the vicinity of the wave, nd and Φ are seen to vary, so T? is also a dynami-

cally varying quantity. Uniquely, in the derivation of the KdV equation, we account for this by

introducing the concept of electrostatic temperature perturbations.

Fluid Model

We use a normalised fluid model such that

∂n
∂ t̃

+
∂
∂ x̃

(nu) = 0, (5)

n
(

∂u
∂ t̃

+u
∂u
∂ x̃

)
= n

∂φ
∂ x̃
− ∂ (nd)

∂ x̃
, (6)

∂ 2φ
∂ x̃2 ≈ (n−1)+ c1φ + c2φ 2 + c3φ 3, (7)

where d is the normalised electrostatic temperature. The coefficients in Poisson’s equation are

calculated to be

c1 = 1, c2 =−(1−µ)(1−µθ 2)
2(1+ µθ)2 , c3 =

(1−µ)2(1+ µθ 3)
6(1+ µθ)3 ,

where we have µ = ne0/ni0 and θ = Ti/Te. We note that the c3 coefficient is not normally re-

quired in the derivation of the KdV equation. However, this coefficient appears in the derivation

of the electrostatic temperature perturbations, so its definition is presented here. In Eqns. (5)-(7)

we have normalized the temperature, length, time, velocity, density and electrostatic poten-

tial terms by T0 = Z2
dnd0TiTe

ni0Te+ne0Ti
, λD0 =

√
ε0kBT0

nd0Z2
de2 , ω−1

pd =
√

ε0md
nd0Z2

de2 , v0 =
√

kBT0
md

, n0 = nd0 and

Φ0 = kBT0
Zde , respectively.
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Reductive Perturbation Method

To obtain the KdV equation, in which we balance nonlinearity with dispersion, we first stretch

the space and time coordinates in Eqns. (5)-(7) in the style of Washimi and Taniuti [4] such that

ξ̃ = ε1/2 (x̃− vt̃) and τ̃ = ε3/2t̃, where ε is a small parameter. We then expand the dynamic

quantities about their equilibrium values such that

n = 1+ εn1 + ε2n2, u = εu1 + ε2u2, φ = εφ1 + ε2φ2, d = d0 + εd1 + ε2d2,

where the normalised equilibrium electrostatic dust temperature, d0 is expressed as

d0 = T?0/T0, kBT?0 =
NnnZ2

de2

12πε0
3
√

nd0(1+κ0) exp(−κ0), κ0 =
1

3
√

nd0λD0
.

The normalised electrostatic temperature perturbations d1 and d2 are found to be

d1 = d11n1 +d12φ1, d2 = d21n2 +d22φ2 +d23n2
1 +d24n1φ1 +d25φ 2

1

with the coefficients di j being

d11 = d21 =
d0

3
1+κ0 +κ2

0
1+κ0

, d12 = d22 =−d0c2
κ2

0
1+κ0

, d23 =
d0

18
κ3

0 −3κ2
0 −2κ0−2

1+κ0
,

d24 =−d0

3
c2

κ2
0 (κ0−1)
(1+κ0)

, d25 =−d0

2
(
3c3− c2

2κ0
) κ2

0
1+κ0

.

Korteweg-de Vries Equation and Parametric Investigation

To lowest order, the expansion of Eqns. (5)-(7) gives an equation for the linear phase velocity

such that v =
√

1+d0 +d11−d12, as well as relations between the perturbations such that n1 =

−φ1 and u1 = −vφ1. Taking the expansion to the next lowest order leads to the KdV equation

such that
∂φ1

∂ τ̃
+ Ãφ1

∂φ1

∂ ξ̃
+ B̃

∂ 3φ1

∂ ξ̃ 3
= 0 (8)

in which we have

Ã =−(1+2v2 +2αc2 +2γ)
2v

, B̃ =
α
2v

,

where

α = 1−d12, γ = d11−d12 +d23−d24 +d25.

Eqn. (8) can be solved by separation of variables, giving a solution of

φ1(ξ̃ , τ̃) = φmsech2

[
ξ̃ −Ũ τ̃

∆̃

]
. (9)

where φm = 3Ũ
Ã

, ∆̃ =
√

4B̃
Ũ and Ũ are the amplitude, width and normalised velocity of the non-

linear solitary wave in the moving reference frame, respectively.
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By transforming back to the laboratory frame, in Figure 1 we show how the amplitude, |Φm|
and width, ∆ of the solitary waves vary with equilibrium plasma conditions. Here, we have

based the parameters on those measured by Bandyopadhyay et al. [5], with the dust charge

number being consistently calculated across the parameter range using an orbit motion limited

approach [6].

(a) The amplitude of the solitary wave, |Φm| (mV) as a

function of the electron and ion temperatures (eV)

(b) The amplitude of the solitary wave, |Φm| (mV) as a

function of the electron and ion densities (×1013 m−3)

(c) The dependence of the width of the solitary wave, ∆

(mm) on the electron and ion temperatures (eV)

(d) The dependence of the width of the solitary wave, ∆

(mm) on the electron and ion densities (×1013 m−3)

Figure 1: The attributes of solitary waves travelling at 2 mm/s above sound speed. In all plots,

the dust particle mass, md = 1× 10−13 kg, the dust particle radius, rd = 0.2 µm, me/mi =

1.37×10−5 and Nnn = 12. For (a), (c), we have ni0 = 7×1013 m−3 and ne0 = 4×1013 m−3 and

for (b), (d), we have kBTi = 0.3 eV and kBTe = 8 eV.
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