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Abstract

The nonlinear dynamics of a rotating magnetoplasma consisting of electrons, positrons and sta-

tionary positive ions is considered. The basic set of hydrodynamic and Poisson equations are

reduced to a Zakharov-Kuznetsov (ZK) equation for the electric potential. The ZK equation is

solved by applying an improved modified extended tanh-function method [Phys. Lett. A 372,

5691 (2008)] and their characteristics are investigated. A set of new solutions are derived, includ-

ing localized solitary waves, periodic nonlinear waveforms and divergent (explosive) pulses. The

characteristics of these nonlinear excitations are investigated in detail.

PACS numbers:
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I. INTRODUCTION

Pair plasmas, i.e. plasmas consisting of equal-mass components, are characterized by

physical properties quite different from those of conventional electron-ion plasmas. In the

analysis of ordinary e-i plasmas, the ratio of the electron mass to the ion mass is exploited to

great effect leading one to distinguish, for example, between high (electron dominated) and

low (ion dominated) frequency motion. Conversely, with both constituent species possessing

the same absolute charge to mass ratio, important symmetries manifest themselves, leading

to considerable simplifications in the mathematical description of equal-mass plasmas [1].

Electron-positron (e-p) plasmas are pair plasmas which exist in many astrophysical en-

vironments, such as in the early universe [2], in active galactic nuclei [3], in pulsar magne-

tospheres [4], in solar atmosphere [5], in neutron stars [6], at the center of the milky way

galaxy [7], etc. Since roughly two decades ago, the progress in the production of positron

plasmas makes it possible to consider performing laboratory experiments on e-p plasmas [8].

Interestingly, Helander and Ward [9] have discussed the possibility of e-p production in large

tokamaks due to collisions between multi-MeV runaway electrons and thermal particles.

The presence of a magnetic field in astrophysical plasmas plays an important role in

linear and nonlinear plasma dynamics, and affects the stability profile of plasma waves.

However, the Lorentz force (due to magnetic fields) is not the only force creating plasma

rotation in astrophysical environments. Chandrasekhar [10] suggested that the Coriolis force

might also play a role in cosmic phenomena. Latter, it was suggested that a slow rotation,

however small, might be related to interesting phenomena in astrophysical environments

[11]. Based on such considerations, several authors have attempted to examine the nature

of wave propagation in rotating plasmas including a Coriolis force [12, 13].

An electron-positron plasma usually behaves as a fully ionized gas consisting of electrons

and positrons. Since many of the astrophysical plasmas contain ions besides the electrons

and positrons, it is important to investigate the nonlinear behavior of electron-positron-

ion (e-p-i) plasmas. During the last three decades, e-p and e-p-i plasmas have attracted

significant attention among researchers [12—18]. Linear and nonlinear excitations in e-p

and e-p-i plasmas have been studied by using different models. For example, Popel et al.

[14] investigated ion-acoustic solitons in three-component plasmas, whose constituents are

electrons, positrons and singly charged ions. It is found that the presence of the positron
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component can result in a decrease of the amplitude of ion-acoustic solitary waves. Ne-

joh [15] studied the effect of ion temperature on large amplitude ion-acoustic waves in an

e-p-i plasma. He found that the ion temperature increases the maximum Mach number,

decreasing the amplitude of ion-acoustic solitary waves and also reducing the region of ex-

istence of ion-acoustic excitations. Gogoberidze et al. [17] investigated a model for

the main observational characteristics of the radio emission of pulsars with well

organized drifting subpulses. It was found that the electric field of the drift

waves, which is directed along the magnetic field lines, modulates the distribu-

tion of the particles and hence the radio emission mechanism. Also, the ratio of

the frequency of the eigenmode to the rotation frequency of the star is insen-

sitive to the magnetic field strength and the period of rotation, and is of order

unity. Later, Gogoberidze et al. [18] showed that a nonlinear decay of obliquely

propagating Langmuir waves into Langmuir and Alfvén waves is possible in a

one-dimensional, highly relativistic, streaming pair plasma. It was shown that

the characteristic frequency of generated Alfvén waves is much less than the

frequency of Langmuir waves and may be consistent with the observational data

on the radio emission of pulsars.

