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The propagation of nonlinear dust-lattice waves in a two-dimensional hexagonal crystal is
investigated. Transverse (off-plane) dust grain oscillatory motion is considered in the form of a
backward propagating wave packet whose linear and nonlinear characteristics are investigated. An
evolution equation is obtained for the slowly varying amplitude of the first (fundamental) harmonic
by making use of a two-dimensional lattice multiple scales technique. An analysis based on the
continuum approximation (spatially extended excitations compared to the lattice spacing) shows
that wave packets will be modulationally stable and that dark-type envelope solitons (density holes)
may occur in the long wavelength region. Evidence is provided of modulational instability and of
the occurrence of bright-type envelopes (pulses) at shorter wavelengths. The role of second neighbor
interactions is also investigated and is shown to be rather weak in determining the modulational
stability region. The effect of dissipation, assumed negligible in the algebra throughout the article,
is briefly discussed. © 2009 American Institute of Physics. [DOL: 10.1063/1.3121221]

I. INTRODUCTION

Dust crystals are space-periodic strongly coupled dusty
plasma (DP) configurations (Debye lattices) which occur due
to the strong electrostatic interaction between massive,
heavily charged, micron-sized dust particulates (dust grains)
present in a (dusty or complex) plasma.l‘2 The formation and
dynamics of dust crystals have been studied in various
experiments,zf7 where dust particles were essentially created
by injecting artificial microspheres, which subsequently ac-
quire a high electron charge via inherent dynamic charging
mechanisms. Such dust quasilattices typically bear a two-
dimensional (2D) hexagonal structure, although various two-
and three-dimensional configurations have also been
repor’ted.2 One-dimensional (1D) dust crystals have also been
fabricated in experiments by making use of appropriate con-
finement potentials.6’7

Dust lattices support a variety of linear modes of which
we single out: longitudinal® (~x, acoustic) and a
transverse (~y, shear) in-plane, as well as a transverse
(out-of-plane, inverse-optic) dust-lattice wave (DLW)
mode(s). Beyond the linear regime, nonlinear effects may
influence or even dominate DL dynamics if wave amplitudes
become significant. This may be due to the intrinsically non-
linear character of electrostatic coupling to geometric effects
(mode coupling), to interaction potential anisotropy,” or to
sheath potential anharmonicity. The latter is of crucial impor-
tance in the vertical (off-plane) mode to be treated here; in-
deed, we need to stress the fact that the sheath potential,
although generally believed to be parabolic,12 may take a
anharmonic form for low plasma pressure and/or density, as
suggested by ab initio calculations'® and also by an interpre-
tation of earlier experimental results (see the discussion in
Ref. 14 and references therein). A theoretical treatment of the
nonlinear aspects of DL modes in 1D Yukawa crystals has
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been carried out in Ref. 15, where the above aspects are
incorporated in an exact nonlinear lattice model.

Recent experirnental5 and numerical (molecular
dynamics)16 investigations have established the occurrence
of 2D modulated transverse dust-lattice wave (TDLW) pack-
ets moving at a negative group velocity, i.e., the wave is
backward propagating. The observed waves form a 2D ana-
log of the TDL, i.e., vertical, mode (as modeled in 1D
crysta1s9’10), obeying similar qualitative physics yet substan-
tially different dispersion laws in 2D, as discussed in Refs. 5
and 16. This “bending mode” was theoretically investigated
in Ref. 17 in the linear region, and that linear model has
succeeded in the interpretation of earlier experimental and
numerical findings. Our study aims at extending those results
to the weakly nonlinear regime. The results in Refs. 5, 16,
and 17 are naturally recovered in our formulation below.

A well-known nonlinear effect manifested in the dynam-
ics of waves propagating in nonlinear dispersive media is
amplitude modulation, referring to the slow space and time
variation in the wave’s amplitude, which may potentially be
subject to modulational instability. Modulationally unstable
wave packets may either collapse in response to external
perturbations or evolve toward localized structure (envelope
soliton) formation due to a mutual balance between disper-
sion and nonlinearity. This generic mechanism is well known
in various physical contexts'™" to be related to phase har-
monic generation and energy localization via the formation
of localized excitations (solitons). Analytical theories for the
amplitude modulation of DLWs in 1D dust crystals due to
the carrier phase self-interaction have been furnished for
both longitudinal20and transverse (off—plane)21 1D modes.
The nonlinear aspects of in-plane motion in 2D lattices were
covered in Ref. 22. The investigation presented here follows
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the same methodology, yet for the 2D transverse (off-plane)
waves.

Our aim here is to study the amplitude modulation of
transverse off-plane DL wave packets in 2D dusty plasma
crystals. We shall investigate the occurrence of modulational
instability, which may be viewed as a first stage triggering of
the out-of-plane lattice instability observed numerically,m(a)
presumably leading to the phase transition suggested in that
reference. Modulational instability may also be the first stage
of the generic (i.e., for any symmetric potential) structural
instability suggested in Ref. 23. We must point out for rigor
that the modulation theory employed here is a mildly nonlin-
ear theory, which claims to model weak vertical displace-
ments. The latter point justifies our choice in neglecting the
coupling to in-plane dust grain motion, since we are only
interested in the very first stage of the manifestation of non-
linearity in off-plane motion. A more general theory should
take into account horizontal-to-vertical motion coupling and
should be the subject of forthcoming work of ours. Accord-
ing to earlier results,24 we will assume interactions between
charged dust particles to be of the “standard” screened elec-
trostatic (Debye—Hiickel or Yukawa) type, modeled via a po-
tential U(r)=q* exp(—r/\p)/4meyr (here N}, denotes the ef-
fective DP Debye radius,’ q is the dust grain charge assumed
constant, and g is the permittivity of vacuum).

