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Abstract

The conditions for modulational instability of Lagmuir wavepackets propagating in colli-

sional plasmas are investigated, by adopting a phenomenological model where the electrostatic

potential φ is modelled by a phenomenological nonlinear Klein-Gordon-type equation, involv-

ing ad hoc terms in account of intrinsic plasma nonlinearity and collisionality. A reduction to a

nonlinear Schrodinger type equation is carried out. Explicit criteria for modulational instability

are obtained. The role of collisionality is discussed, in comparison with the conservative case.

Introduction. Electron plasma (Langmuir) waves [1], analogous to optical modes in e.g.

materials science [2], are characterized by a parabolic-shaped dispersion curve, where the group

velocity vanishes and the phase speed diverges, for ultralong wavelenth (small wavenumber)

values. The modulational dynamics of plasma wavepackets has been studied in the past, in

various contexts [3, 4, 5, 6]. The description is usually amenable to an nonlinear Schrodinger

equations (NLSE) for the wavepacket envelope, and deriving criteria for the stability of the

latter is straightforward [2]. The NLSE is long known to be an integrable nonlinear equation

[2], bearing exact solutions (envelope solitons, breathers) which have naturally been proposed

as prototypical models for oscillons, surface waves and freak waves, among others.

In this work, a phenomenological model is adopted for Langmuir wavepackets in plasmas

characterized by collisionality (e.g. due to intrinsic electron fluid “viscosity”). We take into

account the inherent dynamical nonlinearity mechanisms and collisional effects by introducing

suitable ad hoc terms in the evolution equation for the electrostatic potential φ . Relying on a

multiscale perturbation technique [3, 4, 5, 6], we have derived a NLSE for the electric potential

amplitude, along with explicit expressions for all relevant harmonic component amplitudes. The

exact solutions of the NLSE, in the form of localised envelope pulses [2, 7], are stable in the

absence of dissipation, while they decay in the dissipative case as expected [8], as corroborated

by numerical simulations.

The meticulous analysis carried out cannot be entirely presented here, and will be reported in

a (more detailed) forthcoming work. Our focus in this short report is on deriving explicit ana-

lytical criteria for modulational instability to occur, and to investigate the role of collisionality,

thus generalizing earlier results on modulational interactions in plasmas [3, 4, 5, 6, 7].
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Theoretical Model. We consider an ad hoc potential evolution equation in the form:

∂ 2φ

∂ t2 − c2 ∂ 2φ

∂x2 +ωp
2
φ +αφ

2 +βφ
3 +ν

∂φ

∂ t
= 0 , (1)

where c = (2kBTe/me)
1/2 is the electron thermal speed, ωp = (ne0e2/ε0me)

1/2 is the electron

plasma frequency, and the ad hoc (real) parameters α and β take into account the effect of non-

linearity; finally, a phenomenological damping term ν > 0 is introduced. This has the form of a

nonlinear Klein-Gordon-type PDE, here modeling the evolution of the electrostatic potential φ .

Nonlinear analysis. We adopt a multiple scales technique [3, 4, 6, 5, 9, 10], by defining

a small parameter ε � 1 and introducing distinct scales, in order to distinguish the fast (car-

rier wave related) scales (X0 = x, T0 = t) from the slower (envelope related) scales (X1 = εx,

X0 = ε2x, ...; T1 = εt, T0 = ε2t, ...) . We consider small deviations of the variable φ from the

equilibrium state φ = φ (0)+εφ (1)+ε2φ (0)+ ...= Σ∞
n=1εnφn . Harmonic generation is accounted

for via the ansatz φn = Σ∞
l=−∞

φ
(n)
l (X ,T )eil(kx−ωt). All the perturbed states depend on the fast

scales via the phase θ1 = kx−ωt only, while the slow scales only enter the amplitude(s) φ
(n)
l .

The dispersion relation obtained in 1st-order prescribed a complex frequency ω = ω(k,ν) =

ωr− iν/2, with ωr =
√

c2k2− ν2

4 +ωp2. The (real) group velocity reads: vg = ω ′(k) = c2k/ωr.

The 2nd order equations provide a compatibility condition in the form: ∂φ
(1)
1

∂T1
+ω ′(k)∂φ

(1)
1

∂X1
= 0,

suggesting that φ1 is a function of X1− vgT1, to leading order. The corresponding 0th-, 1st- and

2nd- harmonic amplitudes (upto order ∼ ε2) - omitted here - are obtained in subsequent steps.

Annihilating secular terms in ε3, we obtain a dissipative NLS equation in the form:

i
∂ψ

∂τ
+P

∂ 2ψ

∂ζ 2 +Qr | ψ |2 ψ + iQi | ψ |2 ψ = 0 , (2)

where ψ = φ
(1)
1 and the (slow) independent variables are ζ = ε(x−vgt) and τ = ε2t. In eq. (2),

P ∈ℜ and Q(= Qr + iQi) ∈ C are dispersion and nonlinearity coefficients, which are given by

P =
c2 (ωp

2−ν2/4
)

2ωr3 , Q =
−3β +2α2

(
2

ωp2 − 1
3ωp2−iν2ωr−ν2

)
2ωr

= Qr + iQi . (3)

The lengthy expressions for Qr and Qi are omitted, for brevity. The loss term Qi arises due to

the damping process (and, in fact, cancels in the limit ν → 0).

