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Abstract

Velocity distribution functions with an excess of superthermal particles are commonly observed in

space plasmas, and are effectively modeled by a kappa distribution. They are also found in some

laboratory experiments. In this paper we obtain existence conditions for and some characteristics

of ion-acoustic solitary waves in a plasma composed of cold ions and κ-distributed electrons, where

κ > 3/2 represents the spectral index. As is the case for the usual Maxwell-Boltzmann electrons, only

positive potential solitons are found, and, as expected, in the limit of large κ one recovers the usual

range of possible soliton Mach numbers, viz. 1 < M < 1.58. For lower values of κ, modeling the

presence of a greater superthermal component, the range of accessible Mach numbers is reduced. It

is found that the amplitude of the largest possible solitons that may be generated in a given plasma

(corresponding to the highest allowed Mach number for the given plasma composition) falls off with

decreasing κ, i.e., an increasing superthermal component. On the other hand, at fixed Mach number,

both soliton amplitude and profile steepness increase as κ is decreased. These changes are seen to be

important particularly for κ < 4, i.e., when the electrons have a “hard” spectrum.
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I. INTRODUCTION

The scope of the article at hand embraces the nonlinear dynamics of ion-acoustic (IA) waves

under the effect of a non-Maxwellian electron velocity distribution with excess superthermal

particles, represented by a κ distribution. The basic prerequisites of our study are outlined in

the following paragraphs.

Plasmas are often characterized by a particle distribution function with a high energy tail and

they may thus deviate significantly from a Maxwellian.1–3 Both space and laboratory plasma

environments may have such an excess superthermal electron population, due to velocity-space

diffusion, which may lead to an inverse power law distribution at a velocity much higher than

the electron thermal speed.4–6 Such behavior is effectively modeled by a kappa (or generalized

Lorentzian) distribution function,1,6–8 which appears to be more appropriate than a thermal

(Maxwellian) distribution in a wide range of plasma situations.

The commonly used three-dimensional, isotropic kappa (κ) distribution is given by6,8

fκ(v) =
n0

(πκθ2)3/2

Γ(κ + 1)

Γ(κ− 1
2
)

(
1 +

v2

κθ2

)−(κ+1)

(1)

where n0 is the species equilibrium number density, θ2 = [(κ−3/2)/κ](2kBT/m) is the effective

thermal speed, modified by the spectral index κ, with T the kinetic temperature and m the

species mass, and Γ(x) is the gamma function. Here v2 = v2
x + v2

y + v2
z obviously denotes the

square norm of the velocity v. Clearly, for a physically realistic thermal speed, one requires κ >

3/2. At very large values of the spectral index κ, the velocity distribution function approaches

a Maxwellian distribution. Low values of κ represent distributions with a relatively large

component of particles with speed greater than the thermal speed (“superthermal particles”)

and an associated reduction in “subthermal” particles, as one observes in a “hard” spectrum.

First applied by Vasyliunas1 to model observations of particle energy distributions in space-

based experiments, the κ distribution is widely used to fit velocity distributions observed in

space plasmas, often with 2 < κ < 6. Examples include measurements of plasma sheet electron

and ion distributions (κi = 4.7 and κe = 5.5),9 and observations in the earth’s foreshock (3 <

κe < 6).10 Modelers have also used κ distributions with low values of κ, e.g. Lemaire’s group11,12

developed a Lorentzian ion exosphere model and associated solar wind model with coronal

electrons satisfying 2 < κe < 6. Although there is no completely satisfactory theory for the

persistence and apparent ubiquity of κ distributions in space, works by Treumann,13,14 Leubner,4

and Collier,15 have provided heuristic explanations or pointers towards a full explanation.
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It has been argued that a combination of kappa distributions models multi-component plas-

mas more effectively than a superposition of Maxwellians.16,17 Indeed, recent observations of

the electron velocity distribution function in Saturn’s magnetosphere appear to confirm this

view.5

By integrating the kappa distribution function over velocity space, one can obtain the num-

ber density of the corresponding plasma constituent(s), which affects the charge balance via

Poisson’s equation. An important characteristic of the kappa distribution function is that the

dependence of the density on the electrostatic potential differs from the familiar exponential

form obtained from the Maxwell-Boltzmann distribution. The consequences will be obvious in

our analysis below, both from an analytical and a numerical point of view.

