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Ion-acoustic shock excitations can be generated during the nonlinear evolution of a plasma

fluid. The inspiration for our work here comes from previous theoretical research [1-3] and

is also motivated by experimental observations, in which electrostatic solitary structures were

detected in laser-plasma experiments [4-5].

The laser-plasmas which we are investigating are not thermalised, and therefore it cannot be

assumed that the electrons obey a Maxwellian distribution. Here we model the behaviour of

non-Maxwellian electrons via the Cairns- Tsallis distribution [6]. The reductive perturbation

technique is used [7] to derive the Zakharov-Kutznetsov (ZK) equation [2]. Different types of

shock solutions can be obtained using the hyperbolic tangent (tanh) method [8], depending on

the relationship between the system parameters.

The Fluid Equation Model. We are modelling ion-acoustic waves propagating in a magnetised

electron-ion plasma. The magnetic field B0 is uniform and we choose for it to lie along the z-

axis of our Cartesian coordinate system. The plasma consists of cold ions and Cairns-Tsallis

distributed electrons [6]. The system of reduced fluid equations used is as follows:

∂ni

∂ t
+∇niui = 0 (1)

∂ui
∂ t

+ui∇ui =−∇φ +ui×Ω (2)

where ni and ui are ion density and ion velocity, φ is the electric potential, and Ω = ωci/ωpi is

the ratio of ion cyclotron frequency (ωci = ZeB0
mi

) to ion plasma frequency (ωpi =
(

Zn0e2

ε0mi

)1/2
).

We assume that at equilibrium the electron and ion densities are approximately equal, i.e. ne0 '
nio' n0. The system is closed by Poisson’s Equation, in which the electron distribution function

is non-Maxwellian, but instead described by a Cairns-Tsallis distribution [6], which in reduced

form is given by:

ne = (1+(q−1)φ)(1/(q−1))+1/2
(

1−
(

16qα
3−14q+15q2+12α

)
φ +

(
16(2q−1)qα

3−14q+15q2+12α

)
φ 2
)

,

where q is the strength of nonextensivity and α is a parameter determining the number of

nonthermal electrons present in the plasma model. In order to make this analytically tractable,

we expand using a Taylor series, truncated at second order, and so Poisson’s equation can be

expressed as ∇2φ ' 1+C1φ +C2φ 2−ni, where

C1 =
q+1

2
− 16qα

3−14q+15q2 +12α
, C2 =

3+2q−q2

8
+

24qα(q−1)
3−14q+15q2 +12α

.

We have employed the following normalisations: we have normalised lengths by the modified
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Debye length λDe =
(

ε0kBTe
Zn0e2

) 1
2 , time by the inverse plasma frequency ωpi =

(
Zn0e2

ε0mi

) 1
2 , number

density by the total ion density Zn0, electrostatic potential by kBTe
e , and velocities by the ion-

acoustic sound speed ci,s =
(

kBTe
mi

) 1
2 .

The system is subjected to following boundary conditions, which guarantee structures localised

near the origin: φ → 0, ∇φ → 0, ∇2φ → 0, n→ n0, u→ 0 as |x| → ∞.

Reductive Perturbation Theory. To investigate the behaviour of the small ion acoustic waves,

we use reductive perturbation theory, in which the independent variables are stretched as fol-

lows: X = ε
1
2 x̄ ; Y = ε

1
2 ȳ; Z = ε

1
2 (z̄− vpht̄) ; T = ε

3
2 t̄.

We have assumed that the ion streaming velocity is along the z-axis, and expand in the wave

amplitude while keeping one order higher than in linear theory. Due to the anisotropy introduced

into the system by the magnetic field, the coordinates of velocity perpendicular to the magnetic

field, ux and uy appear at higher order in ε than the parallel component uz. This means that the

gyromotion is treated as a higher order effect in this model: n̄ = 1 + εn1 + ε2n2 + ..., φ̄ =

εφ1 + ε2φ2 + ...,

ūx = ε
3
2 ux1 + ε2ux2 + ..., ūy = ε

3
2 uy1 + ε2uy2 + ..., ūz = εuz1 + ε2uz2 + ...

