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The dynamics of electrostatic excitations is investigated in a quantum plasma, with degenerate

electrons and positrons. A fluid model is obtained by considering a three-component (electron-

positron-ion) plasma.The classical case has been studied in ([1], [2], [3]). In each of these works,

a coupled set of nonlinear partial differential equations is derived, which describes the motion

of a two-dimensional structure, directly related to the evolution of measurable quantities such

as the electric potential and ion density.

Quantum mechanics becomes important in the limits of high density and low temperature.

Since we deal with spin-1
2 particles, the high-density, low-temperature limit involves a signif-

icant pressure due to the Pauli exclusion principle. After the work of Manfredi and Haas ([4],

[5]), much effort has focused on developing models which account for quantum effects [6] (e.g.

the Bohm-Pines diffraction term). Manfredi and Haas approached quantum plasmas in a man-

ner analogous to classical kinetic theory, taking moments of the Wigner function and truncating

at a suitable level to obtain dynamical equations, eventually closing the system with Poisson’s

Equation.

Presented in this work is a classical framework with quantum-mechanical considerations.

Following closely the work of [7] we assume the Bohm-Pines diffraction term is small enough

to be ignored. A modulated state (wavepacket) (ni, φ ,~v) is described by slowly-evolving pulse,

moving at the group velocity, expressed via the electric potential, ψ(ε(~X −~vgt),ε2t), which is

a solution of a Davey-Stewartson system [8].

The fluid model reads:

∂ni

∂ t
+∇ · (ni~vi) = 0

∂~vi

∂ t
+~vi ·∇~vi =− qi

mi
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∇Pi

∇2φ =
e
ε0
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where the indices ‘e’, ‘i’ and ‘p’ denote electrons, ions and positrons respectively, while the

variables n and~v denote the ion fluid density and velocity (φ is the electric potential).

The inertia of the electrons and positrons is assumed to be negligible, so that [7]
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where Lis(x) is the polylogarithm function ∑∞
n=1

xn

ns and µ0e,p is the electron (positron) chemical

potential at equilibrium. Finally we consider substitutePi = 2
5EFini0

(
ni
ni0

) 5
3 .

Defining β = np0
Zini0

in (1), expanding ne,p in φ near the equilibrium value, φ0 = 0 and finally

rescaling time, distance, number densities and electrostatic potential, we obtain
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− 1
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In the above, the subscript ‘0’ denotes appropriate scaling quantities, to be determined later.

To first order, assuming harmonic waves: φ = ψei(~k·~X0−ωT0) +c.c., we obtain n1 = c1+k2

b φ and

~v1 = ω
k2

c1+k2

b
~kφ , along with the dispersion relation

ω2 =
abk2

c1 + k2 +gk2 (5)

To proceed, we assume that the wavepacket envelope varies slowly in space and time. Adopt-

ing a multiscale technique [9], we define Tj = ε jt, X j = ε jx and Yj = ε jy. To second order, we

obtain: ∂ψ
∂T1

+~vg ·∇1ψ = 0, where~vg = ∇kψ , along with specific expressions for the second-order

amplitudes of the zeroth, first and second harmonics [10]. In particular, the zeroth harmonics

read: φ (0)
2 = C0

23
|ψ|2 + γφY , n(0)

2 = C0
21
|ψ|2 + γnY , ~v(0)

2x = C0
22
|ψ|2 + γuY and

~v(0)
2y =

∫
dY1

∂Y
∂X1

(6)

The compatibility condition arising from the first harmonic amplitudes and the consistency

requirement for ~v(0)
2 , φ (0)

2 and n(0)
2 combine into a Davey-Stewartson system (x, y and t now

represent the stretched variables εx, εy and ε2t):

iψt +P1ψxx +P2ψyy +Q1|ψ|2ψ +Q2ψY = 0 (7)

P3Yxx +P4Yyy +Q3|ψ|2yy = 0 (8)

Possible solutions include multidimensional generalizations of the envelope soliton form (e.g.

dromions) [11]. The coefficients in the above expressions are defined and analyzed elsewhere

[10]. In particular, we note that P1,2 are related to the dispersion relation as P1,2 = 1
2

∂ 2ω
∂k2

x,y
.
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Modulational Instability Analysis. A monochromatic plane wave, a0eiQ0t , and Y = 0 are taken

to form a reference solution of (7, 8). The amplitude and phase are disturbed by real functions

a(x,y, t) and b(x,y, t) respectively. After substituting into the linearized equations, then choos-

ing a,b,Y ∝ ei(xκ cosθ+yκ sinθ−Ωt) and separating real from imaginary parts, one arrives at the

dispersion relation for the perturbation of the amplitude

Ω2 = (Pκ)2
(

1− 2a2
0Q

Pκ2

)
(9)

where

P = P1 cos2 θ +P2 sin2 θ , Q = Q1 +
Q2Q3 sin2 θ

P3 cos2 θ +P4 sin2 θ
(10)

The frequency becomes imaginary for Q ·P > 0, which denotes a growing or decaying wave

for 0 < κ < κcrit = a0

√
2Q
P . The growth rate attains its maximum value of a2

0Q when κ = a0

√
Q
P .

We proceed by choosing

t 7→ ωpit x 7→ x
λT F

3miV 2
0 = 2EFi φs =

2EFi
3Zie

(11)

so that a = b = g = 1, in order to investigate the parametric dependence of instability-related

quantities on the density ratio β and on the angle θ .

Figure 1: For longitudinal perturbation, an increase in β leads to an increase in the range of car-

rier wavenumber, k, for which instability arises. However, increasing β with all other variables

fixed results in an initial increase in κcrit , followed by a decline and ultimate disappearance of

any instability. On the right, k = 1, eφ0
KBTe

= 1, θ = 0. For sufficiently large β , the perturbation is

stable.
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Figure 2: Two plots showing how changing the angle of the disturbance, θ , affects the range

of wavenumber, k, that admits instability. Unshaded regions denote areas where Ω2 < 0 and

each horizontal slice shows unstable intervals of k for a particular θ . The graph on the left

depicts the effect for on electron-ion plasma, whereas the graph on the right describes the effect

on an electron-ion-positron plasma where positrons account for half of the positive charge at

equilibrium.
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