The linear properties of plasmas in the presence of a kappa distribution with excess su-

perthermal particles have been investigated rather extensively. A modified plasma dispersion

function for such a “superthermal” plasma was introduced in Ref.16 for integer κ, and was

extended to a generalized plasma dispersion function for arbitrary real κ.18,19 The usual plasma

dispersion function (derived for the Maxwellian case) is obtained by both these approaches in

the limit of infinite κ, as expected. It has been shown20 that the generalized plasma dispersion

function, Zκ could provide a plasma diagnostic in space, in that wave data recorded in the mag-

netosphere could be used to find the appropriate κ value characterizing the electron distribution

function, clearly differentiating it from results calculated using a Maxwellian assumption. Sim-

ilarly, it was found that wave experiments can act as a diagnostic for the distribution function

in a laboratory plasma when use is made of the Zκ plasma dispersion function.6

The effect of superthermal electrons on linear ion-acoustic waves propagating in a mag-

netized plasma was studied in Ref.19 Interestingly, the presence of a high energy tail leads

to a significant variation in the damping rate of electrostatic plasma waves, as compared to

Maxwellian plasmas,21 so excess superthermality was found in that case to enhance Landau

damping.

The founding blocks of a nonlinear theory for ion-acoustic plasma excitations were provided

four decades ago, with a study of small-amplitude nonlinear excitations22, and an arbitrary am-

plitude theory for IA solitary waves.23,24 A model was proposed to study the dynamics of solitary

waves in an electron-ion plasma,23 and a domain for the Mach number (M ∈ [1, 1.58]) was found

for the existence of solitary waves. The pseudopotential method developed by Sagdeev23 for

nonlinear IA excitations (later extended to describe magnetized plasmas25) has predicted that

only positive potential disturbances may occur in simple electron-ion plasmas. Nevertheless,
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negative potential solitary structures have later been shown to exist in the presence of two

electron populations26,27, and/or in multi-ion plasma compositions or dusty plasmas.28–31

It may be added for completeness that another approach to velocity space non-thermality

is provided by the so called Tsallis distribution32. Like the kappa distribution, the Tsallis

distribution represents a family of distribution functions, governed by a single parameter (q,

in this case), and possessing a power-law structure (the power is given by 1/[1− q]), with the

Maxwellian as a limiting case, when q → 1. Unfortunately, although there are similarities,

there is no simple transformation between the Tsallis and kappa distributions (1), as the forms

of the argument and the power do not both fit the same transformation. However, one may

wish to use an approximate relationship given by κ → 1/(q− 1), in that, for q > 1, an increase

in q increases the fraction of superthermal electrons relative to that of the Maxwellian, which

is equivalent to a decrease in κ. Recently, existence conditions have been found for ion-acoustic

solitons in a plasma composed of cold ions and electrons modeled by a Tsallis distribution.33

The main results were that, (i) as for the conventional IA solitons based on a Maxwellian

distribution, only positive solitons were found, and (ii) the accessible range in Mach number

found for a Maxwellian, [1, 1.58], is reduced as q is increased beyond q = 1, i.e. increasing the

superthermal excess reduces the range of propagation speeds available to the solitary structure.

These results are qualitatively recovered by our analysis here.

The aim of our investigation is to elucidate the effect of electron superthermality, as mani-

fested through the commonly-observed kappa distribution, on the propagation characteristics

of nonlinear ion-acoustic excitations in a simple electron-ion plasma. We rely on a pseudopoten-

tial method to investigate the occurrence and characteristics of arbitrary amplitude IA waves.

We shall determine the range of permitted Mach number values for the existence of solitary

ion-acoustic waves in a plasma with excess superthermal electrons, and will in particular demon-

strate their dependence on “superthermality” (via κ). Recall that the limit κ → ∞ leads to

the Maxwellian case, so that the known Mach number domain [1, 1.58]23 is recovered in this

case (See Figure 1).

The layout of the paper is as follows. The analytical model equations are presented in Section

II. In Section III, we develop a pseudopotential theory and determine the range of permitted

velocity values for the existence of solitary structures. We proceed by numerically evaluating

and discussing the propagation velocity range and the effects of “superthermality” in Sections

IV, and V, respectively. Our results are then summarized in the concluding Section.
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II. GOVERNING MODEL EQUATIONS

We consider a two-component plasma consisting of:

- cold ions (charge qi = +Ze, mass mi), described by the fluid-moment equations, and

- electrons (qe = −e, mass me), assumed to obey a kappa velocity distribution.

The fluid equations for the ions (in the absence of pressure effects) read

∂ni

∂t
+

∂(niui)

∂x
= 0, (2)

∂ui

∂t
+ ui

∂ui

∂x
= − qi

mi

∂Φ

∂x
, (3)

and the two fluids are coupled through Poisson’s equation,

∂2Φ

∂x2
= −4πe(niZ − ne), (4)

where ni, ui, and Φ are the ion number density, the ion mean velocity, and the electrostatic

potential, respectively. The assumption of charge neutrality at equilibrium yields

ni0Z − ne0 = 0 , (5)

where the index “0” denotes the unperturbed (equilibrium) number density values.