Our scope lies in the interpretation of dusty plasma ex-
periments in the laboratory. However, going beyond dusty
(complex) plasma physics, this work can be viewed as a
fundamental investigation of nonlinear transverse motion in
hexagonal crystals, which may be of relevance in other
physical contexts where Debye crystals structures occur
(e.g., ultracold plasmas or one-component plasmas) or in lat-
tice theory in general.

The outline of the manuscript is as follows. The model
equations of motion are derived in Sec. II and simplified by
adopting a continuum approximation. The derivation of an
evolution equation for the modulated wave amplitude is pre-
sented in Sec. III by assuming transverse wave propagation
either along a principal axis of the hexagonal structure or
perpendicular to it. The effects of second neighbor interac-
tion (SNI) on linear and nonlinear waves are investigated in
Sec. IV. The modulational stability in both cases is investi-
gated and the results are then summarized in Sec. V.

Il. ANALYTICAL MODEL AND LINEAR WAVE
CHARACTERISTICS

We take into account nearest neighbor interactions
(NNIs) only, i.e., each particle (m,n) interacts with  the three
other pairs of particles (m=*1,n), (m*=1/2, n-+3/2), and
(m=*=1/2, n+ V37 2). The physical situation considered is a
2D hexagonal crystal (assumed infinite for simplicity) con-
sisting of negative dust grains, which are located at equidis-
tant site a, see Fig. 1. If the particles are not at their equilib-
rium positions, we may define the six length variables [/, /,,
I3, 14, 15, and I, which represent the distances from the par-
ticle (m,n) to the nearest particles, respectively,
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FIG. 1. (Color online) Hexagonal lattice geometry: (a) elementary cell: the
six nearest particles around particle n, m; (b) the six nearest particles and the
six second neighbors around particle are depicted as empty circles (forming
the central hexagon) and as solid circles (forming the external hexagon),
respectively.

;= va® + (AZi)z, (1)
where Az; (for i=1,2,...,6) denotes the displacements of

the respective particles from their equilibrium positions in z
direction, and

AZI = Zm+1,n — Zmns AZZ =Zm-1,n— Zmons

AZS = Zm+l/2,n+\f§/2 - Zm,m AZ4 = Zm—l/2,n+y“§/2 - Zm,n’ (2)

Azs= Zm+1/2,n=\3/12 = Zm.no Azg= Zm-1/12,n=\3/12 = Zmn-

The equation of motion in the z— direction is

A
5 +v———
dt dt

1 1
=—(F,-~Mg)+—F., 3
yFe— M)+ F 3)

where the electrostatic binary interaction force in z— direc-
tion F, exerted on two grains situated at a distance r is de-
rived from a potential function U(r),
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F.=-adU(r)/dz, (4a)
6
e (352 B
1 U] LAz,
55[32 (li-a) l—l} (4b)

Upon defining G,=(dU/dr)|,—p, Go=(*U/3r?)|,—,» and Gy
=1/2(8U/ dr’)|,_,. we have calculated the polynomial coef-
ficients G, G,, and G5 for the Yukawa potential.

7 exp(- «)
G =- 1+ , 5
! 47780)\2( <) K2 ©)
q exp(= x)
G,= T2+ 2k+ K)——5—, (6)
4areohy K
¢ 5, exp(= &)
y=— 4(6+6;<+3K + K)o, (7)
4meghy K

where k=a/\p.
We shall assume a smooth, continuous variation in the
field intensity E as well as the grain charge ¢ (which may
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vary due to charging processes) near the equilibrium position
70=0. Thus, following the method and notation in Ref. 21,
we will expand as

E(z) = Eg+ Ejz + SEp2 + - (8)

q(2) = qo+qhz + 3q42% + -+, 9)

where the prime denotes differentiation with respect to z and
subscript “0” denotes evaluation at z=z,. Accordingly, the
electric force F,-Mg=q(z)E(z)—Mg is expressed as

F,(2) = Mg =~ — Mg+ qoEy + (qoEy + q0Eo)z
+0.5(qoEf + 2q0E + qoE)) 2> + -

~ Y+ VLA T (10)
The zeroth-order term of electric force balances gravity at z,
viz., goEg—Mg=0, while the first order —1y, =Mw§ is the ef-
fective width of the potential well; the value of the gap fre-
quency o, may either be evaluated from ab initio calcula-
tions or determined experimentally. For instance, in Ref. 18,
the frequency w, is typically of order of w,/27=20 Hz and
v:==v/2, v3=0.07y,. Now, Eq. (3) becomes

Tm+1/2,0+\3/2 = Zm+1/2,n=\312 ~ Tm=1/2,n+3/2

- Zm—l/2,n—v‘§/2:| + KS[(ZmH,n - Zm,n) + (Zm—l,n - Zm,n)3 + (Zm+1/2,n+\5§/2 - Zm,n)3 + (Zm+l/2,n—\5/2 - Zm,n)3