Actually, e-p plasma in nature is in reality relativistic and, in fact, dominated

by recombination (annihilation) processes. We have here chosen to neglect both

relativistic effects and mutual annihilation processes. The reason for this is

twofold. First, we aim at addressing generic nonlinear effects, so simplifying at

first approach was part of the scope, in order to pinpoint the building blocks of

the theory via a simple model. Therefore, the study at hand can be considered as

a preliminary research, in view of a more complete and physically relevant case

of relativistic pair plasmas, to be carried out in the future. Second, and more

important, part of our inspiration comes from experiments on pair-(fullerene-

) ion plasmas [19] which have been carried out recently, allowing us to unveil

all the fundamental physics of pair plasmas while on the same time remaining

in the classical (non-relativistic) regime, in fact rid of pair-species annihilation

(reported to be negligible in those experiment). Working with the classical

(non-relativistic) toolbox is therefore meaningful physically.

In this paper, we shall investigate the existence and properties of nonlinear electrostatic
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potential structures in nonrelativistic, rotating e-p-i magnetoplasmas. Nonlinear elec-

trostatic structures are shown to exist, in the form of solitary waves, nonlinear periodic

wave-forms and blow-up pulse excitations. This paper is structured as follow: In Section II,

we present the governing equations for the electrostatic waves in our e-p-i plasma. In Sec.

III, the reductive perturbation method [20] is employed to derive a Zakharov-Kuznetsov

(ZK) equation [21]. In Section IV, we solve the ZK Equation via a travelling wave ansatz,

to obtain obliquely propagating localized potential pulses. In Section V, we apply an im-

proved Modified Extended Tanh-Function (iMETF) method [22] to solve ZK equation. A

set of analytical solutions is obtained, and then used to investigate numerically the effect

of the plasma parameters on the nonlinear excitations. The results are summarized in the

concluding Section VI.

II. BASIC EQUATIONS

We consider a two-dimensional, magnetized, rotating, collisionless three-component

plasma consisting of electrons, positrons, and stationary ions. The external magnetic field

is directed along the x−axis, i.e., B = B0x̂, (x̂ is the unit vector along the x−axis). The
propagation of electrostatic waves is governed by the electron and positron [denoted by the

indices e and p] continuity equation(s)

∂ne,p
∂t

+∇.(ne,pue,p) = 0, (1)

and the e(p) momentum equations,

m(
∂

∂t
+ ue.∇)ue = e∇φ− 1

ne
∇Pe −

e

c
(ue ×B0x̂) + 2m(ue ×Ω0x̂), (2)

m(
∂

∂t
+ up.∇)up = −e∇φ− 1

np
∇Pp +

e

c
(up ×B0x̂) + 2m(up × Ω0x̂). (3)

The Poisson equation for this system is

∇2φ = 4πe(ne − np − ni). (4)

In Eqs. (1)-(4), ne,p is the the electron (positron) number density, ue,p is the electron

(positron) fluid velocity, φ is the electrostatic wave potential, Pe,p is the electron (positron)

pressure, Ω = Ω0x̂ is the rotation frequency (angular velocity) vector (Ω0 is the magnitude
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of rotation frequency), e is the magnitude of electron charge, m is the mass of electron, B0

is the magnitude of the ambient magnetic field, and c is the speed of light. We shall close

the system by using the equation(s) of state Pe,p ∼ nγe,p, where γ = (2+ f)/f (for f degrees

of freedom; here f = 2). The Boltzmann constant KB may be omitted where obvious.

We stress the fact that, although we shall consider all vectorial physical quan-

tities to evolve in three-dimensions (x, y, and z), the spatial dependence of all

variable quantities is taken to be two-dimensional only. We consider all dynam-

ical quantities to evolve in x − y plane (due to the physical symmetry of the

problem). The non-dimensionalized form of Eqs. (1)-(4) can be rewritten for electrons,

∂ne
∂t

+
∂neuex
∂x

+
∂neuey
∂y

= 0, (5)

∂uex
∂t

+ (uex
∂

∂x
+ uey

∂

∂y
)uex −

∂φ

∂x
+ 2

∂ne
∂x

= 0, (6)

∂uey
∂t

+ (uex
∂

∂x
+ uey

∂

∂y
)uey −

∂φ

∂y
+ 2

∂ne
∂y
−Ωeuez = 0, (7)

∂uez
∂t

+ (uex
∂

∂x
+ uey

∂

∂y
)uez + Ωeuey = 0, (8)

for positrons,
∂np
∂t

+
∂npupx
∂x

+
∂npupy
∂y

= 0, (9)