We adopt a kappa distribution for the electrons, and by integrating over velocity space obtain

the

electron number density,8

ne = ne0

[
1− eΦ

(κ− 3
2
)kBTe

]−κ+1/2

, (6)

where the real parameter κ measures the deviation from Maxwellian equilibrium. We stress

that the latter is recovered in the limit of infinite κ at every step.

Normalizing by appropriate scaling quantities, the number density for the electrons may be

written in dimensionless form as

ne =

(
1− φ

κ− 3/2

)−κ+1/2

. (7)

The normalized ion continuity and momentum equations, and Poisson’s equation are

∂n

∂t
+

∂(nu)

∂x
= 0, (8)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
, (9)

∂2φ

∂x2
=−n +

(
1− φ

κ− 3/2

)−κ+1/2

, (10)
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where the fluid velocity ui, the particle density ni, and the electrostatic potential Φ are scaled

as: u = ui/cs, n = ni/ni0, and φ = Φ/Φ0. Here, ni0 is the equilibrium ion density. We have

made use of the quasineutrality relation (7) above. Space and time variables are scaled by

the Debye length λD,e =
(

kBTe

4πne0e2

)1/2

=
(

kBTe

4πZni0e2

)1/2

, and the inverse ion plasma frequency

ω−1
p,i = (4πni0Z

2e2/mi)
−1/2. Finally, the potential scale reads Φ0 = kBTe

e
. The characteristic IA

sound speed used for velocity normalization is then cs ≡ (ZkBTe/mi)
1/2.

However, we should note that this expression for the sound speed is applicable to an electron-

ion plasma in which the electron density satisfies a Boltzmann distribution. Debye shielding is

altered in a plasma with a κ distribution, and thus an effective κ-dependent Debye length is

found.34–37 Hence, the true sound speed in the plasma model under consideration, with electron

density as given by (6), is kappa dependent and differs from cs, as will be seen later.

We should like to emphasize that the normalization used does not contain κ at

all, and thus the full dependence on κ of all variables is exhibited in the normalized

expressions, and will be reflected in the numerical work that follows, as is the case

for the true sound speed. We note that we have substituted explicitly for θ as

given in the clarification following equation (1), and hence the potential is written

in terms of the kinetic temperature Te based on a Maxwellian of equal number

density and average kinetic energy.1,16,18,34–36

III. ARBITRARY AMPLITUDE SOLITARY WAVE THEORY

Anticipating the existence of arbitrary amplitude traveling solitary waves, we assume that

all fluid variables in the evolution equations depend on a single variable ξ = x−Mt (where M

is the Mach number, i.e. the pulse propagation velocity normalized by the sound speed, here

taken to be the normalization value, cs). This is the well-known pseudopotential (so called

“Sagdeev”) method, leading to a number of ordinary differential equations in a variable of ξ;

details can be found, e.g., in Ref.38,39 Using the above transformation in Eqs. (8) to (10), the

fluid equations become

−M
∂n

∂ξ
+

∂(nu)

∂ξ
= 0, (11)

−M
∂u

∂ξ
+ u

∂u

∂ξ
+

∂φ

∂ξ
= 0, (12)

∂2φ

∂ξ2
= −n +

(
1− φ

κ− 3/2

)−κ+1/2

. (13)
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After integrating Eqs (11-12) and applying appropriate boundary conditions for localized

perturbations, viz. n → 1, u → 0, and φ → 0 at ξ → ±∞, we write

−Mn + nu = −M, (14)

i.e. u = M

(
1− 1

n

)
, (15)

and −Mu +
u2

2
= −φ. (16)

From Eqs. (15) and (16), we obtain

n =
1√

1− 2φ
M2

. (17)

The reality condition M2 ≥ 2φ is then imposed; note that this requirement of a physically

realistic density limits positive potential values only.

Substituting Eq. (17) into Eq. (13), multiplying the resulting equation by dφ/dξ, integrating,

and applying the boundary conditions, dφ/dξ → 0 at ξ → ±∞, we find that Poisson’s equation

takes the form
1

2

(
dφ

dξ

)2

+ V (φ) = 0 , (18)

where the (Sagdeev-type) pseudopotential V (φ) is given by

V (φ) = M2

(
1−

√
1− 2φ

M2

)

+1−
(

1− φ

κ− 3/2

)−κ+3/2

. (19)

Eqn. (18) can be regarded as the “pseudo-energy-balance equation” for an oscillating particle

of unit mass, with position φ, time ξ, velocity dφ/dξ, and potential V (φ). We recall, in view of

the forthcoming analysis, that the Maxwellian limit23 is recovered for κ →∞.