Lowest Order Terms. We substitute the stretched variables above into the reduced fluid equa-

tions, and extract the lowest order terms to produce a series of compatibility conditions, which

allows us to express the phase speed vph as vph = c−1/2
1 . The phase velocity is thus dependent

on the nonextensivity and nonthermality parameters q and α , as shown in the figure below.

Figure 1: Plots of the phase velocity vph against q and α , where vph = c−1/2
1 . The left-hand plot shows−1≤ q≤ 1,

and the right-hand plot q > 1.

2nd Order. The second order terms yield compatibility conditions, which when combined, lead

to the derivation of the ZK equation :

∂φ1

∂T
+Aφ1

∂φ1

∂Z
+B

∂ 3φ1

∂Z3 +C
∂

∂Z

(
∂ 2φ1

∂X2 +
∂ 2φ1

∂Y 2

)
= 0, (3)
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where the nonlinearity coefficient A, and dispersion coefficients B and C are defined as

A =
3
2
(
q+1

2
− 16qα

3−14q+15q2 +12α
)

1
2 −

3+2q−q2

8 + 24qα(q−1)
3−14q+15q2+12α

(q+1
2 −

16qα
3−14q+15q2+12α )

3
2

,

B =
1

2(q+1
2 −

16qα
3−14q+15q2+12α )

3
2
, C =

1

2(q+1
2 −

16qα
3−14q+15q2+12α )

3
2

(
1+

1
Ω2

)
.

(4)

ZK Solution - Hyperbolic Tangent (tanh) Method. The general solution of equation (3) can

be found using the hyperbolic tangent (tanh) method [8], and is given by:

ψsol = ψ0 sech2
(

[lX +mY +nZ−UT ]
W

)
, (5)

where ψ0 = 3U
A0

is the amplitude of the excitation, W = α−1 = 2
√

B0
U is the soliton width,

A0 = An, B0 = Bn3 +Cn
(
l2 +m2), and A, B are as defined above.

Polarity Change of Soliton. The polarity of the soliton depends on whether the coefficient A0

is positive or negative. The contour plots below show variation of A0 with q and α .
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Figure 2: Contour Plot of A0 = 0. Negative values marked in dark blue. Left hand plot (−1≤ q≤ 1), and right-

hand plot (q≥ 1). We have taken n = 1.

Effect of Nonthermality on Soliton Structure. We now look at how soliton shape changes

with α , which represents the degree of nonthermality of the plasma. Figure 3 shows soliton

structure variation with alpha, with negligible nonextensivity (q = 1).
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Figure 3: ψ vs χ for α = 0.1 (red dotdashed line), α = 0.2 (blue dotted line), α = 0.3 (green continuous line)

and the Maxwellian distribution (purple dashed line), taking Ω = 0.1,U = 0.1,q = 1.2. Based on equation (5).
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Effect of Nonextensivity on Soliton Structure. We now look more closely at how soliton shape

changes with the nonextensive parameter q, when nonthermality is negligible (that is, α = 0).
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Figure 4: ψ vs χ for q = −0.4 (red dotdashed line), q = 0.1 (blue dotted line), q = 0.8 (green continuous line)

and the Maxwellian distribution (purple dashed line) in left plot; and q = 1.1 (red dotdashed line), q = 2.1 (blue

dotted line), q = 6.1 (green continuous line) and the Maxwellian distribution in right plot, taking Ω = 0.1, U = 0.1,

α = 0. Based on equation (5).

Conclusion. Through reductive perturbation analysis, we have derived a Zakharov - Kutznetsov

equation, which shows how an ion acoustic wave in a magnetised plasma evolves in time, and

is influenced by the extent of the medium’s nonlinearity and dispersion. Solving this using the

hyperbolic tangent method, we have found a soliton excitation, whose shape and polarity varies

with changes in nonextensivity and nonthermality.
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