∂upx
∂t

+ (upx
∂

∂x
+ upy

∂

∂y
)upx +

∂φ

∂x
+ 2σ

∂np
∂x

= 0, (10)

∂upy
∂t

+ (upx
∂

∂x
+ upy

∂

∂y
)upy +

∂φ

∂y
+ 2σ

∂np
∂y
−Ωpupz = 0, (11)

∂upz
∂t

+ (upx
∂

∂x
+ upy

∂

∂y
)upz + Ωpupy = 0, (12)

and the system is closed by the Poisson equation

∇2φ = ne − np − ni. (13)

The physical quantities appearing in Eqs. (5)-(13) have been appropriately normalized.

Specifically, nj (j = e, p, i) is normalized by the unperturbed electron density n0, ue,p by

the electron thermal speed Cse = (KBTe/me)
1/2, φ by (KBTe/e), the rotation frequency

Ω0 and the electron (positron) gyrofrequency ωc = eB0/mc by the electron plasma period
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ωpe = (4πe
2n0/m)

1/2, the space and time variables are in units of the electron Debye radius

λDe = (KBTe/4πe
2n0)

1/2 and of the electron plasma period ω−1pe , respectively. Here, σ =

Tp/Te, Ωe = 2Ω0 − ωc, Ωp = 2Ω0 + ωc, where Te and Tp are the electron and positron

temperatures, respectively. The quasineutrality condition at equilibrium reads

1 = δ + β, (14)

where δ = n
(0)
p /n0 and β = n

(0)
i /n0 denote the unperturbed density ratios of positrons and

ions to electrons, respectively. The (two-component) electron-positron plasma is recovered

in the limit β = 0. The upper bar in (5)-(13) will be omitted in the following, hence

dimensionless quantities are to be understood everywhere.

III. DERIVATION OF A ZAKHAROV-KUZNETSOV EQUATION

The independent variables can be stretched as:

X = ε1/2(x− λt), Y = ε1/2y, and T = ε3/2t, (15)

where ε is a small parameter and λ is the wave propagation speed to be determined by

compatibility requirements. The dependent variables are expanded as

Ψ = Ψ(0) +
∞X
n=1

εnΨ(n), (16)

where

Ψ = (ne, np, uex, uez, upx, upz, φ)
T , (17)

Ψ(0) = (1, δ, 0, 0, 0, 0, 0)T . (18)

The transverse velocities in y and z axis are given by

uα = ε3/2u(1)α + ε2u(2)α + ε5/2u(3)α + ..., (19)

where the subscript α indicates either e or p for the y or z vector coordinate (all 4 combi-

nations).

Substituting the stretching (15) and the expansions (16)-(19) into Eqs. (5)-(13), the

lowest-order in ε yields

n(1)e =
−1

λ2 − 2φ
(1), u(1)ex =

−λ
λ2 − 2φ

(1), u(1)ez =
−λ2

Ωe(λ2 − 2)
∂φ(1)

∂Y
, (20)
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n(1)p =
δ

λ2 − 2δσφ
(1), u(1)px =

λ

λ2 − 2δσφ
(1), u(1)pz =

λ2

Ωp(λ2 − 2δσ)
∂φ(1)

∂Y
. (21)

The Poisson equation gives the compatibility condition

1

λ2 − 2 +
δ

λ2 − 2δσ = 0, (22a)

which determines the propagation speed λ as

λ2 =
2(1− β)(σ + 1)

2− β
. (22b)

A solution for λ exists, provided that λ 6= ±
√
2, ±
√
2δσ (which excludes propagation in

temperature-symmetric electron-positron plasmas, viz δ = σ = 1). The dependence of the

phase velocity λ [represented by Eqs. (22b)] on the ratios of the ion-to-electron density β and

positron-to-electron temperature σ is depicted in Fig. 1. It is seen that the phase velocity

λ is affected by the ion-to-electron density ratio β, and in fact decreases with increasing β.