In order for solitary solutions to exist, the following requirements must be fulfilled:

(i) V (φ = 0) = dV (φ)
dφ

∣∣∣
φ=0

= 0 (at the origin), which represents the requirement that

both the electric field and the charge density be zero far from the localized ion-

acoustic solitary structures, and

(ii) d2V (φ)
dφ2

∣∣∣
φ=0

< 0 (i.e. V (φ) has a maximum at the origin), so that the sign of the

derivative of the charge density is compatible with the sign of the electric field at

large distances. Finally, as imposed by the reality of φ, from (18),

(iii) V (φ) < 0 in the region 0 < |φ| < |φm|; here φm denotes the positive root (φmax), for

positive potential excitations (or conversely the negative root (φmin), for negative potential

excitations).
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A. Soliton existence conditions

The origin at φ = 0 defines the equilibrium state, which should represent a local maximum

of V (φ). From Eq. (19), it is clear that both V (φ = 0) = 0 and dV (φ = 0)/dφ = 0 are satisfied

at equilibrium. The requirement

d2V

dφ2

∣∣∣
φ=0

=
1

M2
− 1− 1

κ− 3/2
< 0 (20)

constitutes the soliton (existence) condition to be fulfilled. The root of d2V
dφ2 |φ=0 in terms of the

Mach number M defines a critical value as a lower limit for M , i.e.

M1 ≡
(

κ− 3/2

κ− 1/2

)1/2

≤ 1 . (21)

For a fixed value of κ, soliton solutions may exist only for values of the Mach number satisfying

M > M1. It may easily be shown36 that this κ-dependent expression for M1 is actually the

ion-acoustic speed in a two-component plasma with kappa-distributed electrons, normalized

with respect to the conventional ion-acoustic speed, cs ≡ (ZkBTe/mi)
1/2. Thus the existence

condition, M > M1 implies, as expected, that for solitary waves to exist, they must be traveling

at a speed exceeding the true sound speed. Note that the simple value M1 = 1 is recovered for

the limit κ →∞ (simply implying supersonic excitations for ion-acoustic waves in e-i plasmas

with Maxwellian electrons). It is straightforward to see the influence of excess superthermal

electrons (via κ) on this soliton velocity threshold. In particular, M1 decreases monotonically

with decreasing κ from the “conventional” value of M1 = 1 found for large κ, and as κ → 3/2,

M1 → 0.

A second (upper) velocity limit for the existence of positive potential solitons arises from the

physical requirement of a real ion number density, as expressed by Eq. (17). For φ → M2/2,

the density n becomes infinite (and so would the pressure ∼ nγ in a warm ion model with

polytropic index γ). Accessible values of the Mach number are those for which the Sagdeev

well yields a root φm before this infinite compression limit is reached, and hence we find the

largest possible value of M by imposing the requirement V (φ = M2

2
) ≥ 0. The upper limit

on the speed of the solitary waves (say, M2), expressed in terms of the Mach number, is thus

obtained by solving the associated equation,

M2
2 + 1−

(
1− M2

2

2κ− 3

)−κ+3/2

= 0, (22)
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for M2. As κ → ∞, the last term tends to an exponential form, and hence the upper Mach

number limit will then take on the conventional value of 1.58. At the opposite extreme, it can

easily be shown that as κ → 3/2, M2 → 0 .

Summarizing, assuming the kappa-dependent electron density function given by (6), positive

potential solitary wave solutions of the ion fluid system of equations exist for values of the Mach

number M in the range M1 < M < M2. Clearly, both of these limits vary with kappa, and we

need to investigate their dependence on physical parameters.

Relying on the analytical toolbox outlined above, we have performed a parametric investi-

gation, in order to study the properties of arbitrary amplitude solitary waves, as deduced from

the pseudopotential V (φ) given by Eq. (19). Our findings are presented and discussed in the

following.

IV. PROPAGATION VELOCITY OF LOCALIZED EXCITATIONS

Let us first consider the dependence of the critical Mach number values M1 and M2 on the

presence of excess superthermal electrons (“superthermality”) via κ, and hence explore the

range of accessible Mach numbers as a function of κ. For the lower velocity threshold, M1, this

can be inferred analytically upon simple inspection of Eq. (21), as commented on in the previous

section. Recalling the fact that this soliton existence condition represents the requirement of

super-acoustic propagation speed (i.e., M1 is the true ion-acoustic speed), we see that the true

sound speed in this kappa-distribution plasma has a lower value than in a Maxwellian plasma,

i.e., an increase in superthermal (and the associated reduction in subthermal) electrons causes

the linear ion-acoustic wave to propagate at lower speed. This has been shown in a rigorous

manner in Ref.36.

