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Abstract

An analytical model is introduced for shock excitations in pair plasmas, taking into

account collisionality and kinematic (fluid) viscosity. The description embraces pair-ion

(e.g. fullerene) plasmas, in the presence of a third component (electrons, dust), but also

electron-positron plasmas (disregarding annihilation, for simplicity). A hybrid Korteweg de

Vries/Burgers equation (KdV-B) is derived, and the effect of relevant plasma configuration

parameters, in addition to dissipation, is investigated.

Introduction. Pair plasmas (p.p.), comprising particles with equal masses and equal absolute

charge of opposite signs [1], exist in various environments. Electron-positron (e-p) plasmas,

widely occuring in astrophysical environments such as pulsar magnetosphere and neutron stars

[1], but also in the laboratory [2], have been the prototypical physical system to be studied as

p.p. Recent experimental techniques have enabled electron-positron plasma production in the

laboratory, via a sophisticated laser-plasma setup [3], and lie in the motivation of our work.

Interestingly, fullerene (pair-ion) plasmas have been produced in the lab [4] providing new

inspiration, essentially mimicking the dynamics of e-p plasma, without recombination effects.

This work aims at providing a first analytical model for shocks and dissipative solitary waves

(pulses) in asymmetric pair plasmas, i.e. in the presence of a third species, thus extending earlier

studies of ion-acoustic type shock waves in “pure” (two-component) pair-ion plasmas [5, 6].

Inter alia, we aim at providing a comprehensive description of fullerene plasmas or, e.g., dusty

pair-ion plasmas [7] in particular, where dissipative effects (due to collisions) may be relevant.

Theoretical model. We consider a multicomponent plasma comprising two ion populations

with equal masses and opposite charge, denoted by indices + and −, viz. q+ = −q− = +ze,

m+ = m− = m. The existence of a third species is taken into account, typically taken to be a

neutralizing background of thermal electrons.

Interactions among the plasma components include: electrostatic interactions, taken into ac-

count via a self-consistent generated electric field, but also interparticle collisions and vis-

cous drag. The electron inertia is neglected. At equilibrium, we have ne0 = z(n+0 − n−0), i.e.
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ne0

zn+0
= 1− n−0

n+0
= 1− δ , where n j0 is the unperturbed number density of the particle species j

( j = (1,2) = (+,−) for the two ions, respectively, or j = 3 for the third species, i.e. electrons)

and δ = n−0/n+0 is the positive-to-negative component number density ratio. Considering elec-

trons as 3rd species, we assume: n3 = ne = ne0 exp(eφ/kBTe)≈ ne0(1+c1φ +c2φ + . . .) where

c1 = 2c2 = 1, e is the magnitude of the electron charge, φ the electrostatic (ES) potential, kB is

the Boltzmann constant and Te the electron temperature.

In one-dimensional planar geometry, the normalized fluid equations read:

∂n+

∂ t
+

∂

∂x
(n+u+) = 0, (1)

∂u+

∂ t
+u+

∂u+

∂x
=−∂φ

∂x
−ν(u+−u−)+η

∂ 2u+

∂x2
, (2)

∂n−
∂ t

+
∂

∂x
(n−u−) = 0, (3)

∂u−
∂ t

+u−
∂u−
∂x

=
∂φ

∂x
−ν(u−−u+)+η

∂ 2u−
∂x2

, (4)

∂ 2φ

∂x2
=−n++δn−+(1−δ )n3, (5)

In the above set of equations we have used the time scale t and space scale x are normalized in

units of the ion plasma frequency ωp,+ = (4πz2e2n+o/m)1/2 and the ion Debye length λDi,+ =
(

4πze2n+o/kBTe

)−1/2
. The number density n j and fluid velocity u j variables ( j = +,−,3) are

scaled by the unperturbed number density n j0 and the ion-acoustic speed cs = (zKBTe/m)1/2,

respectively. The ES potential φ , η and ν are scaled by kBTe/e, ωp,+ and λ 2
D,+ωp,+, respectively.

Thermal effects have been neglected in the pair components, for simplicity.

Linear wave analysis. Linearizing and Fourier transforming (∼ ei(kx−ωt)), one finds the dis-

persion relation: Γ3ω3+ iΓ2ω2+Γ1ω+ iΓ0 = 0 , where k is the wavenumber, ω is the frequency,

and: Γ0 =−k4η(1+δ ), Γ1 =−k2[1+δ +c1η(1+k2−δ )(k2η +2ν)], Γ2 = 2c1(k
2η +ν)(1+

k2−δ ) and Γ3 = c1(1+k2−δ ). Omitting dissipation for a minute, this leads to ω2 = k2(1+δ )/c1

1−δ+k2 .

This is an acoustic mode, sustained by the +/- component asymmetry (see that ω →∞ if δ → 1).