ZpnF Vigpgn=— wﬁzm,n -K lz,z,,yn Zyn + Q62,0 = Zins 1
+ (2120432 = Zm,n)3 + (Zme1/2.0-\32 = Zm,n)3]’
where
K== (12)
K==, (13)
3 21\64101 21\322 ’ (14)
Qz——% 477_80%(1 + K)exp(— ). (15)

We note that upon keeping the single particle contribu-
tions (first line only), Eq. (11) reduces to the equation of
motion suggested in Ref. 25 for dust particle motion in a
anharmonic sheath potential. The remaining terms in the
right-hand side are due to the electrostatic coupling, includ-
ing linear (term in Q%) and nonlinear (term in K;) contribu-
tions.

(11

A. Linear dispersion relation

Waves can propagate along an arbitrary direction, which
is here denoted by an angle 6, representing the angle between
the wave vector k and a primitive translation vector (along
the x axis), i.e., k,=k cos 6 and k,=k sin 6. Retaining only
linear contribution in the form of “phonons” of the type

Uy = Uy €Xp[— it + ika(m cos O+ n sin 6)] +c.c.,

we obtain an inverse-optic-mode-like dispersion relation
from Eq. (11),

k
o +ivo= w§ - 492{ sinz{ Eacos 6]

. 5| ka T
+sin“| —cos| —— 6
2 3
. | ka T
+sin“| —cos| —+ 6 .
2 3

(16)
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FIG. 2. (Color online) Surface plot of (a) the normalized frequency w/w,,
(b) the normalized group velocity v,=w’(k), and (c) the normalized group-
velocity dispersion coefficient P=w"(k)/2 as a function of the (normalized)
wave number and the angle 6. Here, we have taken )/ w,=0.305 (as in Ref.
17). Only ENI (first neighbor interaction) is taken into account here.

In the special cases #=0 or §=/2 we obtain

k k
0=0:0% + ivw = 0> — 402 sin2<—a>+2 sinz(—a) ,

(17a)

\"gka )

0= 7/2: 0% + ivw= wz— 80?2 sin2< 1

(17b)

The dispersion relation obtained here provides the
frequency-wave number dependence for TDLW propagation
at any direction inside the x-y plane. This expression is iden-
tical to the expression obtained by Vladimirov et al."’ The
dispersion relation is an inverse opticlike dispersion, so the
frequency at zero wave number (infinite wavelength) is finite
and the slope of the curve w=w(k) is negative for small k.
This information is true for all angles 6, as obvious from
Figs. 2(a) and 3. Note that Fig. 3 here is quasi-identical to
Fig. 3 in Ref. 16(a) (apart from the difference in scaling and
notation).
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FIG. 3. (Color online) The dispersion relation (36) is plotted (in the colli-
sionless case) for different values of the propagation angle. The solid curves
are for FNI while the dashed ones are with SNIs. The angle of propagation
is as follows: upper curves: #=30°; middle curves: #=15°; bottom curves:
6=0. Note that the solid curves agree perfectly with Fig. 3 in Ref. 16(a).

B. Group velocity

The group velocity of TDLWs (for v=0) reads
2
v, = ——{cos @ sin[ka cos 6]
w

+ cos(7/3 — O)sin[ka cos(7/3 — 6)]
+ cos(7/3 + )sin[ka cos(7/3 + 6)]}. (18)

The dispersion relation presents a negative group velocity for
wave numbers k below a threshold, say, k ;e and a posi-
tive group velocity for k> k.;ica. The value of kgigea de-
pends on direction of wave propagation, see Figs. 2(b) and 4.
These results are in perfect agreement with the results ob-
tained via numerical simulation.'® Figure 4 shows a contour
plot of the curve v,=0, which thus determines Kjjca, Where

12
10}
8,
N
-~

o(rad)

FIG. 4. (Color online) Contour plot of v,=0 up to FNIL. The normalized
Kegticar @ @ function of 6. The contour plot up to SNI is practically super-
posed on that for FNIL.
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the group velocity changes sign as a function of 6. As dis-
cussed in Ref. 16(a), the dispersion law in the 2D crystal
case differs substantially from the one obtained for 1D crys-
tals. The difference is marked in the form of the dispersion
relation (16) and is also in the sign of the group velocity
(positive/negative). Our findings recover perfectly those ear-
lier results.

C. Continuum approximation

If the characteristic length scale of the wave form, say,
L, is much larger than the interparticle spacing a, then the
continuum approximation can be invoked in order to convert
the difference [Eq. (11)] into a differential equation for z,, .
now expressed as continuous function u(x,r). We expand
Zm+1p and Z,,41/,+ 32 around z,, in powers of a/L and
retain terms of the order of (a/L)* to obtain

N du  a*Pu N A Pu dtFu
Zp1n=2Zmn = a— + Tt ——+ -,
mexdn = Smn ax 2 9x? 6 x> 24 9x*

(19)
N adu N \Ea&u +a2(92u
Zns1pntB3n=Zpn ¥ T T— X —7T—+—7"
12,n=4312 ’ 2 dx 2 dy 8 ox’
3a® Fu \Eaz Fu
—— =* — (20)