Unlike the lower limit, the variation of the upper velocity limit imposed by infinite compres-

sion of the ions, viz., M2, the root of (22), can only be studied numerically. It is found that M2

decreases monotonically as κ decreases. In Fig. 1 we have plotted the lower and upper limits,

M1 and M2, respectively, over the range 3/2 ≤ κ ≤ 20, and hence show the permitted range

of Mach numbers, which satisfy M1 < M < M2 and thus support ion-acoustic solitons in such

kappa plasmas. We see that, as κ is decreased, the available range of Mach numbers over which

positive potential IA solitons may exist is reduced.

A few comments are in order, regarding the physical interpretation of Figure 1. First we

note that both curves show an asymptotic behavior as κ is increased. As expected, the two
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limiting Mach numbers tend to 1 and 1.58, respectively, as is well-known for the Maxwell-

Boltzmann case.23,24 That these values are already closely approached from κ ' 10 agrees with

earlier studies, where linear wave behavior in plasmas with values of κ above ≈ 10 (roughly)

was found to be practically equivalent to that in a Maxwellian plasma.19

In this figure, one sees that, as expected, both the lower and the upper Mach number limits

tend to zero as κ → 3/2, the limiting value of κ. Recalling that a decrease in κ measures the

deviation from the Maxwellian behavior through an increase in the superthermal electron com-

ponent and a concomitant decrease in the subthermal part of the electron velocity distribution

function, we note that higher “superthermality” results in the shrinking of the permitted region

for soliton velocities, compared to what is found for a Maxwellian plasma.

V. ROLE OF SUPERTHERMALITY

We wish to study the effect of superthermality on the solitary wave characteristics. First, we

consider two values of κ, viz., κ = 16, which is pseudo-Maxwellian (Figure 2), and κ = 4, which

is strongly non-Maxwellian, with a large superthermal component, and has been found to occur

in space plasmas (Figure 3). In each case we present Sagdeev potential plots which represent

positive potential solitary wave structures, calculated for a range of values of the Mach number,

M , lying in the range, M1 < M < M2. The amplitude of the solitary electrostatic potential

structures (measured by the magnitude of the root, φm) is seen in both figures to increase

monotonically as the Mach number is increased, thus showing that behavior of this kind, known

for the Maxwell-Boltzmann case, applies to low kappa also. Specifically, as M is increased from

its lowest value to the largest soliton propagation speed plotted, the normalized electrostatic

potential amplitude increases from effectively zero to ' 1.13 for the pseudo-Maxwellian case

(Figure 3), but to a somewhat lower value, viz., ' 0.77 for the low-κ case (Figure 4). These

figures thus indicate that the presence of additional superthermal particles appears to reduce

the maximum soliton amplitude.

We also see that in both figures the well-depth of the Sagdeev potential curve increases

monotonically and dramatically, as the Mach number is increased from close to the lower limit

to just below the upper limit. Whereas for the pseudo-Maxwellian case the maximum well-depth

reaches a normalized value of 0.3, in the presence of stronger superthermality it is reduced to

' 0.2. The actual numbers involved in this well-depth have less physical significance than the

changes in well-depth. It follows from (18) that the well-depth is proportional to the square of
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the maximum electric field, i.e., it is related to the maximum slope of the electrostatic potential

profile representing the solitary wave structure. From these two figures we thus deduce that the

addition of superthermal particles associated with a lower value of κ gives rise to a reduction

in the steepness of the soliton profile. These aspects are explored further in Figures 4 and 5.

In Figure 4 we present a set of curves that show the solitary wave amplitude as a function of

the increment in Mach number over the soliton existence condition, M1, (i.e., M −M1), for a

wide range of values of the parameter κ, running from a true Maxwellian (κ = 50) to a strongly

non-Maxwellian form (κ = 3). A widely cited qualitative aspect of the weakly supersonic,

small-amplitude, Korteweg-de Vries soliton theory is that larger excitations propagate at higher

speeds and are narrower (i.e., “taller is faster and thinner”). Considering first the Maxwellian

curve, we note that the potential increases monotonically with M − M1 from zero up to the

ion compression cut-off at M = 1.58 (M −M1 = 0.58), that the rate of increase is effectively

linear for smaller amplitude solitons, relatively close to the lower Mach number limit, and that

the slope of the curve gradually decreases as the Mach number is increased.