Nonlinear wave analysis. In order to study the small amplitude nonlinear ion acoustic wave

in dissipative multicomponent media, the reductive perturbation technique has been employed

[8] and the following stretched coordinates has been introduced: ξ = ε
1
2 (x−Vt) and τ = ε

3
2 t ,

where V is the phase velocity (to be determined) and ε (≪ 1) is a small (real) expansion

parameter. The state variables appearing in Eqs. (1-5) are expanded around their equilibrium

values as n j = 1 + εn
(1)
j + ε2n

(2)
j + ε3n

(3)
j + ...,, u j = εu

(1)
j + ε2u

(2)
j + ε3u

(3)
j + ... and φ =

εφ (1)+ ε2φ (2)+ ε3φ (3)+ .... For the sake of analytical tractability, we we shall also assume

that ν = ε
3
2 ν0 and η = ε

1
2 η0 – where ν0 and η0 are ≃ O(1) – suggesting that collisionality
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(1)-(5) and considering different powers of ε , a tedious but straightforward algebraic procedure

leads to a hybrid Korteweg - de Vries/Burgers (KdV-B) equation in the form:

∂ψ

∂τ
+Aψ

∂ψ

∂ξ
+B

∂ 3ψ

∂ξ 3
=C

∂ 2ψ

∂ξ 2
−Dψ , (6)

in terms of the leading potential disturbance φ (1) = ψ . The coefficients in this equation read:

A =
(2c2V 4 −3)(−1+δ )

2V (1+δ )
, B =

V 3

2(1+δ )
, C =

η

2
, D = ν , V 2 =

(1+δ )

c1(1−δ )
.

We note that, in the limit δ → 1 (for symmetric p.p., i.e., in the absence of 3rd species), the

phase speed V ∼ (1−δ )−1 diverges, while A and B diverge like A∼
√

2c2 c
−3/2

1 (1−δ )−1/2 and

B ∼ (2c3
1)

−1/2(1−δ )−3/2. The model therefore collapses for symmetric (“pure”) pair plasmas,

and no excitations may then be sustained, as predicted earlier by Verheest [9]. We note that, as

expected, V = limk→0(ω/k) essentially denotes the true sound speed in asymmetric p.p. (δ 6= 1).

F�*#� -. / 0� &a� !. �$ &$a� �&  � 1��a! � )� (zkBTe/m)1/2) is depicted. Middle panel:

The nonlinearity coefficient A in Eq. (6) is shown. Right panel: the factor L(0)ψ(0)1/2 =

(12B/A)1/2, representing the pulse width L(0) for fixed amplitude ψ(0) (cf. the analytical pulse

solution below) is depicted. The x−axis represents the density ratio δ = n−0/n+0 in all 3 plots.

A number of comments are in row, considering special cases. First of all, in the absence of

dissipation (ν = η = 0, or C = D = 0), one recovers the KdV (pulse) soliton:

ψ(ξ ,τ) = ψ0(0)sech2

(

ξ −U(0)τ

L(0)

)

(7)

where the pulse velocity and width are given by U(0)=Aψ0(0)/3 and L(0)= {12B/[Aψ0(0)]}1/2.

We note that, for a higher negative-ion concentration (i.e., increasing δ ), solitary waves are

faster and wider (see Fig. 1a, c), for fixed maximum amplitude φ(0). Importantly, A (and thus

ψ(0)) changes sign (suggesting polarity reversal) at a critical value of δ ≈ 0.268 (see Fig. 1b).

In the absence of viscosity (η = 0, i.e. C = 0, D 6= 0), simple perturbative analysis leads to a
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ψ(ξ ,τ) = ψ0(τ)sech2

√

Aψ0(τ)

12B

(

ξ − A

3

∫ τ

0
ψ0(τ

′)dτ ′
)

(8)

where the (decaying) amplitude is ψ0(τ) = ψ0(0)exp
(

− 4D
3

τ
)

, the (decreasing) velocity is

U(τ)= Aψ0(0)
3

exp
(

− 4D
3

τ
)

, and the width of the (spreading) pulse is L(τ)=
√

12B
Aψ0(0)

exp
(

2D
3

τ
)

.
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(3C2/(25AB)); middle panel: the speed U ; right panel: the width L) versus the density ratio δ .

In the absence of collisions (ν = 0, i.e. D = 0, C 6= 0), shock-type solutions exist [11]

ψ(ξ ,τ) =
3C2

25AB

{

4−
[

1+ tanh

(

ξ −Uτ

L

)]2}

, (9)

with speed U = 6C2/(25B). The shock width is L = 10B/C. Higher negative-ion concentration

(larger δ ) leads to wider and slower shocks; see Figs. 2b,c. A polarity switch is also observed

here, as pointed out above, at the root of A: see Fig. 2a. Interestingly, for δ → 1 (near-symmetric

p.p.), the shock width reduces to nil, while its width spreads infinitely: physically speaking,

charge neutrality (in the symmetric case) collapses the shock.

Our investigation should yield a richer dynamical profile in the warm (+/-) fluid model.
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