* +
8 gy’ 4 oIxady
Substituting from Egs. (19) and (20) and retaining terms of
order in a*, the equation of motion (11) takes the form of a
differential equation for the particle displacement u,, (1)
=u(x,y,1),

20)2
ﬁ+vu=—w§u—K1u2—K2u3— > [16(uty, + uy,
27a*K
+ a2(uxxxx + Uyyyy + 2uxxyy)] + 24 3 [3(ux)2uxx

+ S(M},)zuw + (ux)zuyy + (uy)zuxx +duuu,,].
(21)

Note that the friction term introduced on the left-hand
side of the equation of motion (11) and its continuum version
(21) lead to the appearance of the damping rate v (due to
dust-neutral collisions) in the dispersion relations (16), (17a),
(17b), and (18). Dissipation in dusty plasma experiments is
admittedly always present, yet may acquire very small values
depending on plasma density and pressure.26 In the follow-
ing, we shall assume a very small damping rate and will
therefore neglect damping by setting v=0 in the nonlinear
analysis to follow. This is expected to incur a relative error of
the order of 17/ a)ﬁ, which is reportedly small in experiments.
Our results will later be extended by incorporating dissipa-
tion effects omitted here.

Modulated transverse off-plane dust-lattice wave packets...
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lil. AMPLITUDE MODULATION AND DYNAMICS—
DERIVATION OF A NONLINEAR SCHRODINGER
EQUATION

We assume that the transverse wave propagates in plane
in an arbitrary direction, given by the general form X cos 6
+y sin 6. We shall employ the standard lattice version of the
. . . 20,21 - . .
reductive perturbation technique in the quasicontinuum
limit.

A. A 2D lattice perturbation scheme

Allowing for a weak departure from the small-amplitude
(linear) theory, we consider

I/l=8u1+82u2+"', (22)

where & (<1) is a small (real) parameter characterizing the
strength of the nonlinearity. The function u; at each order is
assumed to be a sum of /th order harmonics, viz.,

©

U=+ > {uj, explil(mk cos 6+ nk sin - wt)]
=1

+c.c.}, (23)

where c.c. denotes the complex conjugate.

The amplitudes uj; are assumed to be slowly varying
function of time and space via the set of independent
stretched variables

&= (Rx; + ¥y, —voty)
and
T=t2=8t1. (24)

The analytical expression for the propagation velocity v is
anticipated as a compatibility constraint; the outcome is, in
fact, expected to yield the group velocity v,=w(k) in the
continuum approximation. We shall now substitute these ex-
pansions into the equation of motion (21) and collect the
contributions appearing in each power in .

B. First order—linear dynamics in the continuum limit

At first order, we obtain a linear equation which is
solved for the first harmonic solution [cf. Eq. (23) for [=m
=1; the zeroth-order amplitude vanishes]. The dispersion re-
lation reads

Ol1-— (25)

3k%a* ( k2a2>
which coincides with the dispersion relation (16) in the limit
ka<<1, see Fig. 5.

We note that quite surprisingly, the angle dependence
disappears in the dispersion law once the continuum limit
ka<<1 is considered. It is straightforward to verify (upon a
simple McLaurin expansion near zero k) that the angle van-
ishes in the first (five) terms in a small k expansion, and thus
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FIG. 5. (Color online) (a) Linear dispersion curve for »=0 and 6=0; com-
pare the discrete result (dashed line) from Eq. (17a) to the result of the
continuum approximation (solid line) from Eq. (25). (b) Same for SNL

would not appear in any of the quantities to follow herein.
Still, we add for rigor that the angle does appear in the alge-
braic evaluation of the coefficients P and Q below, yet only
through combinations of terms which all vanish (upon mak-
ing use of appropriate trigonometric identities).

C. Second order—group dispersion

In the second order, considering the annihilation of secu-
lar terms we obtain the following expression for the propa-
gation velocity v:

3k 2 k2 2
Vo= — —aﬂz<1 - —a) (26)

It is easy to verify that vy=v, con=dw/dk, as physically ex-
pected. Equation (26), here obtained as a condition for secu-
lar term annihilation, can therefore be also derived either
from Eq. (25) or as the continuum expansion of Eq. (18)
above. The first harmonic u;, therefore propagates at the
group velocity in a(n) (arbitrary) direction, as suggested by
the functional dependence u;=u;(£,...), where ¢
=g(x cos f+y sin 6-v ) here determines the slowly varying
amplitude reference frame.
The solution obtained up to this order is given by

uj=e(uy; exp igp+c.c.) + &7 us+ (uy exp ip+c.c.)

+ Uy, exp 2ip+c.c.]+ 0(g?), (27)

Phys. Plasmas 16, 053706 (2009)

where the fundamental carrier (first harmonic) phase was de-
noted by ¢=k(m cos 6+n sin )—wt. The harmonic ampli-
tudes are given by

— 2K, |uy)?
o= % (28)

8

Kyuj,
40 - ] + 6K a’Q*(1 - K*a%/4)

Uy = (29)

Notice the generation of second and zeroth harmonics, which
is entirely due to the sheath potential anharmonicity; see that
the harmonics only involve (the quadratic force or cubic
sheath potential nonlinearity coefficient) K, defined in Eq.
(12) above; higher-order nonlinearity only affects amplitude
dynamics in higher orders, see below. We also note that the
zeroth harmonic was found to vanish (1,,=0) in qualitative
agreement with the 1D transverse wave case, see Ref. 21
(and, in fact, in contrast with the 1D longitudinal wave case,
see Ref. 20). A detailed qualitative discussion of these mat-
ters is carried out in Ref. 15. The above formulation provides
a direct tool for harmonic generation related diagnostics to
be used in experiments.