Not only do we see in Figure 4 that the monotonic behaviour is exhibited well beyond the

small-amplitude range, but also that it applies whether one has the usual Maxwell-Boltzmann

plasma or a kappa distribution that is highly non-Maxwellian. For smaller κ one finds that

at fixed values of M −M1 the associated solitary wave potential is lower, i.e., superthermality

reduces the amplitude of the solitons. In addition, as we have already seen, the upper Mach

number cut-off, M2, decreases with increasing “superthermality” (decreasing κ) and the ac-

cessible range for solitons, M2 − M1, also decreases. These effects are most dramatic as κ is

reduced from 5 to 3.

It should be noted that this monotonic behavior is not found universally for arbitrary am-

plitude acoustic solitons, but appears to relate specifically to solitary waves whose existence

domain is restricted by the linear wave speed and an infinite compression or rarefaction, as is

the case here. It has, for instance, been observed that in some cases where the upper cut-off

in the existence domain arises from the existence of a double layer, the amplitude does not

increase monotonically over the full range of accessible Mach numbers.29,40

In Figure 5 we have plotted Sagdeev potential curves for a set of values of κ in the range

(16, 3), i.e., scanning the range from effectively Maxwellian to strongly non-Maxwellian, but

this time choosing Mach numbers that are very close to (in fact, within 0.0015 of) the relevant

upper limit, M2, for the value of κ under consideration. As the pseudopotential curve breaks

down (ends) at the upper cutoff, the curves in this figure only just cross the axis (yield a root),
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and as a result graphical representation clearly showing the root is difficult. It will be noted

that some of the curves obviously cross the axis, while the others “touch” the axis. Careful

numerical evaluation confirms that they, too, do yield roots. Bearing in mind the fact that we

have seen that the amplitude increases monotonically with M at fixed κ, it follows that we are

effectively exploring the largest soliton amplitudes that can be supported by a plasma with a

given value of κ. As found in Figure 4, we observe that as the superthermal component increases

with decreasing κ from the pseudo-Maxwellian case (κ = 16), the largest soliton amplitudes

that may be achieved decrease monotonically, the normalized potentials dropping from about

1.13 to 0.62, the value found for κ = 3. The well depth, and thus the steepness of the profile of

these “largest” solitons, is also found to fall off monotonically as the superthermal component

of the distribution function increases with falling κ.

Having established what occurs when kappa is kept constant, we turn next to a set of

calculations for which the Mach number M is kept constant, and κ varied.

Figure 6 depicts the variation of the pseudopotential V (φ) with φ for fixed Mach number,

M = 1.1, and different values of κ ranging from 10 down to 3. It will be recalled that for κ = 10

we observed an accessible range of Mach numbers that was approaching that for a Maxwellian

distribution. We now see that as we introduce a higher proportion of superthermal electrons

(i.e., for decreasing κ), the amplitude of the solitary electrostatic potential structures increases

from a normalized value of 0.4 for κ = 10, to 0.6 for κ = 3. This increase in amplitude is

indirectly associated with the increase of the superthermal electron component.

We recall that the Mach number is measured relative to a fixed “sound speed”, which does

not take account of the fact that the true sound speed decreases with decreasing κ. It is not

unusual to normalize with respect to such a fixed characteristic speed when different parameters

are being varied. But in this case it follows that, as we decrease κ at fixed M , we are actually

increasing the value of (M −M1). And we have, of course, earlier shown that φm increases as

(M −M1) increases. Thus, for fixed M , a decrease in κ causes an increase in the amount by

which the chosen value of Mach number exceeds the local threshold (the true sound speed).

Hence it follows that decreasing κ yields larger solitons, and as found in this figure, it is thus

associated with increasing soliton amplitude over the range 3 ≤ κ ≤ 10.

We also see that the depth of the Sagdeev pseudopotential well increases dramatically from

0.01 to 0.14 over this range. Thus the maximum slope of the soliton profile increases with

decreasing κ over this range, i.e., as the superthermal component is increased, the amplitude

increases and the soliton profile also becomes steeper.
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It is of interest to see whether this effect applies even for very strongly non-Maxwellian

plasmas. In Figure 7, we present some examples of the pseudopotential V (φ) for a couple

of cases with a very strong superthermal component, with κ ranging from 1.8 to 2.0, and

M = 0.62. Such a very hard spectrum, with an extreme accelerated superthermal component,

may be found near very strong shocks associated with Fermi acceleration.18 We see that both

the amplitude of the soliton and the maximum slope of the soliton profile are larger for the

lower values (e.g., κ = 1.8) than for the higher value, κ = 2. Thus over this narrow range, too,

the increase in “superthermality” gives rise to an increase in soliton amplitude and steepness,

at fixed M . We have found analogous results even for values of κ a little above 1.6.

