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Abstract

Kinetic Alfvén waves (KAWs) have been studied in a low-β magnetized plasma, consisting

of positively charged ions and two non-Maxwellian (kappa-distributed) electron populations.

Linear and nonlinear analysis reveals the impact of suprathermal electrons on linear dispersion

characteristics and on localized KAW modes (pulses). Super-Alfvénic speed negative potential

structures are predicted via a Sagdeev-type method, whose characteristics are briefly discussed.

Introduction. In a strongly magnetized plasma i.e. when β ≪ 1, kinetic Alfvén (KA)

waves (KAWs) arise when the perpendicular wavelength is of the ion gyroradius ρi scale. In

these conditions, light electrons follow the magnetic field lines. Electrons and ions respond

differently to magnetic field perturbations, leading to charge separation and formation of KAWs.

Plasmas with a co-existence of two electron populations (at different temperature) are ubiq-

uitous in Space. Studies of KAWs in such (two-electron-temperature, 2elT) plasmas start with

Treumann et al.[1], who showed that the plasma β plays a crucial role in the occurrence

of rarefactive and compressive density excitations, at either sub- or super-Alfvénic speeds.

Berthomier et al. [2] investigated solitary KA waves in 2elT plasma, and rigorosuly established

the existence of either compressive or rarefactive KA solitary waves, in such a plasma config-

uration. Chakraborty and Das [3] reported the propagation of three wave modes, viz. kinetic

Alfvén waves, ion-acoustic waves and electron-acoustic waves in 2elT plasma, by adopting a

Korteweg - de Vries/Zakharov-Kuznetsov (small-amplitude) approach. Very recently, Kaur and

Saini [4] discussed the formation of small amplitude KAWs in a dusty 2elT plasma, making use

of the Korteweg - de Vries (KdV) equation. Positive potential solitary structure were predicted.

Space [5] and experimental [6] plasmas are often characterized by non-Maxwellian electrons,

identified by a distinct long-tailed (suprathermal) feature in their velocity distribution. These are

effectively modelled by the kappa (κ) distribution function [7] known by now to affect not only

linear wave characteristics [5, 8], but also the properties of solitary waves [8, 9].

In this paper, we investigate from first principles the characteristics of linear and nonlinear

waves in a plasma with two kappa distributed (“hot” and “cold”) electron populations.

Fluid Model equations. A magnetized plasma, consisting of positively charged (cold)

ions (mass mi and number density ni), “cold” electrons (mass mc and number density nc) and
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relatively “hotter” electrons (mass mh and number density nh) is considered. The plasma β

parameter satisfies the condition m(c,h)/mi ≪ β ≪ 1, where β =
8πni0KBTe f f

B0
2 ; here, Te f f is the

effective temperature, ni0 is the equilibrium ion number density, B0 is the background magnetic

field directed along z-axis and KB is Boltzmann’s constant. The basic governing equations are:
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where the electric field components derive from potential functions as Ex = E⊥ = −∂ϕ∥/∂x

and Ez = E∥ =−∂ψ∥/∂ z respectively, Ωi = eB/mi denotes the ion cyclotron (gyro-)frequency

and the plasma fluid quantities bear their usual meaning. The neutrality condition ni ≃ nc +nh

is assumed. The electron number density is given by n j = n j0

(
1− eψ∥

KBTj(κ j− 3
2 )

)−κ j+1/2

, for

j = c,h (“hot“, “cold”), in terms of the respective temperature Tj and nonthermal index κ j.

Linear Dispersion Relation. Eqs. (1) are linearized, by assuming all the perturbed quanti-

ties to be proportional to exp[i(k⊥x+ k∥z−ωt)], where k⊥, k∥ and ω are the perpendicular and

parallel wave vectors and frequency respectively, leading to the dispersion relation
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. Suprathermal electrons evidently affect the dispersion

characteristics (via κc,h). In the limit βe f f ≪ 1, relation (2) recovers ω2 = k2
∥v2

A

(
1+ k2
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)
.

Parametric Analysis. In Fig. 1(a), we have shown the combined effect of cold elec-

tron number density (nc0) and superthermality on the wave’s phase speed. The phase speed is

clearly reduced as the cold (superthermal) electron component density increases, with respect

to the Maxwellian no-cold-electron case (κc → ∞, nc0 = 0) here given by the solid (blue) curve.