D. Third order—NLS equation

In third order in epsilon, the condition for annihilation of
secular terms leads to the nonlinear Schrodinger (NLS) equa-
tion

d PaZU QU|U*=0 (30)
i—+P—+ =0,

ar &
which describes the evolution of the fundamental (carrier)
harmonic amplitude u,;=u,;(£,7) (7=&% is a slow time
scale; the first order space variable ¢ was defined above).

The dispersion coefficient P is given by

2 2002 22
_ -V, 3a0 (1_3ka )
2w 4w 8

(€2))

Note that P is related to the curvature of the dispersion curve
as P=d’w/2dk?, as expected.

The cubic nonlinearity coefficient is due to the nonlin-
earity induced by the sheath “substrate” potential via K; and
K, and by the electrostatic coupling via Kj. It is given by

s o8 .
T20] W 40’- 0l + 6021 - Kad) T
27k*a*K
- Tﬂ . (32)

Recapitulating, the dynamics of the wave fundamental
harmonic amplitude u;;=U(§,7) is governed by the NLS
[Eq. (30)] and is thus essentially dynamics by the interplay
among the dispersion and nonlinearity coefficients P and Q.
Their analytical behavior on relevant parameters will be in-
vestigated below once their role in dynamics is briefly sum-
marized in what follows.
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IV. EFFECTS OF SECOND NEIGHBOR INTERACTION

In Secs. IT and III, we have made the choice to keep only
NNIs, hence neglecting longer-range effects. For first prin-
ciples, this appears to be justified by the fact that the lattice
constant is of order of magnitude comparable to the Debye
radius, which measures the range of interparticle interac-
tions. On the other hand, electrostatic interactions (albeit
screened) are characterized by their long range of action, so
one might wonder whether the contribution of longest, e.g.,
second order, neighbors would play a significant role. There-
fore, it appears appropriate to investigate the strength of SNI.
Below, we shall show that the addition of SNI in the model
certainly provides a small qualitative, yet no major quantita-
tive modification in the dynamics, thus in principle confirm-
ing our FNI (first neighbor interaction) result above. We have
chosen to dedicate a separate brief section to SNIs in order to
trace their influence in a transparent manner. Nevertheless,
once the analytical derivation has led us to the anticipated
evolution equation for the amplitude [e.g., Eq. (30) above],
the analysis will be carried out in Sec. V in parallel, i.e.,
comparing among the FNI and SNI models.

3

Modulated transverse off-plane dust-lattice wave packets...
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We shall assume that each particle (m,n) interacts with
three pairs of particles, which are located at the sites
(m,n* \6), (m=*3/2, n- \6/2), and (m=*=3/2, n
+V§/ 2). The distance between the central particle and the
second neighbors is \Ea in the directions #=/6, 37/6,
5m/6, 7m/6, 91/6, and 117/6. The electrostatic binary in-
teraction force in z— direction F, exerted on two grains situ-
ated at a distance r is derived from a potential function U(r),
see Eq. (4) above. By defining G|=(3U/dr)|,-3, and G}
=(PU/ )|, 3, we can compute the polynomial coeffi-
cients G| and G, for the Yukawa potential. These are

2 — .exp(=V3k)
Gl=- L1+ B (33a)
4areg\p (V3k)
and
2 2y
, q [ = 21€Xp(= V3K)

= [2+2(\N3k) + (N3k)* ]|—=——. (33b)

T e, (\3x)?

Now, the discrete lattice equation of motion becomes

.. . 2 2 — - —
Zmn + Vipn=— wgzm,n - Klzm,n - KZZm,n + Q{[6zm,n T+l ~ Zm=10 ~ Tm+1/2,00\3/2 ~ Zm+1/2,0=3/2 ~ Zm=1/2,n+3/2

- Zm—l/2,n—\3§/2] + a[6zm,n ~ Zmn+\3 T Zmn—3 T Tm+3/12,n4+\3/2 T Zm+3/2,n—\3/2 ~ Zm=3/2,n4y3/12 ~ Zm—3/2,n—\f§/2]}

3 3 _ 3 _ 3 _ 3
+ K3{[(Zm+l,n - Zm,n) + (Zm-l,n - Zm,n) + (Zm+1/2,n+v‘3/2 - Zm,n) + (Zm+1/2,n-\f3/2 - Zm,n) + (Zm-1/2,n+¢3/2 - Zm,n)

= 3 - 3 - 3 - 3 - 3
+ (Zm—l/Z,n—y‘B/Z - Zm,n) ] + B[(Zm,n+\f‘3 - Zm,n) + (Zm,n—y“3 - Zm,n) + (Zm+3/2,n+y“3/2 - Zm,n) + (Zm+3/2,n—\53/2 - Zm,n)