Finally, we take this discussion a step further with Figure 8, showing plots of amplitude

against κ at four fixed values of Mach number, M , ranging from 1.0 to 1.3. In each case we

observe that, as κ is decreased, the potential at fixed M rises. There are cutoffs at lower values

of κ for the higher values of M , as M2 falls below the Mach number under consideration. It is

noticeable that the lowest curve, for M = 1.0, rises much more steeply than the others. This is

presumably associated with the rapid fall-off of M1 with decreasing κ below about 5, and the

resulting rapid rise in (M −M1) in that range (see Figure 1), which is associated with a rise in

amplitude, φm (see Figure 4).

In summary, the results of our calculations show that the answer to the question of how

soliton amplitude varies with κ depends significantly on how the question is asked. From

Figures 6-8 one may wish to argue that increased “superthermality” causes larger amplitude

solitons. That is indeed the case at fixed M , and thus at increasing values of (M −M1), and its

association with increasing φm. On the other hand, Figures 2-5 clearly show that the largest

possible values of soliton amplitude for a given value of κ, attainable for M chosen so that

(M2 −M) is small, actually decrease with decreasing values of κ.

Overall, our results show that “superthermality” (as measured by the value of the parameter

κ) plays a significant role in the modification of solitary electrostatic ion-acoustic structures and

their behavior, but that the resultant behavior depends on the experiment that one is carrying

out.

Finally we note that, as is the case both for electrons with a Maxwellian distribution and

for a Tsallis distribution, only positive solitons have been observed. A wide-ranging numerical

search did not reveal any negative potential solitons.
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VI. CONCLUSIONS

In this paper we have studied the existence conditions and the characteristics of ion-acoustic

solitary waves propagating in a plasma composed of cold fluid ions and electrons whose velocity

distribution is modeled by a kappa distribution.

Firstly, it is noted that only positive potential IA solitary structures are observed in such

a plasma, as is the case for a conventional electron-ion plasma in which the electrons are

Maxwellian. It thus appears that the presence of additional superthermal particles does not

make qualitative changes to this important aspect of soliton behavior, unlike the addition of

an additional species, and that the changes are essentially quantitative only, as outlined above.

This also agrees with the results obtained for a Tsallis distribution.33

Secondly, the limiting case for the Maxwellian distribution23 is recovered for κ → ∞, as

expected.

Thirdly, we have shown that the lower Mach number limit for the existence of ion-acoustic

solitons decreases with the presence of a greater superthermal component, i.e., with decreasing

κ. This lower threshold, which tends to zero as κ → 3/2, represents the true ion-acoustic

speed in the plasma model under discussion. The upper limit, associated with the ion infinite

compression limit, cannot be expressed in a simple closed form, but has to be found numerically.

It decreases more rapidly with decreasing κ than the lower limit, and hence distributions that

may be modeled by lower values of κ can support solitons only over a narrower range of

accessible Mach numbers. The reduction in accessible solitary wave propagation speeds agrees

qualitatively with that found for the case in which the electrons have a Tsallis distribution.33

At fixed kappa, that is, for a given velocity distribution function, soliton amplitude and

soliton profile steepness both increase monotonically as the Mach number is increased from the

threshold value. An interesting result is that the largest possible soliton that can be supported

at a fixed value of κ is found to decrease as κ decreases. This observation is in line with the

facts that, as κ is decreased, the range of available Mach numbers (M1 to M2) decreases, and

that soliton amplitude and profile steepness increase monotonically with Mach number [through

(M −M1)] at fixed κ.

On the other hand, for a fixed soliton propagation speed (M) within the accessible range,

greater “superthermality” yields an increase in soliton amplitude, and more pronounced steep-

ness of the soliton profile. This behavior follows because, as the threshold Mach number (where

the amplitude vanishes) decreases with decreasing κ, fixed M is increasingly greater than the
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lower limit, and hence larger soliton amplitudes are generated. These quantitative changes are

seen to be particularly important for very low values of κ, such as κ < 4, i.e., in the presence

of a “hard” spectrum.

Thus, in a plasma in which the electrons have a kappa distribution with lower values of κ,

ion-acoustic solitons of fixed Mach number have a larger amplitude, and are steeper in their

profile, than is the case for conventional solitons occurring in a plasma whose electrons satisfy a

Maxwell-Boltzmann velocity distribution. This is because of the increased excess superthermal

(“tail”) electrons and associated decrease in the subthermal component, associated with lower

κ, which give rise to a lower soliton threshold, the true ion-acoustic speed for the plasma model

under discussion. However, the largest possible solitons that may be generated in such a kappa

plasma with a specific velocity distribution are found to be smaller than those found in a

Maxwell-Boltzmann plasma.

