Proc. 43rd Eur. Phys. Society Conf. on Plasma Physics in Leuven, Belgium, 4-8 July 2016 Paper P5.097 Available at www.kourakis.eu

Analytical model for dissipative shocks in pair plasmas under the combined effect of collisionality and kinematic viscosity

I. S. Elkamash^{1,2} and <u>I. Kourakis¹</u>

¹ Centre for Plasma Physics, Queen's University Belfast, BT7 1NN Northern Ireland, UK
² Physics Department, Faculty of Science, Mansoura University, 35516 Mansoura, Egypt

Abstract

An analytical model is introduced for shock excitations in pair plasmas, taking into account collisionality and kinematic (fluid) viscosity. The description embraces pair-ion (e.g. fullerene) plasmas, in the presence of a third component (electrons, dust), but also electron-positron plasmas (disregarding annihilation, for simplicity). A hybrid Korteweg de Vries/Burgers equation (KdV-B) is derived, and the effect of relevant plasma configuration parameters, in addition to dissipation, is investigated.

Introduction. Pair plasmas (p.p.), comprising particles with equal masses and equal absolute charge of opposite signs [1], exist in various environments. Electron-positron (e-p) plasmas, widely occuring in astrophysical environments such as pulsar magnetosphere and neutron stars [1], but also in the laboratory [2], have been the prototypical physical system to be studied as p.p. Recent experimental techniques have enabled electron-positron plasma production in the laboratory, via a sophisticated laser-plasma setup [3], and lie in the motivation of our work. Interestingly, fullerene (pair-ion) plasmas have been produced in the lab [4] providing new inspiration, essentially mimicking the dynamics of e-p plasma, without recombination effects.

This work aims at providing a first analytical model for shocks and dissipative solitary waves (pulses) in *asymmetric* pair plasmas, i.e. in the presence of a third species, thus extending earlier studies of ion-acoustic type shock waves in "pure" (two-component) pair-ion plasmas [5, 6]. *Inter alia*, we aim at providing a comprehensive description of fullerene plasmas or, e.g., dusty pair-ion plasmas [7] in particular, where dissipative effects (due to collisions) may be relevant.

Theoretical model. We consider a multicomponent plasma comprising two ion populations with equal masses and opposite charge, denoted by indices + and -, viz. $q_+ = -q_- = +ze$, $m_+ = m_- = m$. The existence of a third species is taken into account, typically taken to be a neutralizing background of thermal electrons.

Interactions among the plasma components include: electrostatic interactions, taken into account via a self-consistent generated electric field, but also interparticle collisions and viscous drag. The electron inertia is neglected. At equilibrium, we have $n_{e0} = z(n_{+0} - n_{-0})$, i.e. $\frac{n_{e0}}{zn_{+0}} = 1 - \frac{n_{-0}}{n_{+0}} = 1 - \delta$, where n_{j0} is the unperturbed number density of the particle species j(j = (1,2) = (+,-) for the two ions, respectively, or j = 3 for the third species, i.e. electrons) and $\delta = n_{-0}/n_{+0}$ is the positive-to-negative component number density ratio. Considering electrons as 3rd species, we assume: $n_3 = n_e = n_{e0} \exp(e\phi/k_B T_e) \approx n_{e0}(1 + c_1\phi + c_2\phi + ...)$ where $c_1 = 2c_2 = 1$, e is the magnitude of the electron charge, ϕ the electrostatic (ES) potential, k_B is the Boltzmann constant and T_e the electron temperature.

In one-dimensional planar geometry, the normalized fluid equations read:

$$\frac{\partial n_+}{\partial t} + \frac{\partial}{\partial x}(n_+u_+) = 0, \tag{1}$$

$$\frac{\partial u_{+}}{\partial t} + u_{+} \frac{\partial u_{+}}{\partial x} = -\frac{\partial \phi}{\partial x} - v(u_{+} - u_{-}) + \eta \frac{\partial^{2} u_{+}}{\partial x^{2}}, \qquad (2)$$

$$\frac{\partial n_{-}}{\partial t} + \frac{\partial}{\partial x}(n_{-}u_{-}) = 0, \qquad (3)$$

$$\frac{\partial u_{-}}{\partial t} + u_{-}\frac{\partial u_{-}}{\partial x} = \frac{\partial \phi}{\partial x} - v(u_{-} - u_{+}) + \eta \frac{\partial^2 u_{-}}{\partial x^2}, \tag{4}$$

$$\frac{\partial^2 \phi}{\partial x^2} = -n_+ + \delta n_- + (1 - \delta) n_3, \tag{5}$$

In the above set of equations we have used the time scale t and space scale x are normalized in units of the ion plasma frequency $\omega_{p,+} = (4\pi z^2 e^2 n_{+o}/m)^{1/2}$ and the ion Debye length $\lambda_{Di,+} = (4\pi z e^2 n_{+o}/k_B T_e)^{-1/2}$. The number density n_j and fluid velocity u_j variables (j = +, -, 3) are scaled by the unperturbed number density n_{j0} and the ion-acoustic speed $c_s = (zK_B T_e/m)^{1/2}$, respectively. The ES potential ϕ , η and v are scaled by $k_B T_e/e$, $\omega_{p,+}$ and $\lambda_{D,+}^2 \omega_{p,+}$, respectively. Thermal effects have been neglected in the pair components, for simplicity.

