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Abstract

Ion beam-plasma interaction is an area of fundamental importance in the physics of

charged matter. In the ultra-high density and ultra-low temperature limit, quantum effects

(manifested via electron degeneracy) become significant and the classical treatment is in-

validated. In this paper, we investigate, from first principles, the occurrence of electro-

static excitations in an ultradense (quantum) electron-ion plasma permeated by a tenuous

negative-ion beam. The analytical framework relies on a quantum-hydrodynamic model,

which incorporates an electron momentum equation that consistently takes into account the

equation of state of the Fermi (degenerate) electron gas.

1. Introduction. We present a multifluid model for a plasma consisting of positive ions

and degenerate electrons, in addition to a low-density negative-ion streaming component (the

beam). A linear dispersion relation can be derived for this model, as a basis for stability anal-

ysis, revealing the existence of two unstable modes [3]. Based on a relativistic version of the

Sagdeev pseudopotential method [1], we have investigated the existence of nonlinear localized

solitary excitations in the presence of a negative ion beam. The existence diagram for electro-

static solitary waves (ESWs) will be elaborated, and the structural characteristics (e.g. polarity,

amplitude) of electrostatic pulses will be discussed. Bipolar electric field forms are thus ob-

tained, qualitatively reminiscent of earlier experimental observations [2].

2. Theoretical model. We consider a three-component plasma consisting of a dominant

ion population (mass mi, positive charge qi = +Zie), a secondary ion species, representing a

tenuous beam (mass mb, charge qb =−Zbe) and electrons (mass me, charge −e); e denotes the

elementary (absolute) charge, as usual. Spatial variation of the plasma plasma state variables

is assumed to occur only in the longitudinal direction, hence the plasma dynamics can be de-

scribed by a one-dimensional (1D) geometry for simplicity. Our study relies on a multifluid

approach, to be introduced in the following paragraph. It is assumed from the outset that mag-

netic field generation may be neglected within the electrostatic approximation, implying that the
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total current is negligible (quiescent plasma). Our description follows closely the electrostatic

relativistic model proposed in [1, 2, 3], while incorporating the negative-ion beam therein.

The reduced (dimensionless) set of fluid equations reads:
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where H =
√

1+ξ 2 represents the dimensionless enthalpy of the system [1] (with ξ = hne
4mec ),

the relativistic factor is γ j = 1/
√

1−αu2
j , where α = c2

s/c2 = µeξ 2
0 , cs =

√
2ZiEFe/mi and

ξ0 = pFe/(mec) = hne0/(4mec). We have also introduced the ion-to-electron charge ratio β =

Zini0
ne0

= 1+γb0δ , where γb0 is defined as γb0 = 1/
√

1−αU2
b0, the normalized equilibrium beam-

fluid speed Ub0 =
ub0
cs

, the beam-to-electron charge density ratio δ = Zbnb0
ne0

, the electron-to-ion

mass ratio µe =
me
mi

(≃ 1/1836 ≪ 1) and the mass ratio µb = mb
mi

. Overall charge neutrality is

assumed at equilibrium (only), imposing β = 1+γb0δ . We shall henceforth typically consider a

hydrogen plasma (Zi = 1) and a tenuous beam, i.e. jb ≈ γb0Ub0δ ≪ 1, with µb ≈ 1 throughout.

3. Nonlinear analysis. Let us consider a perturbation in the form of a solitary wave prop-

agating with (dimensionless) speed M = Usol
cs

, by analogy with the so called Mach number in

electrostatic soliton theory, i.e. with real (physical) speed Usol . We pass from the laboratory

frame to the moving reference frame by assuming that all quantities are functions of a single

variable X = x−Mt, viz. ∂
∂ t =−M ∂

∂X , ∂
∂x =

∂
∂X . After some tedious but straightforward algebra,

we obtain
1
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Here, S is a nonlinear function given by

S(ϕ) = (1+ γb0δ )Si(ϕ)−δ [Sb1(ϕ)−Sb0]− [Se1(ϕ)−Se0] , (9)
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4. Existence conditions for electrostatic solitary waves. Pulses are “super-sonic”, as

imposed by the requirement S′′(ϕ = 0;M)≤ 0 ⇒ M ≥ M1; the minimum value (threshold) M1

is given by

(1+ γb0δ )
1

M2
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1−µeH2
0 M2

1
+

δ
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1−αUb0γ2
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γ3
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= 0 . (10)

A second physical requirement is associated with the reality of the state variables (density n j,

fluid speed u j, for j = e, i,b), suggesting that M < M2, where the upper bound M2 is given by

the requirement S(ϕmax)≥ 0, where, for positive and negative pulses, respectively:

0 < ϕ ≤ ϕmax,i =
1
α

(
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)
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]
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The soliton existence window [M1,M2] is investigated in Fig. 1 in terms of the beam parameters.

Figure 1: The soliton existence region, is depicted versus Ub0 (left), with δ = 0.1, and δ (right)

with Ub0 = 0.6. Positive pulses occur in the interval [M1,M2,+]; negative pulses in [M1,M2,−].

(a) (b) (c)
Figure 2: (a) The pseudopotential S(ϕ) is shown in terms of the electrostatic potential ϕ ; (b)

The electrostatic potential ϕ and (c) the associated electric field E are shown, versus space x.

We have taken ne0 = 1011m−1 (or ξ0 ≃ 0.0604) Ub0 = 0.6 , µb = 1,δ = 0.1,M = 1.3.

5. Parametric analysis. Two possibilities exist, as obvious in Fig. 1: either existence of

positive pulses (only), or coexistence of positive and negative pulses. We have considered two

typical cases for M, below (taking Ub0 = 0.6 as one suitable value, for illustration purposes).

• Case 1: For M = 1.3, the pseudopotential S(ϕ) is depicted versus ϕ in Fig. 2. The plasma

admits coexistence of positive and negative pulses (solitary waves). Two types (polarities)

of electrostatic potential ϕ and of the associated electric field are obtained: see Fig. 2.
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(a) (b) (c)

Figure 3: (a) The pseudopotential S(ϕ) is shown in terms of the electrostatic potential ϕ (note

that the negative root has become imaginary, upon increasing the values of M, i.e. the line

M = M2,− has been crossed in Fig. 1). (b) The electrostatic potential ϕ and (c) the associated

electric field E are shown, versus space x. We have taken ne0 = 1011m−1 (or ξ0 ≃ 0.0604)

Ub0 = 0.6 , µb = 1,δ = 0.1,M = 1.4 as indicative values.

• Case 2: For M = 1.4, only positive potential pulses occur, as seen in Fig. 3.

6. Conclusion. The nonlinear interaction of a negative ion beam and a infinite homogeneous

one-dimensional plasma slab has been investigated from first principles, taking into account

quantum (electron degeneracy) and relativistic effects. We have shown that stable supersonic

localized pulses (electrostatic solitary waves, ESWs) may form and propagate in the plasma.

We have derived explicit conditions for the existence of nonlinear structures. The dynamical

effect of the intrinsic beam-plasma (configurational) parameters on the characteristics and on

the polarity of ESWs was briefly discussed. Our results extend earlier findings on quantum

relativistic plasmas [1, 3, 4].
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