3 — 3
+ (Zm—3/2,n+\s‘§/2 - Zm,n) + (Z111—3/2,n—\f3/2 - Zm,n) ]}s

where the parameters a=G|/\3G, and B=[G]
—(\Ea)Gé]/ [3v3(G,—G,a)] represent the second neighbor
contribution. Combining with Egs. (33) and (34) above, the
SNI parameters are given by

-
1 1+V3K) =
=—F — 3-1 35
@ 3\,,3< Tex exp[— x(\ )] (35a)
and
1 1+\’§K+K2> =
=—F=|——75 -k(V3-1)]. 35b
B 3\,,3<3+3K+K2 exp[— x(\ )] (35b)

Obviously, the FNI expressions above are recovered in the
limit a=8=0. Figure 6 shows the parameters « and 3 as a
function of k. We stress the fact that they both take small
values (of the order of 0.1 or less approximately) in the re-
gion of experimental interest («x values near unity) a priori

(34)

suggesting a small contribution by SNIs.
The linear dispersion relation [cf. Eq. (16) above] now
becomes

0.2

0.15¢
&
(0]
©
IS
© 011
©
o
7 B

0 L L L
0 0.5 1 1.5 2

K

FIG. 6. (Color online) The parameters « and S (effect of SNI) as a function
of k.

Downloaded 22 May 2009 to 194.225.93.112. Redistribution subject to AIP license or copyright; see http://pop.aip.org/pop/copyright.jsp



053706-8 Farokhi, Shahmansouri, and Kourakis

Phys. Plasmas 16, 053706 (2009)

k k k
0+ ivw = > — 4Q% sin? —acos 0| + sin® —acos<z - 0) + sin? —acos<7—7 + 0)
§ 2 2 3 2 3
\Eka \J'gka T \/gka T
—40%a sin® sin @ | + sin® cos(— - 0) + sin’ cos(— + 6’) . (36)
2 2 6 2 6

Note that only the linear SNI contribution via « enters the dispersion relation. Setting =0 to continue (see discussion above),

we now advance to the TDLW group velocity to find
2

8

V3aQ?

Again, as expected, expression (18) is recovered in the ap-
propriate limit. On the other hand, in the long-wavelength
region (for ka<<1) one obtains an approximate expression
that recovers expression (26) above for a=0. This continuum
approximation of Eq. (37) need not be stated here, as it is
exactly identical to the expression (40) for the propagation
velocity v, derived below as a compatibility constraint.
Recall that the continuum approximation allowed us to
pass from Eq. (11) to Eq. (21) above. The same procedure
now yields the SNI-modified continuous equation of motion

322

32

L 9 2 3
i+ vi =~ wou— K — Kou’ — [16(uty, + 1y,

X(1+3a) + a (g + Uy + 2140, (1 +90a)]
27a*K}
24

+ [3(u,)u,, + 3(u‘\,)2uyy + (ux)zuyy

+ () 21+ Au g, ], (38)

where K;=K3(1+9p). Equation (38) is to be compared with
Eq. (21), which is indeed recovered in the appropriate limit.
We note that the modification due to SNI being taken into
account is only quantitative (slight modification of coeffi-
cients) rather than qualitative [no structural modification in
Eq. (38) as compared to Eq. (21)] and is expected to be
rather weak (as indeed confirmed by the plots below).

At first order, we obtain a linear equation that is solved
for the first harmonic solution. The dispersion relation reads

3k%a? K2a?

2_ 2 2 ra
0% (1+3a) - T (1+9a) |, (39)

(l)=(1)g— B

which coincides with the dispersion relation (36) in the limit
ka<<1 (and switching off damping therein).

In the second order, imposing the annihilation of secular
terms, we obtain the following expression for the propaga-
tion velocity v:

3k 2 k2 2
voz——ZQZ l+3a—Ta(l+9a) . (40)

Q
v, = a—{cos 0 sin[ka cos 6] + cos(m/3 — O)sin[ka cos(m/3 — )] + cos(7/3 + O)sin[ka cos(w/3 + 0)]}
®

ofsin 0 sin[\e’gka sin @] + cos(m/6 — 6)sin[\'6ka cos(m/6 — 0)] + cos(m/6 — H)Sin[\r’gka cos(m6-0)]}. (37)

In third order in epsilon, the condition for annihilation of
secular terms leads exactly to the NLS [Eq. (30)] above. We
recall that it describes the evolution of the envelope (of the
fundamental harmonic amplitude) u;,=u,;(&¢, 7). The differ-
ence now, SNI being taken into account, lies in the modifi-
cation of the form of the coefficients appearing in Eq. (30).
The modified dispersion coefficient P is now given by

2 202 2.2
0?3480
p="Ce 2 30— (14 9a) | (41)
2w dow 8

Note that P is again related to the curvature of the dispersion
curve as P=d*w/2dk?, as expected [and indeed verified upon
a double differentiation of Eq. (39) or of Eq. (36) in the
continuum limit]. The cubic nonlinearity coefficient with the
effect of SNI is now given by

L[
ol o

8

2K2
40” - ) + 60°K%a*[1 + 3o — kK2a*(1 +92)/4]
27k*a*K,
_3K, - %} , (42)

where the SNI influence is manifested via the appearance of
a and B—the latter via K;=K3(1+9p) (as defined above).