The results reported in this paper may be of importance in the interpretation of localized

electrostatic disturbances observed in space plasmas, where κ distributions are very common,

as well as in laboratory plasmas, in which the presence of an acceleration mechanism may lead

to electron velocity distributions that are well modeled by a κ distribution.
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Figure Captions

Fig.1 (Color online) Ion-acoustic soliton existence domain in the parameter space of κ and

Mach number, M . Solitons may be supported in the region between the two curves. The

lower, dashed curve represents the minimum (soliton) condition, M1, and the upper, solid

curve the infinite compression limit, M2.

Fig.2 (Color online) Variation of V (φ) for κ=16 and different values of Mach number, M .

From top to bottom: Dotted curve : M=0.97; dashed curve: M=1.10; dot-dashed

curve: M=1.23; long-dashed curve: M=1.36; and solid curve: M=1.50.

Fig.3 (Color online) Variation of V (φ) for κ=4 and different values of Mach number, M .

From top to bottom: Dotted curve: M=0.85; dashed curve: M=0.95; dot-dashed

curve: M=1.05; long-dashed curve: M=1.15; and solid curve: M=1.24.

Fig.4 (Color online) Variation of φm with M −M1 for different values of κ. The dotted curve

corresponds to κ=3, the dashed curve to κ=5, the dot-dashed curve to κ=7, the dot-dot

dashed curve to κ=10, the short-dashed curve to κ=16, and the solid curve to κ=50.

Fig.5 (Color online) Variation of V (φ) for different values of κ, and values of Mach number,

M , given by M = M2 − 0.0015. The dotted curve corresponds to κ=3, the dashed curve

to κ=5, the dot-dashed curve to κ=7, the long-dashed curve to κ=10, and the solid curve

to κ=16.

Fig.6 (Color online) Variation of V (φ) for fixed M=1.1 and different values of κ. Dotted curve:

κ=3; dashed curve: κ=4; dot-dashed curve: κ=6; and solid curve: κ=10.

Fig.7 (Color online) Variation of V (φ) for fixed M=0.62 and different values of κ. Dotted

curve: κ=1.8; dashed curve: κ=1.85; dot-dashed curve: κ=1.9; and solid curve: κ=2.0.

Fig.8 (Color online) Variation of φm with κ for different values of the Mach number, M . The

dotted curve corresponds to M=1.0; the dashed curve to M=1.1; the dot-dashed curve

to M=1.2; and the solid curve to M=1.3.
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FIG. 2: (Color online) Variation of V (φ) for κ=16 and different values of Mach number, M . From top

to bottom: Dotted curve: M=0.97; dashed curve: M=1.10; dot-dashed curve: M=1.23; long-dashed

curve: M=1.36; and solid curve: M=1.50.
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FIG. 3: (Color online) Variation of V (φ) for κ=4 and different values of Mach number, M . From top

to bottom: Dotted curve: M=0.85; dashed curve: M=0.95; dot-dashed curve: M=1.05; long-dashed

curve: M=1.15; and solid curve: M=1.24.
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FIG. 4: (Color online) Variation of φm with M − M1 for different values of κ. The dotted curve

corresponds to κ=3, the dashed curve to κ=5, the dot-dashed curve to κ=7, the dot-dot dashed

curve to κ=10, the short-dashed curve to κ=16, and the solid curve to κ=50.
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FIG. 5: (Color online) Variation of V (φ) for different values of κ, and values of Mach number, M ,

given by M = M2 − 0.0015. The dotted curve corresponds to κ=3, the dashed curve to κ=5, the

dot-dashed curve to κ=7, the long-dashed curve to κ=10, and the solid curve to κ=16.
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FIG. 6: (Color online) Variation of V (φ) for fixed M=1.1 and different values of κ. Dotted curve:

κ=3; dashed curve: κ=4; dot-dashed curve: κ=6; and solid curve: κ=10.
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FIG. 7: (Color online) Variation of V (φ) for fixed M=0.62 and different values of κ. Dotted curve:

κ=1.8; dashed curve: κ=1.85; dot-dashed curve: κ=1.9; and solid curve: κ= 2.0.
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FIG. 8: (Color online) Variation of φm with κ for different values of the Mach number, M . The dotted

curve corresponds to M= 1.0; the dashed curve to M=1.1; the dot-dashed curve to M=1.2; and

the solid curve to M=1.3.
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