Linear wave analysis. Linearizing and Fourier transforming ($\sim e^{i(kx-\omega t)}$), one finds the dispersion relation: $\Gamma_3 \omega^3 + i\Gamma_2 \omega^2 + \Gamma_1 \omega + i\Gamma_0 = 0$, where *k* is the wavenumber, ω is the frequency, and: $\Gamma_0 = -k^4 \eta (1+\delta)$, $\Gamma_1 = -k^2 [1+\delta+c_1 \eta (1+k^2-\delta)(k^2 \eta + 2\nu)]$, $\Gamma_2 = 2c_1 (k^2 \eta + \nu)(1+k^2-\delta)$ and $\Gamma_3 = c_1 (1+k^2-\delta)$. Omitting dissipation for a minute, this leads to $\omega^2 = \frac{k^2 (1+\delta)/c_1}{1-\delta+k^2}$. This is an acoustic mode, sustained by the +/- component asymmetry (see that $\omega \to \infty$ if $\delta \to 1$).

Nonlinear wave analysis. In order to study the small amplitude nonlinear ion acoustic wave in dissipative multicomponent media, the reductive perturbation technique has been employed [8] and the following stretched coordinates has been introduced: $\xi = \varepsilon^{\frac{1}{2}}(x - Vt)$ and $\tau = \varepsilon^{\frac{3}{2}t}$, where *V* is the phase velocity (to be determined) and ε (\ll 1) is a small (real) expansion parameter. The state variables appearing in Eqs. (1-5) are expanded around their equilibrium values as $n_j = 1 + \varepsilon n_j^{(1)} + \varepsilon^2 n_j^{(2)} + \varepsilon^3 n_j^{(3)} + ..., u_j = \varepsilon u_j^{(1)} + \varepsilon^2 u_j^{(2)} + \varepsilon^3 u_j^{(3)} + ...$ and $\phi = \varepsilon \phi^{(1)} + \varepsilon^2 \phi^{(2)} + \varepsilon^3 \phi^{(3)} + ...$ For the sake of analytical tractability, we we shall also assume that $v = \varepsilon^{\frac{3}{2}} v_0$ and $\eta = \varepsilon^{\frac{1}{2}} \eta_0$ – where v_0 and η_0 are $\simeq O(1)$ – suggesting that collisionality and viscosity related timescales are much slower that the plasma period. Combining into Eqs. (1)-(5) and considering different powers of ε , a tedious but straightforward algebraic procedure leads to a *hybrid Korteweg - de Vries/Burgers* (KdV-B) equation in the form:

$$\frac{\partial \psi}{\partial \tau} + A\psi \frac{\partial \psi}{\partial \xi} + B \frac{\partial^3 \psi}{\partial \xi^3} = C \frac{\partial^2 \psi}{\partial \xi^2} - D\psi, \qquad (6)$$

in terms of the leading potential disturbance $\phi^{(1)} = \psi$. The coefficients in this equation read:

$$A = \frac{(2c_2V^4 - 3)(-1 + \delta)}{2V(1 + \delta)}, \qquad B = \frac{V^3}{2(1 + \delta)}, \qquad C = \frac{\eta}{2}, \qquad D = \nu, \qquad V^2 = \frac{(1 + \delta)}{c_1(1 - \delta)}.$$

We note that, in the limit $\delta \to 1$ (for *symmetric p.p.*, i.e., in the absence of 3rd species), the phase speed $V \sim (1-\delta)^{-1}$ diverges, while *A* and *B* diverge like $A \sim \sqrt{2}c_2c_1^{-3/2}(1-\delta)^{-1/2}$ and $B \sim (2c_1^3)^{-1/2}(1-\delta)^{-3/2}$. The model therefore collapses for symmetric ("pure") pair plasmas, and no excitations may then be sustained, as predicted earlier by Verheest [9]. We note that, as expected, $V = \lim_{k\to 0} (\omega/k)$ essentially denotes the true sound speed in asymmetric *p.p.* ($\delta \neq 1$).