V. MODULATIONAL INSTABILITY—2D ENVELOPE
EXCITATIONS

The amplitude dynamics of a TDLW packet was shown
to be governed by the NLS [Eq. (30)] above. Two physical
phenomena that are generally modeled via this formulation
are wave collapse via modulational instability and the forma-
tion of envelope excitations. Without reproducing the whole
of the existing theory, which may be found, for e.g., in Ref.
27 (also in Refs. 21 and 22), we shall provide the basic
information needed to understand our findings in what
follows.
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The detailed analysis of the NLS [Eq. (30)] above'®'%
reveals that a modulated wave packet whose amplitude
obeys the NLS equation [Eq. (30)] is modulationally un-
stable for PQ >0 and stable for PQ <0. Assuming a pertur-

bation of amplitude W, and characteristic wave number k,
the perturbation grows PQ >0 leading to wave blowup. The
maximum growth rate o=Q|W|? is attained for a perturba-
tion wave number

_ 2 12
(2

The coefficients P and Q therefore determine the occurrence
and first stage evolution of the instability.

Only the first evolution stage of the instability outlined
above can be described analytically. The further evolution of
the instability can only be modeled numerically. It is known
that energy occurs via the formation of localized envelope
structures (envelope solitons). In the case PQ>0, bright-
type solitons are formed: these model localized envelope
pulses, which confine the fast carrier wave and move at or
near the group velocity, and are formally equivalent to bright
pulses in nonlinear fiber optics. On the other hand, for PQ
<0, modulated wave packets may propagate in the form of
dark/gray envelope solitons, modeling localized voids amidst
constant values everywhere else.

In an attempt to go one step beyond the continuum ap-
proximation adopted above, we shall consider in our analy-
sis, for the sake of rigor, two versions of the dispersion co-
efficient P, namely, P;=P.,., as defined (in the continuum
limit) in Eq. (31), and the exact (discrete) expression P
=P, .=d’>w/2dk?, as obtained from the accurate dispersion
relation in Eq. (16). Figure 7(a) (solid line) shows the varia-
tion in the dispersion coefficient P in the discrete description
as obtained from the dispersion relation (for »=0) for FNI
[Eq. (16)] on one hand (solid curves; notice the
47-periodicity) and separately for SNI from Eq. (36) on the
other (dashed curves). The continuous and discrete descrip-
tions obviously coincide in the low wave number & limit, yet
diverge strongly for larger k (shorter wavelengths), compare
Fig. 7(a) to Fig. 9 near k=0 to see this. This twofold analy-
sis (continuous versus discrete and FNI versus SNI) is meant
to give a flavor of what should be an accurate discrete-
system investigation, which is to follow in future work.

The behavior of the coefficients P and Q are depicted in
Fig. 7. The product PQ and also the ratio Q/P are depicted
in Fig. 8. Recalling that the sign of the product PQ deter-
mines the stability profile of the wave, we see that the oc-
currence of modulational instability is prescribed, since both
P and Q are negative (hence, PQ>0). Stable bright-type
envelope structures should therefore be sustained in the sys-
tem. Indeed, this prediction seems to have been confirmed
already in the laboratory, where the observation of backward
propagating wave packets is reported and their characteris-
tics are tested against a linear theory, which are thus con-
firmed in the 2D picture. It must be added for rigor that the

Modulated transverse off-plane dust-lattice wave packets...
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FIG. 7. (Color online) Variation in (a) the coefficient P up to FNI (solid
line) and up to SNI (dashed lines) in the continuous model as a function of
ka. (b) The coefficient Q (continuous) as a function of ka.
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FIG. 8. (Color online) Variation in (a) the product of coefficients PQ (con-
tinuous) up to FNI (solid lines) and up to SNI (dashed lines) as a function of
ka. (b) The ratio of coefficients Q/ P (continuous) as a function of ka (solid
lines for FNI and dashed lines for SNI).
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sign of P (and presumably Q) may change by taking into
account SNI, thus affecting the stability profile of modulated
wave packets, and the type of envelope solitons susceptible
to occur.

A. Continuum versus discrete

It must be stated for rigor that the above findings are
only true for low k (within the continuum approximation
here), i.e., for large wavelengths, say, A > r, [the region be-
low k%ra1 seems to be satisfactorily covered by the con-
tinuum approximation within an error of 10%, see Fig. 7(a)].
For higher k, the dispersion coefficient P (in fact,
4r-periodic) changes sign and Q may presumably also do
the same. Properly speaking, Q [see Fig. 7(b)] does become
positive above k= 1.1r;" (for FNI) and k=~ 0.85r;" (for SNI),
yet this is expected to change if a discrete analysis were to be
undertaken. In general, it seems safe to assert that a more
complex stability profile will be predicted by a more accurate
discrete analysis; in particular, wave packets will be stable
(and dark-type envelope excitations will occur) at wave
numbers higher than kzral, as suggested by Fig. 7. Con-
cluding therefore, we stress that one needs to go into a fully
discrete description of dust crystal dynamics in order to ob-
tain a valid expression for the nonlinearity coefficient Q (P
on the other hand is readily obtained from the dispersion law,
as explained above). This is anticipated as part of a future
investigation yet goes beyond the continuum approximation
adopted here.

