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Abstract

The nonlinear dynamics of modulated electrostatic wavepackets propagating in negative-

ion plasmas is investigated from first principles. A nonlinear Schrödinger equation is de-

rived by adopting a multiscale technique. The stability of breather- like (bright envelope

soliton) structures, considered as a precursor tofreak wave(rogue wave) formation, is in-

vestigated and then tested via numerical simulations.

Introduction. Plasmas incorporating negative ions, in addition to positive ions and electrons

exist in the laboratory [1, 2] and also in Space environments[3, 4, 5]. Such multicomponent

plasmas support a variety of nonlinear modes, related with various instabilities and relevant

phenomena [6, 7, 8]. The propagation of ion-acoustic (IA) waves in negative-ion plasmas (NIP)

was studied theoretically within a nonlinear Schrödinger equation (NLSE) framework by Saito

et al [9], who discussed modulational instability as a precursorfor envelope modes in such a

system. That work was based on the modified Korteweg-de Vries(mKdV) formalism (applica-

ble in a “special” plasma configuration [10], where the nonlinearity coefficient in the ordinary

KdV equation vanishes and higher-order nonlinearity dominates), and was thus limited to the

weak-amplitude superacoustic region. The problem was later investigated experimentally by

Bailung and coworkers [11, 12], who reported the observation of freak-wave(rogue wave) type

structures, and adopted the interpretation provided by Saito et al [9] for their interpretation.

In this study, we adopt a multiscale perturbation techniqueto derive a nonlinear Schrodinger

equation for modulated ion-acoustic wavepackets in negative ion plasma. Explicit conditions

and instability thresholds for envelope soliton formationand modulational instability are de-

termined, in terms of the negative-to-positive density andmass ratio(s). The stability of the

solutions obtained has been investigated numerically via aCrank-Nicolson method. The main

aim of our study is to extend the criteria (existence region)for freak waves in negative-ion

plasmas, beyond the simplifying assumptions (weak-amplitude, weakly superacoustic regime)

implicitly adopted in [11, 12]. In particular, we have shown, as anticipated, that the occurrence

of freak wave structures is not necessarily due to the “special” plasma configuration that leads

to the mKdV description [9], but may be observed in an extended region of parameter values.
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Theoretical model. We consider a three component collisionless unmagnetized plasma con-

sisting of electrons (massme,chargee), positive ions (massm+,chargeq+ = Z+e) and negative

ions (massm−, chargeq− =−Z−e), and electrons (massme, chargee). A reduced (dimension-

less) fluid model for this configuration, in one-dimensional(1D) geometry, reads

∂tn++∂x(n+u+) = 0, (1)

∂tu++u+∂xu+ =−∇φ , (2)

∂tnn+∂x(n−u−) = 0, (3)

∂tu−+u−∂xu− = δ ∇φ , (4)

∂xxφ =−n++βn−+(1−β ) exp(φ), (5)

The fluid velocity (u±), density (n±) and electrostatic potential (φ ) variables are scaled by

V0 = (Z+kBTe/m+)
1/2, n0,+ andkBTe/e, respectively. Space and time are respectively scaled by

ω−1
p,+ = (4πe2n+,0Z2

+/m+)
−1/2 andλD,+ = (kBTe/4πZ+e2n+,0)

1/2. We have defined the quan-

titiesβ = n−,0Z−/(n+,0Z+) andδ = (Z−/m−)/(Z+/m+). Here,ωp,+ is the positive-ion plasma

frequency,Te is the electron temperature andkB is the Boltzmann constant.