Figure 1: Left panel: the phase speed (scaled by $(zk_BT_e/m)^{1/2}$) is depicted. Middle panel: The nonlinearity coefficient A in Eq. (6) is shown. Right panel: the factor $L(0) \psi(0)^{1/2} = (12B/A)^{1/2}$, representing the pulse width L(0) for fixed amplitude $\psi(0)$ (cf. the analytical pulse solution below) is depicted. The x-axis represents the density ratio $\delta = n_{-0}/n_{+0}$ in all 3 plots.

A number of comments are in row, considering special cases. First of all, *in the absence of dissipation* ($v = \eta = 0$, or C = D = 0), one recovers the KdV (pulse) soliton:

$$\psi(\xi,\tau) = \psi_0(0)\operatorname{sech}^2\left(\frac{\xi - U(0)\tau}{L(0)}\right)$$
(7)

where the pulse velocity and width are given by $U(0) = A\psi_0(0)/3$ and $L(0) = \{12B/[A\psi_0(0)]\}^{1/2}$. We note that, for a higher negative-ion concentration (i.e., increasing δ), solitary waves are faster and wider (see Fig. 1a, c), for fixed maximum amplitude $\phi(0)$. Importantly, *A* (and thus $\psi(0)$) changes sign (suggesting polarity reversal) at a critical value of $\delta \approx 0.268$ (see Fig. 1b). In the absence of viscosity ($\eta = 0$, i.e. C = 0, $D \neq 0$), simple perturbative analysis leads to a (time-dependent) damped soliton solution of the dissipative KdV Eq. (6) in the form [10]

$$\psi(\xi,\tau) = \psi_0(\tau) \operatorname{sech}^2 \sqrt{\frac{A\psi_0(\tau)}{12B}} \left(\xi - \frac{A}{3} \int_0^\tau \psi_0(\tau') d\tau'\right)$$
(8)

where the (decaying) amplitude is $\psi_0(\tau) = \psi_0(0) \exp\left(-\frac{4D}{3}\tau\right)$, the (decreasing) velocity is $U(\tau) = \frac{A\psi_0(0)}{3} \exp\left(-\frac{4D}{3}\tau\right)$, and the width of the (spreading) pulse is $L(\tau) = \sqrt{\frac{12B}{A\psi_0(0)}} \exp\left(\frac{2D}{3}\tau\right)$.

Figure 2: The structural features of the shock solution (9) are shown (left panel: the amplitude $(3C^2/(25AB))$; middle panel: the speed U; right panel: the width L) versus the density ratio δ .

In the absence of collisions (v = 0, i.e. D = 0, $C \neq 0$), shock-type solutions exist [11]

$$\psi(\xi,\tau) = \frac{3C^2}{25AB} \left\{ 4 - \left[1 + \tanh\left(\frac{\xi - U\tau}{L}\right) \right]^2 \right\},\tag{9}$$

with speed $U = 6C^2/(25B)$. The shock width is L = 10B/C. Higher negative-ion concentration (larger δ) leads to wider and slower shocks; see Figs. 2b,c. A polarity switch is also observed here, as pointed out above, at the root of *A*: see Fig. 2a. Interestingly, for $\delta \rightarrow 1$ (near-symmetric p.p.), the shock width reduces to nil, while its width spreads infinitely: physically speaking, charge neutrality (in the symmetric case) collapses the shock.

Our investigation should yield a richer dynamical profile in the warm (+/-) fluid model.

Acknowledgments. I.S.E. is financially supported from an Egyptian Government fellowship.

References

- [1] G. P. Zank and R. G. Greaves, Phys. Rev. E 51, 6079 (1995); N. I. Iwamoto, Phys. Rev. E 47, 604 (1992).
- [2] H. Boehmer, M. Adams and N. Rynn, Phys. Plasmas 2, 4369 (1995).
- [3] G. Sarri et al, Nat. Commun. 6, 6747 (2015).
- [4] W. Oohara and R. Hatakeyama, Phys. Rev. Lett. 91, 205005 (2003).
- [5] S. Ghosh, A. Adak, and M. Khan, Phys. Plasmas 21, 012303 (2014).
- [6] A. Adak, S. Ghosh, and N. Chakrabarti, Phys. Plasmas 22, 102307 (2015).
- [7] B. Atamaniuk and A.J. Turski, AIP Conf. Proc. 1397, 259 (2011).
- [8] H. Washimi, and T. Taniuti, Phys. Rev. Lett. 17, 996 (1966).
- [9] F. Verheest, Phys. Plasmas 13, 082301 (2006).
- [10] S. Sultana and I. Kourakis, Phys. Plasmas 22, 102302 (2015).
- [11] I. Kourakis, S. Sultana, and F. Verheest, Astrophys. Space. Sci. 338 245 (2012).