B. FNI versus SNI

Summarizing the overall effect of taking SNIs into ac-
count, we note that it appears to be small yet rather non-
negligible. The dispersion laws certainly undergo a modifi-
cation: the frequency is reduced by (near or less than) 20%
(see Fig. 3), while a small effect is also observed in the
critical wave number threshold where the slope changes from
negative (backward wave) to positive (forward propagation);
note the positions of the minimae in Fig. 3. Obviously this
also affects the group velocity and group velocity dispersion
terms (see, e.g., Fig. 9 for P); nevertheless this remark is
rather not relevant in the continuous (small k) region (mod-
eled by our NLS equation here) as explained above. Interest-
ingly, for propagation parallel to the lattice principal axes,
SNIs may account for slowing down a wave with a short
wavelength (k higher than 4, roughly), and thus the backward
wave character may be modified in a critical manner; com-
pare the bottom two curves (in green, online) to see this: the
slope of the dashed one essentially goes horizontally after
ka=4 approximately. To be stated again, this enters a region
(of high k values) which goes beyond the continuum ap-
proximation adopted here. This is entirely legitimate in the
linear regime, yet no prediction is in principle to be made in
the nonlinear region (involving the NLS equation coeffi-
cients, say, P and Q).

Phys. Plasmas 16, 053706 (2009)
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FIG. 9. (Color online) Variation in the dispersion coefficient P in the dis-
crete description as a function of ka (solid line) obtained from the dispersion
relation up to FNI [Eq. (16) for »=0] and (dashed line) up to SNI [Eq. (36)].
Notice the 4-periodicity.

VI. CONCLUSIONS

The amplitude modulation of transverse off-plane DL
wave packets in 2D hexagonal dusty plasma crystals has
been investigated. The modulational instability predicted by
our findings may be seen as a first stage of the out-of-plane
lattice instability observed numerically'6 and might presum-
ably lead to the phase transition suggested in the latter ref-
erence. Modulational instability may also be the first stage of
the generic (i.e., for any symmetric potential) structural in-
stability suggested in Ref. 23. We need to point out for rigor
that the modulation theory employed here is a mildly nonlin-
ear theory, which is only valid for weak vertical displace-
ments. The latter point justifies our choice in neglecting the
coupling to in-plane dust grain motion, since we are only
interested in the very first stage of the manifestation of non-
linearity in off-plane motion. A more general theory should
take into account horizontal-to-vertical motion coupling and
should be the subject of forthcoming work of ours.

The linear dispersion characteristics of transverse DL
waves were studied, including the dispersion relation, group
velocity, and an evolution equation for the modulated ampli-
tude of the first harmonic was derived. The dispersion rela-
tion shows a negative group velocity of the wave for k
<keiica @nd a positive group velocity for k> k.- The
value of k.. depends on the direction of wave propaga-
tion. These results are in excellent agreement with earlier
numerical,16 experimental,5 and theoretical'’ results.

We have relied on a 2D lattice multiple scale theory to
separate the slow envelope evolution scale from the fact car-
rier space/time scales and investigate the amplitude dynam-
ics. We have shown that transverse wave packets will in
principle be stable in the long wavelength region, although
modulational instability for shorter wavelengths is in prin-
ciple not to be excluded (yet to be covered by a discrete
version of the model to come). Furthermore, we predict the
formation of both bright and dark-type envelope solitons in
regions similar to the bright envelope structures observed in
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laboratory experiments.5 Admittedly, our study was limited
within the continuum approximation; thus our results are
valid in the long-wavelength limit. Therefore, rigorously
speaking, only the small (wave number) k region of our plots
should be retained in a strictly quantitative interpretation.
Nevertheless, we can anticipate a discrete version of the
theory, which would incorporate a discrete form of the NLS
coefficients P (known, from the discrete dispersion relation)
and Q (unknown, to be determined). Our graphs seem to
suggest that both coefficients may change sign for higher k
(shorter wavelength), hence allowing for a richer dynamical
profile (beyond the continuum limit).

Furthermore, in an attempt to determine the region of
validity of our study, in as much rigor as possible, we have
investigated the role of the interaction among grains located
at second neighbor sites. We have shown that this effect is
rather small (compared to first neighbor interactions) as more
or less expected physically; recall that the lattice spacing is
of comparable order of magnitude to the Debye sphere in
these strongly coupled configurations. However, longer than
NNIs may give rise to interesting phenomena, as in particu-
lar a modification of the system’s behavior from the back-
ward to the forward wave regime, as discussed in the text
(see Fig. 3). Finally, we may add that although energy dissi-
pation was neglected in this investigation, it may be added at
a later stage. Physical effects thus predicted are quite dis-
tinct, as shown by preliminary studies, so our aim was to
pinpoint the difference by addressing the damped wave case
separately in forthcoming work.

Our work is of relevance in dusty plasma crystal experi-
ments in the laboratory, where our predictions for the type
and stability of modulated wave packets can be tested and
will hopefully be confirmed. Beyond dusty (complex)
plasma physics, we view this work as a fundamental inves-
tigation of nonlinear transverse motion in hexagonal crystals
of potential relevance (either currently or in the future) in
other physical contexts, where -electrostatic-interaction-
sustained crystalline structures occur (such as ultracold plas-
mas or one-component plasmas), or in lattice theory and in
discrete dynamical systems where pulse formation and wave
packet localization occur.
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