A supersonic solitary pulse propagates for small values of β (β < 0.6− 0.7); however if the
positive ion concentration increases (β > 0.6) only a subsonic solitary pulse may propagate

in the system. Also, the positron-to-electron temperature ratio σ affects the behavior of

the phase velocity λ in a certain range of the ion-to-electron density ratio β (β . 0.6); see
Fig. 1b. For higher values of β (β & 0.6), σ plays no important role on the properties of

the phase velocity λ. In general, it is seen that only supersonic pulses are affected by the

positron-to-electron temperature ratio σ, while the latter plays no important role on the

behavior of subsonic pulses.

The next order in ε yields

∂n
(2)
e

∂X
= − 1

λ2 − 2
∂φ(2)

∂X
− 2λ

(λ2 − 2)2
∂φ(1)

∂T

+
3λ2

2(λ2 − 2)3
∂φ(1)2

∂X
+

λ

λ2 − 2
∂u

(2)
ey

∂Y
, (23)

u(2)ey =
−λ3

Ω2e(λ
2 − 2)

∂2φ(1)

∂X∂Y
, (24)

∂n
(2)
p

∂X
=

δ

λ2 − 2δσ
∂φ(2)

∂X
− 2λ

(λ2 − 2δσ)2
∂φ(1)

∂T

+
3λ2

2(λ2 − 2δσ)3
∂φ(1)2

∂X
+

λ

λ2 − 2δσ
∂u

(2)
py

∂Y
, (25)
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u(2)py =
λ3

Ω2p(λ
2 − 2δσ)

∂2φ(1)

∂X∂Y
, (26)

∂2φ(1)

∂X2
+

∂2φ(1)

∂Y 2
= n(2)e − n(2)p . (27)

Eliminating the second-order perturbed quantities and making use of the first-order results,

we obtain a nonlinear partial-derivative equation in the form of the Zakharov-Kuznetsov

(ZK) equation,

∂φ(1)

∂T
+Aφ(1)

∂φ(1)

∂X
+

∂

∂X

µ
B

∂2

∂X2
+ C

∂2

∂Y 2

¶
φ(1) = 0. (28)

The nonlinearity and diffusion coefficients, A, B, and C, respectively, read

A = − 3λ2B

(1− β)2

∙
1 + (1− β)2

(λ2 − 2)3
¸
,

B =
1− β

2λ

∙
(λ2 − 2)2
2− β

¸
,

C = B

½
1 +

λ4

(λ2 − 2)2

∙
1

Ω2e
+

1

Ω2p(1− β)

¸¾
.

Note that the dispersion coefficients B and C are always positive (recall that β < 1 by

definition), while the sign of A is positive for λ below
√
2 (λ is assumed to be positive

throughout), and negative above. As one may already anticipate, this leads to positive

(negative) pulses prescribed below (above) a critical Mach number (scaled pulse speed) of
√
2.

The Zakharov-Kuznetsov equation (28) constitutes the key outcome of this model. The

anticipated balance among dispersion and nonlinearity within the ZK equation gives rise to

localized solitary wave solutions. Some of these solutions will be reviewed in the following.

IV. TRAVELLING WAVE ANALYSIS - PULSE SHAPED LOCALIZED SOLU-

TIONS

We shall use the travelling wave transformation ζ = LxX + LyY − ϑT , where ϑ is a real

variable (representing a constant speed, scaled by the electron thermal speed), Lx and Ly are

the directional cosines of the wave vector k along the X and Y axes, so that L2x + L2y = 1,

A0 = ALx and B0 = LxR, where R = BL2x + CL2y. Note that this ansatz represents
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propagation in a direction oblique with respect to the magnetic field, at an angle higher

than zero (|Lx| > 0 is assumed everywhere) and up to a 90o (viz. |Lx| ≤ 1). Equation (28)
is thus reduced to the ordinary partial differential equation:

−ϑu0 +A0uu
0 +B0u

000 = 0, (29)

where we have replaced φ(1) by u = u(ζ) for simplicity, and the prime in Eq. (29) denotes

the derivative with respect to ζ.

Integrating Eq. (29) once, by assuming the boundary conditions u, u0 and u00 → 0 for

ζ → ±∞, we obtain the pseudo-energy-balance equation

1

2
u02 + S(u) = 0. (30)

This relation suggests that the evolution of a solitary excitation is analogous to the problem

of motion of a unit mass in a (Sagdeev-like) pseudopotential, given by

S(u) =
1

B0

µ
−ϑ
2
u2 +

A0
6
u3
¶
. (31)

The solitary wave solution of Eq. (29) exist if d2S/du2 < 0 at u = 0. A value of d2S/du2

smaller than zero predicts the formation of solitary structure in an e-p-i plasma. Therefore,

we have

d2S/du2 = −ϑ/B0 < 0. (32)

It is noted that Eq. (32) is always satisfied, except for λ = λc =
√
2 (assuming that λ > 0,

with no loss of generality); the case β = 1 (implying no positrons, hence no pair plasma,

physically) is excluded. One can thus conclude that stationary solitary waves can always

propagate in this plasma system except for λ =
√
2; where solitons do not exist.