This may be due to the fact that the inclusion of cold species makes the wave heavier and sup-

presses the parallel current, thus slowing down the wave. A decrease in κc (i.e., farther off the

Maxwellian) also reduces the phase velocity of the wave as shown in Fig. 1(b): KAWs appear

to be slowed down in a superthermal plasma. Finally, an increase in cold electron temperature

Tc appears to accelerate KA waves, as evident in Fig. 1(c).

44th EPS Conference on Plasma Physics P1.411



(a) (b) (c)

Figure 1: The wave frequency ω is depicted against the perpendicular wavevector k⊥; for k∥ =

10−6cm−1 (≪ k⊥). In (a), the solid (blue) curve corresponds to nc0 = 0 cm−3, κh → ∞, Tc = 8

eV, Th = 1100 eV, ni0 = 75 cm−3, nh0 = 0.07 cm−3; for the rest of the curves, κh = 4. Density

values in cm−3. In (b) and (c), the solid (blue) curve corresponds to κc = 2, nc0 = 2.5 cm−3.

Nonlinear Analysis.

To proceed with the analysis, we have rescaled Eqs. (1), as follows (capital letters are used

for dimensionless variables): Ni =
n(i,c,h)
n(i,c,h)o

, Vi(x,y,z) =
vi(x,y,z)

Cs
, T = ωpit, (X ,Y,Z) = (x,y,z)

λD
and

(ϕ ,ψ) =
e(ϕ⊥,ψ∥)
KBTe f f

, where Te f f = TcThni0/(nc0Th + nh0Tc) and Tc(Th) is the temperature of cold

(hot) electrons, Cs =
(

KBTe f f
mi

)1/2
is the ion-acoustic (plasma “sound”) speed, ωpi =

(
4πni0e2

mi

)1/2

is the ion plasma frequency and λD =
(

KBTe f f
4πni0e2

)1/2
is an effective Debye-screening length.

We have adopted the (Sagdeev) pseudopotential methodology, by assuming that all state vari-

ables depend on the single moving coordinate ξ = lxX + lzZ−MT (propagation in the x-z plane

is assumed). Here, lx and lz =±(1− lx2)1/2 represent direction cosines and M is the ion-acoustic

Mach number M = V
Cs

, where V is the soliton speed and Cs was defined above. A lengthy but

straighforward procedure leads to a pseudo-energy balance equation in the form of the ordinary-

differential equation (ODE): 1
2
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We have defined Q =
l2
x

l2
z

and M′
A = MA/lz, where the “Alfvén Mach number” is defined as

MA =
(

β
2

)1/2
M = V

vA
with respect to the Alfvén velocity vA.

A meticulous numerical investigation of the properties of solitary waves, arising as solutions
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Figure 2: Behavior of the Sagdeev potential U(ψ) vs ψ for negative potential structures at

κc = 3, κh = 3, αc = 0.1, αh = 0.01, Q = 25, l2
z = 0.15, β = 0.3, δ = 0.1 and M′2

A = 1.2,

represented by solid (blue) curve. Dashed (black) curve corresponds to κc = 3.5, dotted (red) to

κh = 23, dotted-dashed (red) curve to M′2
A = 1.3 and dotted-dashed (green) to β = 0.32.

of the above ODE, has been carried out, and the details (omitted here) will be reported in

a lengthy report, in preparation. Negative polarity potential structures (ψ pulses) and bipolar

electric field structures are obtained numerically, corresponding to the negative values (and

roots) of the Sagdeev pseudopotential U ; see Fig. 2. Based on an analysis of U , we see that the

amplitude and depth of the potential well significantly increases, as either of κc, κh and plasma

β increase(s); this effect is depicted in the dashed (black) curve, dotted (red) curve and dotted-

dashed (green) curves respectively in Fig. 2. On the other hand, κh appears to have a very small

effect on solitary KA wave characteristics. Finally, an increase in M′
A leads to a decrease in both

amplitude and depth of U , as depicted by the dotted-dashed (red) curve in Fig. 2.
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