Modulational instability (MI) analysis. Assuming the existence of a stationary reference

state in the form ψ0 = ψ̂0e−iΩT , we find: Ω =−Q |ψ̂0|2. Therefore, ψ0 = ψ̂0 eiQr|ψ̂0|2T e−Qi|ψ̂0|2T

is a harmonic solution of Eq. (2), to be adopted as a reference state (in fact, an exponentially

damped sinusoidal waveform, since Q is complex).
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We proceed by considering a small perturbation around ψ0, as ψ0 = (ψ̂0 + εψ1)e−iΩT+ε iΘ,

where ψ1 = ψ1 (X ,T ) and θ = θ (X ,T ) are amplitude and phase variations. We take both of

these to be harmonic,∼ ek̃X−ω̃T , where ω̃ and k̃ are the perturbation frequency and wavenumber.

Substituting in eq. (2) and linearizing, we obtain a dispersion relation for the perturbation:

ω̃
2 +b ω̃ + c = 0, (4)

where b = 2Qi |ψ̂0|2 and c =−P2k̃2
(

k̃2− 2Qr
P |ψ̂0|2

)
≡−ω̃2

0 (k̃). Note that we have defined the

quantity ω̃0(k̃), which represents the functional expression for the unperturbed (un-damped)

perturbation frequency [2], here readily recovered if Qi = 0.

Extended MI criteria & threshold(s): the role of ν . Based on (4) above, we have inves-

tigated whether the perturbation frequency may possess an imaginary part, hence an instability

develops with growth rate Imω̃ . Explicit criteria are established, to be presented below.

Conservative case / instability criteria. We recall, for reference, that in the “conservative”

case ν = Qi = 0, Eq. (4) reduces to ω̃2 = ω̃2
0 (k̃) (as given above). For PQ < 0, no instability

may occur. However, if PQ > 0, a purely growing mode develops for long wavelengths, i.e.

below a certain wavenumber threshold k̃ < (2Qr/P)1/2|ψ0| ≡ k̃crit,0. The window k̃ ∈ (0, k̃crit,0)

thus corresponds to unstable modes, while shorter wavelengths (k̃ > k̃crit,0) will be stable [2].

Dissipative case / instability criteria. The instability of electrostatic wavepackets can be

investigated, based on (4), via a tedious algebraic calculation (omitted here for brevity). Sum-

marizing those results, the “traditional" criterion (PQr < 0 for stability) gives its place to an

extended range of criteria (for Qi ∼ ν 6= 0). A number of possibilities arise:

• Case I (stable): If PQr < 0 (regardless of Qi), no instability occurs: the stable region (as

for Qi = 0) remains stable, for all values of the (perturbation) wavenumber k̃.

• Case II (unstable)/weak dissipation: if PQr > 0 and Q2
i < Q2

r ⇔
∣∣∣Qi

Qr

∣∣∣< 1, then:

– Instability window: MI occurs in a reduced instability window, if k̃ ∈
(
k̃−crit , k̃+crit

)
,

where

k̃2
±crit

=

(
Qr

Pr
|ψ0|2

)[
1±
(

1− Q2
i

Q2
r

)1/2
]
. (5)

– Growth rate: In this case, the complex frequency reads ω̃ =−Qi |ψ0|2± iσ , where

σ = |Imω̃|=
[
−P2k̃2

(
k̃2− 2Qr

P
|ψ̂0|2

)
−
(

PQi |ψ̂0|2
)2
]1/2

. (6)

• Case III (stable)/strong dissipation: if PQr > 0 and Q2
i ≥Q2

r ⇔
∣∣∣Qi

Qr

∣∣∣≥ 1, then we obtain

stability ∀P, Qr, k̃.
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Parametric investigation. The results in the previous section are general. It turns out that the

instability profile will depend on the values of the ratios Qr/P and Qi/Qr, for a given problem.

For the specific dynamical system described above, these are depicted in Figure 1. We clearly

see that, first of all, all possibilities exist, i.,e. small and large values of either of these ratios,

depending on the problem’s intrinsic parameters.

The growth rate σ is also shown: we see that the ratio Qi/Qr increases the instability window,

as predicted (see Case II above), and may also enhance the instability growth rate: see the bell-

shaped growth rate curves in Figure 1c.

Figure 1: The ratio(s) Qr/P (left frame) and Qi/Qr (middle frame) are shown vs the carrier

wavenumber k. The growth rate σ is also shown (right frame) versus the perturbation wavenum-

ber k̃ (for k = 1, here). All plots are based on the expressions (3), taking c = ωp = α = β = 1.

Discussion. Although wavepacket decay cannot be avoided (for Qi 6= 0), as the steady state

itself is damped (∼ e−Qi|ψ̂0|2T ), it may be slowed down for a significant amount of time by wave

growth due to modulational instability occurring in a wide parameter region: see the occurrence

of a growth term e+Imω̃T due to onset of the instability. Both these effects may either compete or

cooperate (actually depending on various parameter values, affecting the signs of Qi and Imω̃)

against the decay of the carrier wave due to damping (for ν 6= 0), i.e. ∼ e−νt/2.

Conclusion. We have studied the occurrence of modulational instability in Langmuir waves,

and have actually also established explicit generic criteria for MI in dissipative media.
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