Assuming the boundary conditions φ(1) → 0 and dφ(1)/dζ → 0 at |ζ| →∞, we obtain a

solitary wave solution of Eq. (28) as

φ(1) = φ0sech2 (ζ/W ) , (33)

where φ0 = 3ϑ/ALx is the maximum amplitude of the potential perturbation and W =q
4Lx(BL2x + CL2y)/ϑ measures its spatial extension (width). The localized pulses predicted

via this form may be either positive or negative, depending entirely on the sign of the

nonlinearity coefficient A. The characteristics of these pulses will be discussed below.
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V. SOLUTIONOF THE ZAKHAROV-KUZNETSOV EQUATIONVIA AN IMETF

METHOD

We shall now go beyond the “traditional" solution of the Zakharov-Kuznetsov (ZK)

equation (28) by quadrature (see in the previous Section) by adopting an alternative method,

namely the improvedModified Extended Tanh-Function (iMETF) method introduced in Ref.

[22].

According to the iMETF method, we anticipate that Eq. (29) has the following solution

u(ζ) = a0 + a1ω + a2ω
2 +

b1
α1 + ω

+
b2

(α2 + ω)2
, (34a)

with
dω

dζ
= k + ω2, (34b)

where a0, a1, a2, b1, b2 and k are arbitrary constants to be determined latter, and ω, α1 and

α2 are functions of ζ.

The Riccati Eq. (34b), has the general solutions: for k < 0

ω = −
√
−k tanh(

√
−kζ) or ω = −

√
−k coth(

√
−kζ), (35)

for k = 0,

ω = −1
ζ
, (36)

and for k > 0,

ω =
√
k tan(

√
kζ) or ω = −

√
k cot(

√
kζ). (37)

Substituting Eq. (34a) in Eq. (29) and making use of Eq. (34b), we obtain a polynomial

equation in ω(ζ). Equating the coefficients of ω to zero will result in an overdetermined

system of algebraic differential equations with respect to a0, a1, a2, b1, b2, α1, α2, k, Lx, Ly

and ϑ. Combining with Eqs. (35)-(37), we obtain a complete new set of solutions, which

will be presented in the following.

For k < 0, two different solutions are obtained,

u(ζ) =
ϑ− 8kB0

A0
+
12kB0 tanh

2(
√
−kζ)

A0
, (38)

or

u(ζ) =
ϑ− 8kB0

A0
+
12kB0
A0

h
tanh2(

√
−kζ) + coth2(

√
−kζ)

i
. (39)
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For k = 0,

u(ζ) =
ϑ

A0

µ
1− 12B0

ζ2ϑ

¶
. (40)

For k > 0,

u(ζ) =
ϑ− 8kB0

A0
− 12kB0 tan

2(
√
kζ)

A0
, (41)

or

u(ζ) =
ϑ− 8kB0

A0
− 12kB0

A0

h
tan2(

√
kζ) + cot2(

√
kζ)
i
. (42)

Finally, in the particular case where k = −1 and ϑ = 4B0, we obtain

u(ζ) =
12B0
A0

(1− c2)

∙
1− 2c

c− tanh ζ −
1− c2

(c− tanh ζ)2
¸
, (43)

where α1 = α2 = c [cf. (34a)] is here an arbitrary function of ζ. Note that A0 6= 0 and

B0 6= 0 is understood everywhere in the above solutions. It may be pointed out for rigor that,
although solutions (38)-(42) can also be obtained by the modified extended tanh-function

method [25], yet the latter cannot recover solution (43).

