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The presence of energetic particles in plasmas, resulting in long-tailed distributions, is an in-

trinsic element in many space and laboratory plasma observations. Another commonly observed

phenomenon in both space and laboratory plasmas is that of particle trapping, whereby some

of the plasma particles are confined to a finite region of phase space. This nonlinear effect was

first included in analytical models of electrostatic structures by Bernstein, Greene and Kruskal

(BGK) [1], and later Schamel [2] developed a pseudopotential method for the construction of

equilibrium solutions, and also derived a KdV equation for ion acoustic waves which is modi-

fied due to resonant (trapped) electrons.

Motivated by these observations, we have undertaken an investigation of the propagation of ion

acoustic waves in nonthermal plasmas in the presence of trapped electrons. An unmagnetized

collisionless electron-ion plasma is considered, featuring a superthermal (non-Maxwellian) elec-

tron distribution, which is modelled by a (kappa) distribution function [3]. We have considered

the effect of particle trapping, deriving an expression for the electron density. We have used

reductive perturbation theory to construct a modified Schamel equation, and examine its dy-

namics. A solitary wave solution is presented and its dynamics discussed. The chief effect of

modification due to the degree of particle trapping is stronger nonlinearity, while superthermal-

ity affects the amplitude and width of solitons adversely.

The hybrid Schamel-Kappa (κ) model

The kappa electron distribution in one dimension [3] is given by:

f κ
e (v) =

N0

(πκθ 2)1/2
Γ(κ)

Γ(κ− 1
2)

(
1+

v2

κθ 2

)−κ

, (1)

where N0 is the species equilibrium number density and the effective thermal speed is

θ = [(κ−3/2)/κ]1/2 (2kBT/m)1/2 ,

which requires κ > 3/2 to be physically realistic.

Normalizing such that
∫+∞

−∞
f κ
e (v)dv = 1, and using the energy conservation relation (mev2

e/2−

eφ =meV 2/2), where eφ is the increase in potential energy, and V is the velocity of the particles
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in the initial equilibrium state), scaling v by kBT/m, and φ by kBT/e, Eqn. (1) can be written

as:

f κ
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2 −φ

κ− 3
2

)−κ

. (2)

Schamel [2] introduced the concept of a separatrix to the Maxwellian distribution which sepa-

rates free electrons from trapped ones. The energy of the electrons is defined as Ee = v(x)2/2−

φ(x), and the energy separatrix occurs at the point where the energy equals zero, that is, Ees :=

v(x)2/2−φ(x) = 0. When Ee > 0 the distribution is described by the Maxwellian. For Ee < 0

Schamel defines the distribution as:

f Max
e,t (v,φ) =

1√
2π

exp[−β (v2/2−φ)] for Ee ≤ 0, (3)

where β is a parameter which determines the efficiency of electron trapping. At β = 1, the

Maxwellian is recovered. Applying the same argument for the separatrix to the kappa distribu-

tion, a trapped electron κ distribution can be written as:

f κ
e (v,φ) =
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for Ee ≤ 0. (4)

Equation (4) recovers Eqn. (3) as κ → ∞, and Eqn. (2) as β → 1.

The electron density ne is found by integrating the Schamel κ distribution (4) over all v and

Taylor expanding:

ne = 1+ pφ +qφ
3/2 + ..., (5)

with p = 2κ−1
2κ−3 , q =

8
√

2/π(β−1) κ Γ(κ)

3(2κ−3)3/2Γ(κ−1/2)
.

The Fluid Model. We shall now consider ion acoustic waves propagating in a plasma consist-

ing of cold ions (Ti = 0) and electrons with a Schamel-kappa distribution. As is usual for ion

acoustic structures, we require that the wave phase speed lies between the ion and electron ther-

mal speeds, that is, vti� vph� vte, to avoid Landau damping [6]. The one dimensional system

of normalized fluid equations for the ions, together with Poisson’s equation are:

∂n
∂ t

+
∂ (nu)

∂x
= 0, (6)

∂u
∂ t

+u
∂u
∂x

=−∂φ

∂x
, (7)

∂ 2φ

∂x2 = ne−n'−(n−1)+ pφ +qφ
3/2 + rφ

2, (8)

where n and u represent the ion density and velocity respectively, and φ is the electrostatic

potential. We assume charge neutrality at equilibrium, that is, ne = Zn0, where Zn0 is the equi-

librium ion charge density. We have employed the following normalizations: lengths are nor-

malized by a characteristic Debye length λD =
(

ε0kBTe
n0Ze2

) 1
2 , time by the inverse plasma frequency
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ωp =
(

n0Z2e2

ε0m

) 1
2 , number density by the equilibrium ion density n0, electrostatic potential by(

kBTe
e

)
, and velocities by a characteristic species sound speed cs =

(
ZkBTe

m

) 1
2 .

Reductive Perturbation Theory. Using a reductive perturbation technique [4], independent

variables are stretched as follows: ζ = ε
1
4 (x−Vt), τ = ε

3
4 t, where V is the phase velocity of the

excitation and ε is a smallness parameter. The second order terms yield compatibility conditions

which lead to a KdV-like Schamel equation [5]:

∂φ1

∂τ
+A φ

1/2
1
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∂ζ
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∂ 3φ1

∂ζ 3 = 0, (9)

where A = (1−β )
√

π

√
κ− 1

2
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2 )
, B = 1

2
(

1+ 1
κ− 3

2

)3/2 . A solitary wave solution of Eqn. (9) [5] reads:

φ1 = φm sech4 ((ζ −u0τ)/∆) ,where φm = (15u0/8A)2, ∆ =
√

16B/u0. (10)

φm and ∆ are the height and width of the solitary waves, respectively, moving with speed u0.

We have carried out an extensive parametric investigation of the solitary wave characteristics.

Details are omitted here for brevity, but the main points are as follows.

Effect of Superthermality on Soliton Structure. In plasmas with higher proportions of su-

perthermal electrons (that is, plasmas with a lower κ value) the nonlinearity and width param-

eters are affected, producing solitons with decreased amplitude and width with more localised

electric fields. This can be seen in Figure 1.
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Figure 1: Left plot: solitary wave variation with κ , for β = 0.5 and u0 = 0.06. Right plot:

electrostatic potential (pulse) variation for the same values. The red line is κ = 1.6, blue κ = 2,

pink κ = 4, green κ = 7, and black κ = 30.

Effect of Particle Trapping on Soliton Structure. Solitary waves in plasmas containing higher

proportions of free electrons, signified by a lower β value, have decreased amplitude while their

width is unaffected, as shown in Figure 2.
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Figure 2: Left plot: solitary wave variation with β , for κ = 3 and u0 = 0.06. Right plot: electro-

static potential (pulse) variation for the same values. The red line is β = 0.8, blue β = 0.7, pink

β = 0.5, green β = 0, and black β =−0.5

Conclusion. We have investigated solitary ion acoustic wave propagation in the presence of

electron trapping and superthermality. A physically meaningful Schamel-like κ distribution has

been developed. Using reductive perturbation theory, we have derived a Schamel equation, and

its corresponding solitary wave solution.

At higher levels of superthermality the solitary wave amplitude decreases and wave structures

become narrower. The corresponding electric field becomes more localized with much sharper

peaks in conditions of high superthermality.

With higher proportions of free electrons, that is, a reduction in the value of the β parameter,

the solitary wave amplitude decreases, becoming almost negligible for negative values of β ;

however, the width of the wave remains unchanged.
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