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Abstract

The nonlinear dynamics of modulated electrostatic wavegtagropagating in negative-
ion plasmas is investigated from first principles. A nordin&chrodinger equation is de-
rived by adopting a multiscale technique. The stability addther- like (bright envelope
soliton) structures, considered as a precursdreak wave(rogue wavé formation, is in-

vestigated and then tested via numerical simulations.

Introduction. Plasmas incorporating negative ions, in addition to peesitns and electrons
exist in the laboratory [1, 2] and also in Space environmgtg, 5]. Such multicomponent
plasmas support a variety of nonlinear modes, related vatious instabilities and relevant
phenomena [6, 7, 8]. The propagation of ion-acoustic (IAyegan negative-ion plasmas (NIP)
was studied theoretically within a nonlinear Schrodinggragion (NLSE) framework by Saito
et al [9], who discussed modulational instability as a precufeorenvelope modes in such a
system. That work was based on the modified Korteweg-de Ym&slV) formalism (applica-
ble in a “special” plasma configuration [10], where the noedrity coefficient in the ordinary
KdV equation vanishes and higher-order nonlinearity dat@s), and was thus limited to the
weak-amplitude superacoustic region. The problem was iatestigated experimentally by
Bailung and coworkers [11, 12], who reported the obsermatidreak-waverogue wavetype
structures, and adopted the interpretation provided by 8aal[9] for their interpretation.

In this study, we adopt a multiscale perturbation technigugerive a nonlinear Schrodinger
equation for modulated ion-acoustic wavepackets in negabin plasma. Explicit conditions
and instability thresholds for envelope soliton formateomd modulational instability are de-
termined, in terms of the negative-to-positive density amaks ratio(s). The stability of the
solutions obtained has been investigated numerically @Waaak-Nicolson method. The main
aim of our study is to extend the criteria (existence regimn)freak waves in negative-ion
plasmas, beyond the simplifying assumptions (weak-aog#it weakly superacoustic regime)
implicitly adopted in [11, 12]. In particular, we have shovas anticipated, that the occurrence
of freak wave structures is not necessarily due to the “gigglasma configuration that leads

to the mKdV description [9], but may be observed in an extdnégion of parameter values.
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Theoretical model. We consider a three component collisionless unmagnetiasdya con-

sisting of electrons (masge,chargee), positive ions (mass1, ,chargeg, = Z. €) and negative
ions (massn_, chargeg. = —Z_¢€), and electrons (masse, chargee). A reduced (dimension-

less) fluid model for this configuration, in one-dimensiofid)) geometry, reads

any +dx(nyuy) =0, (1)
duy +uyoxuy = —0e, 2)
OiNp+ dx(N—u_) =0, 3)
ou_+u_odu_ = o0, (4)
O =—ny+Bn_+(1-B) exp(e), (5)

The fluid velocity (1), density (+) and electrostatic potentialp) variables are scaled by
Vo= (Z:kgTe/ rm)l/ 2 no+ andkgTe/€, respectively. Space and time are respectively scaled by
Wyt = (4me’n; 0Z2 /m.) Y2 andAp | = (keTe/4TZ, €%, 0)Y/2. We have defined the quan-
tittesB =n_oZ_/(n; 0Zy) andd = (Z_/m_)/(Z+/m). Here,wy - is the positive-ion plasma
frequency,Te is the electron temperature akglis the Boltzmann constant.

Amplitude modulation modelling. Let us define the state (column) vec®# (n,, uy, n_,
u_, @)" and the corresponding equilibrium st&@ = (1,0,1,0,0)". We shall consider small
deviations from equilibrium by taking = S© + SV + €252 + .. =50 1y | s —

+ 31 "SI n$7|(”) expil (kx— wt)], wheree < 1 is a small real parameter. We define
the stretched (slow) space and time variafles €'t andX; = ¢'x (forr =0,1,2,3,...). The
fast scalesr(= 0) affect the dynamics via the pha8e= kX — wT (only), while the slow scales
(r > 1) enter the argument of the-th harmonic amplituds(”) allowed to vary along.

Linear dynamicsThe first-order (linear) expressions lead:= 2 L =2 along with

ph
(1+5p)k?

the (dispersion relation)w? = i p) This provides (in the Iong-wavelength limit) the ex-

1+58
1-B
parameter® andd). Note that an e-i plasma is recovered upon seffing0.

. 1/2 - ,
pressionvpp = w/k ~ ( ) for the true sound speed (affected by the negative ions ia the

The 2nd-order equations provide a set of expressions (Ineiteed for brevity) for the ampli-
tude(s) of the 2nd, 1st and Oth harmonic corrections at tidisroAnnihilation of secular terms
prescribes the group velocity gg= 9% _ ABAtOB)|E S(1 §j71{(x1 —VgTh).

[kC+(1-p)PP/2
Proceeding to ordex €3, one obtalns the Nonlinear Schroédinger Equation (NLSE)

i0;W+PIss W+ QWPW=0 (6)

wheret =T, = €2t and& = X3 —vgT1 = g(x—vgt). Note that thedispersion coefficient P-
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Figure 1. (Color online) The angular frequenayis depicted versus the wavenumlberfor

different values of3 andd.

(k) /2 is negative, while theonlinearity coefficient Qdue to carrier wave self-interaction,
is given as a perplex functid@ = Q({w; 3,9, ...}) (here omitted).

Freak waves as breather-type solutions of the NLSE. Various solutions of the NLSE (6)
have been proposed as prototypical forms of freak (roguggsval hese are summarized, e.g.,

in [13] and thus need not be presented here.

Figure 2: (Color online) ThePeregrine solitonis depicted for different values o8 (=
0.2,0.4,0.6), withk=0.1 andd =1 (e.g. forH* /H~ plasma).

Numerical analysis. In order to test our predictions for the nature and stabdityright
envelope solitons, we have integrated the NLSE via an intjpliegration method, in different
cases. The known bright soliton solution was adopted aslieindition (IC) in the numerical
integration of the NLSE (6). In some runs, the plasma pararaatere taken to differ between
IC and numerical integrator, with the aim to assess the imnplihe variation of e.g.3 on a
given energy lump injected in the system as initial conditim brief, a bright pulse changing
shape (but retaining its stability) in the brigfR@ > 0) region, while it decays and spreads in
the dark PQ < 0) region.

Our results will be reported in full detail elsewhere.
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Figure 3: (Color online) Time evolution and propagation diraather (bright soliton) on the
space-time plane. Top left panel: I € 0.1,0 =1, k=0.1,PQ> 0), NLSE 3 =0.2,0 =
1, k=0.1,PQ> 0). Top right panel: IC8=0.2,0 =1,k=0.1,PQ>0), NLSE 3 =0,0 =
1,k =0.1, PQ < 0). Bottom left panel: IC8 =0.2,0 = 1,k= 0.1, PQ > 0), NLSE B =
0.4,0=2.1k=0.7,PQ > 0). Bottom right panel: ICf =0,0 = 1,k=0.1,PQ < 0), NLSE
(B=020=1k=0.1,PQ>0).
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