A. Pulse-shaped localized solutions via the iMETF method

Anticipating localized solutions which vanish far from the origin, we may impose u, u0

and u00 → 0 for ζ → ±∞, to find that the only parameter choice allowing for a localized
solution is k = −ϑ/4B0. In this case, solution (38) reduces to

u(ζ) = u0 sech
2(ζ/W ). (44)

It is straightforward to see that Eq. (44) is the only localized solution from (38). Here,

u0 = 3ϑ/A0 is the maximum (potential perturbation) amplitude and W =
p
4B0/ϑ is the

spatial extension (width) of the localized pulse. We note that this coincides with expression

(33) above, here recovered via the iMETF method. However, the method employed in this

Section also provides alternative types of solutions, in addition to the latter one, as we shall

see below.

To investigate the nature of the solitary structure (represented by Eq. (44)), we have

numerically analyzed the potential amplitude u0 and investigate how the phase velocity λ and

the ion-to-electron density ratio β change the profile of the maximum potential perturbation.

From Fig. 2, it is seen that increasing the propagation speed λ leads to a decrease in

the soliton amplitude u0 for a given (any, fixed) value of the ion-to-electron density ratio β.
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At a critical velocity λ =
√
2, the sign of A — and hence of the pulse amplitude u0 — shifts

to negative, so the effect is inversed: higher speed λ then corresponds to a higher negative

pulse amplitude (i.e., absolute value of u0). The ratio β also has a two-fold effect on the

potential amplitude u0, i.e., for low propagation speed λ < 1.44 the amplitude increases as

the ion-to-electron density ratio β increases. However, for high propagation speed λ > 1.44,

increasing β leads to an increase of the soliton amplitude u0.

The dependence of the spatial extension (width) W on the phase velocity λ, the ion-to-

electron density ratio β, the rotation frequency Ω0 and the electron (positron) gyrofrequency

ωc are displayed in Figs. 3 and 4. In Fig. 3, it is noticed that increasing the propagation

speed λ (λ . 0.6) leads to a decrease of the width W . For λ & 0.6, by increasing the phase
speed λ the width increases. However, increasing the ion-to-electron density ratio β leads

to a decrease of the soliton width. For certain values of λ (low phase speed) and β (high

ion-to-electron density ratio), one can notice a depletion of the width; see Fig. 3b. In Fig.

4, we have investigated the effect of the rotation frequency Ω0 and the electron (positron)

gyrofrequency ωc on the properties if the soliton width W . It is shown that the width

W influences by the rotation frequency Ω0 and the electron (positron) cyclotron frequency

ωc. In particular, an interesting effect is witnessed when ωc − 2Ω0 → 0, where the width

W diverges, leading to the dispersion-nonlinearity-managed excitations are expected to be

not satisfied at these values of ωc and Ω0, notice the white region in Fig. 4b. After the

nonexistence region, the width decreases with increasing ωc and Ω0.

Now, we shall investigate the behavior of Eq. (38) if k 6= −ϑ/4B0. Recall that k is an
arbitrary negative value. We shall set k = −1,−1.2 and −1.4 and investigate the form of the
solution (38); cf. Fig. 5. It is obvious that the pulse does not vanish at infinity although it

has the localized form. Therefore, the arbitrary value k plays a role to obtain a pulse-shaped

localized solution.

B. Alternative solutions

First of all, in view of the analysis and interpretation of our results, we should

point out that the solutions (39)-(42), at any instant t, allow for the existence

of some singular point where the solutions are infinite. It should be stressed

that the ZK equation is derived using perturbation theory, and thus assumes
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weak-amplitude excitations and in fact fails in the vicinity of singular points.

Our predictions on singular solutions can therefore inevitably not claim to ap-

ply quantitatively to all physically relevant situations, despite their qualitative

interest and novelty, as pointed out in this article.

Solution (40) is a rational solution, which may be helpful to explain some physical phe-

nomena; see the discussion in Ref. [23]. However, it is obviously (upon inspection) a

divergent localized form, i.e. it accounts for an infinite potential perturbation at the cen-

ter (ζ = 0), and is thus rather physically questionable with respect to electrostatic plasma

excitations.

Solutions (39), (41) and (42) are singular periodic solutions which develop a singularity

at a finite point, i.e., for any fixed t = t0 there exists a value of ζ0 at which these solutions

blow-up; see Fig. 6. Note that these excitations never reach zero, except in a very specific

combination of parameter values. Our prediction for a potential excitation blow-up indicates

that an instability in the system may occur due to the effect of nonlinearity (which in our

case depends on the ion concentration β and the propagation speed λ). In simple words, the

balance between dispersion and nonlinearity [24] may be disturbed by variations of plasma

quantities (e.g. temperature, pressure, density, etc.). This might locally destroy localized

excitation stability leading to an amplitude increase to very high values; since this represents

an increase in the electric potential, it might lead to an acceleration of the moving particles.