Amplitude modulation modelling. Let us define the state (column) vectorS= (n+, u+, n−,

u−, φ )T and the corresponding equilibrium stateS(0) = (1,0,1,0,0)T. We shall consider small

deviations from equilibrium by takingS = S(0) + εS(1) + ε2S(2) + ... = S(0) +∑∞
n=1 εnS(n) =

S(0)+∑∞
n=1 εn ∑n

l=−nSj,l
(n)exp[il (kx−ωt)], whereε ≪ 1 is a small real parameter. We define

the stretched (slow) space and time variablesTr = ε rt andXr = ε rx (for r = 0,1,2,3, ...). The

fast scales (r = 0) affect the dynamics via the phaseθ = kX−ωT (only), while the slow scales

(r ≥ 1) enter the argument of thel−th harmonic amplitudeS(n)
l , allowed to vary alongx.

Linear dynamics: The first-order (linear) expressions lead:n1 = φ1
v2

ph
, u1 = φ1

vph
, along with

the (dispersion relation):ω2 = (1+δβ )k2

k2+(1−β ) . This provides (in the long-wavelength limit) the ex-

pressionvph = ω/k≃
(

1+δβ
1−β

)1/2
for the true sound speed (affected by the negative ions ia the

parametersβ andδ ). Note that an e-i plasma is recovered upon settingβ = 0.

The 2nd-order equations provide a set of expressions (here omitted for brevity) for the ampli-

tude(s) of the 2nd, 1st and 0th harmonic corrections at this order. Annihilation of secular terms

prescribes the group velocity asvg =
dω
dk =

(1−β )(1+δβ )1/2

[k2+(1−β )]3/2 , viz. S(1)j ,1 = S(1)j ,1(X1−vgT1).

Proceeding to order∼ ε3, one obtains the Nonlinear Schrödinger Equation (NLSE)

i∂τΨ+P∂ξξ Ψ+Q|Ψ|2 Ψ = 0 (6)

whereτ = T2 = ε2t andξ = X1− vgT1 = ε(x− vgt). Note that thedispersion coefficient P=
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Figure 1: (Color online) The angular frequencyω is depicted versus the wavenumberk, for

different values ofβ andδ .

ω ′′(k)/2 is negative, while thenonlinearity coefficient Q, due to carrier wave self-interaction,

is given as a perplex functionQ= Q({ω;β ,δ , ...}) (here omitted).

Freak waves as breather-type solutions of the NLSE. Various solutions of the NLSE (6)

have been proposed as prototypical forms of freak (rogue) waves. These are summarized, e.g.,

in [13] and thus need not be presented here.

Figure 2: (Color online) ThePeregrine solitonis depicted for different values ofβ (=

0.2,0.4,0.6), with k= 0.1 andδ = 1 (e.g. forH+/H− plasma).

Numerical analysis. In order to test our predictions for the nature and stabilityof bright

envelope solitons, we have integrated the NLSE via an implicit integration method, in different

cases. The known bright soliton solution was adopted as initial condition (IC) in the numerical

integration of the NLSE (6). In some runs, the plasma parameters were taken to differ between

IC and numerical integrator, with the aim to assess the impact of the variation of e.g.,β on a

given energy lump injected in the system as initial condition. In brief, a bright pulse changing

shape (but retaining its stability) in the bright (PQ> 0) region, while it decays and spreads in

the dark (PQ< 0) region.

Our results will be reported in full detail elsewhere.
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Figure 3: (Color online) Time evolution and propagation of abreather (bright soliton) on the

space-time plane. Top left panel: IC (β = 0.1,δ = 1,k = 0.1, PQ> 0), NLSE (β = 0.2,δ =

1,k= 0.1, PQ> 0). Top right panel: IC (β = 0.2,δ = 1,k= 0.1, PQ> 0), NLSE (β = 0,δ =

1,k = 0.1, PQ< 0). Bottom left panel: IC (β = 0.2,δ = 1,k = 0.1, PQ> 0), NLSE (β =

0.4,δ = 2.1,k= 0.7, PQ> 0). Bottom right panel: IC (β = 0,δ = 1,k= 0.1, PQ< 0), NLSE

(β = 0.2,δ = 1,k= 0.1, PQ> 0).
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