We shall now study the behavior of the solution (43). The latter can support a bell-

shaped profile for c > 1, while for c < 1 an explosive pulse is expected to propagate. For

c = 1, Eq. (43) is a simply constant solution. Recalling that c is an arbitrary constant,

which can be assumed any physical parameters such as propagation angle Ly, propagation

speed λ, ion-to-electron concentration ratio β, rotation frequency Ω0, electron and positron

gyrofrequency ωc.We have numerically analyzed the solution (43) in Fig. 7 and investigated

how the constant c changes the profile of the pulse (from solitary pulse to explosive pulse).

It turns out that the bell-shaped solitary pulse can exist for c = 1.2, however for c = 0.4 an

explosive pulse exists. An explosive mode cannot be obtained from the solution (38), while

the new solution (43) indicates that either solitary or explosive pulses can propagate in the

system depending on the physical parameters. This result could not have been obtained

from the original modified extended tanh-function method [25].
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VI. SUMMARY

We have studied the nonlinear propagation of electrostatic excitations in rotating magne-

tized electron-positron-ion plasmas. We have found that both subsonic and supersonic waves

may propagate in the system. A supersonic solitary pulse propagates for small values of the

ion-to-electron density ratio; however if the positive ion concentration increases beyond a

certain threshold, only a subsonic solitary pulse may propagate in the system. Furthermore,

only supersonic pulses are affected by the positron-to-electron temperature ratio, while the

latter plays no important role on the behavior of subsonic pulses.

The evolution of the system is governed by a Zakharov-Kuznetsov equation. The latter

has been solved analytically and investigated numerically using an improved modified ex-

tended tanh-function method. New solutions of the evolution equation were obtained, which

allow the propagation of either solitary or blow-up pulses.

The present results may be useful in understanding the nonlinear properties of electron-

positron-ion plasmas in astrophysical environments, such as in active galactic nuclei, in

pulsar magnetospheres, in solar atmosphere, in neutron stars, etc.
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Figure Captions
Figure 1 (color online)

The variation of phase velocity λ [given by Eq. (22b)] with β and σ is depicted. Note

that lighter regions in (b) show higher values of the pulse speed λ. The separatrix (thick

line) in (b) depicts the sonic limit, i.e., |λ| = 1.

Figure 2 (color online)

The variation of the soliton amplitude u0 [defined in Eq. (44)] with β and λ for Lx = 0.3.

Light-colored regions in (b) correspond to higher values of the soliton amplitude u0.

Figure 3 (color online)

The variation of the soliton width W [defined in Eq. (44)] with β and λ is depicted, for

Lx = 0.3, Ω0 = 0.1, and ωc = 0.3. Light-colored regions in (b) correspond to higher values

of the soliton width W.

Figure 4 (color online)

The variation of the soliton width W [defined by Eq. (44)] with Ω0 and ωcisdepicted, for

β = 0.4, λ = 0.6, and Lx = 0.7. Light-colored regions in (b) correspond to higher values of

the soliton width W.

Figure 5 (color online)

The profile of the solution (38) is depicted, for k = −1 (solid line), k = −1.2 (dotted
line) and k = −1.4 (dashed line). Here, Lx = 0.866, Ly = 0.5, λ = 1.1, β = 0.55, ωc = 0.15,

and Ω0 = 0.149.

Figure 6 (color online)

The profile of explosive (divergent) pulses predicted is depicted; (a) localized explosive

pulse, as defined by Eq. (39); (b) periodic solutions, as defined by Eq. (41), and (c) as

defined by Eq. (42). Here, Lx = 0.866, Ly = 0.5, λ = 1.1, β = 0.55, ωc = 0.15, and

Ω0 = 0.149.

Figure 7 (color online)

(a) The profile of the solitary pulse for c = λ = 1.2 and β = 0.414 and (b) an

explosive/blow-up pulse for c = λ = 0.4 and β = 0.89 [defined by Eq. (43)] are depicted in

the X − Y plane. Here, ωc = 0.15, and Ω0 = 0.149.
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