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FUNDAMENTAL STATISTICAL FEATURES AND SELF-SIMILAR
PROPERTIES OF OIL PRICE

MAHDI MOMENI* AND IOANNIS KOURAKIST

Abstract. The stochastic nature of oil price fluctuations is investigated over a twelve-year
period, borrowing feedback from an existing database (USA Energy Information Administration
database, available online). We evaluate the scaling exponents of the fluctuations by employing
different statistical analysis methods, namely rescaled range analysis (R/S), scale windowed variance
analysis (SWV) and the generalized Hurst exponent (GH) method. Relying on the scaling exponents
obtained, we apply a rescaling procedure to investigate the complex characteristics of the probability
density functions (PDFs) dominating oil price fluctuations. It is found that PDFs exhibit scale
invariance, and in fact collapse onto a single curve when increments are measured over microscales
(typically less than 10 days). The time evolution of the distributions is well fitted by a Lévy-type
stable distribution. The relevance of a Lévy distribution is made plausible by a simple model of
nonlinear transfer. Our results also exhibit an intermittent multifractal scaling in the higher-order
statistics.
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1. Introduction. A wide range of dynamical phenomena, such as turbulence
flows, financial stock market fluctuations, seismic activity, internet traffic, climate
change, etc., are characterized by randomness, or stochasticity [1, 2, 3, 4, 5, 6, 7,
8, 9, 10]. The analysis of non-stationary stochastic processes, involving quantities
which fluctuate widely and are random-valued, has long been identified as a problem
of fundamental interest. Fossil oil (petrol) market is a particularly good example of a
random system whose (pricing) fluctuation bears a significant socio-political impact in
modern society. Over the past two decades, oil price has increased sharply, rising from
$25 per barrel in January 1986 to a peak of close to $122 per barrel in the last week
of July 2008, yet featuring a significant degree of abruptness and erratic behaviour
in shorter time windows (intervals). The effects of oil price fluctuations on the world
economy are undeniable and particularly evident from global reports. Oil price data
as a time series is a highly nonlinear system which exhibits complex patterns.

The behavior of oil price fluctuations can be efficiently modelled by standard
statistical-analytical models, such as the Ising model, earlier proposed for stock-
price fluctuations [11], or the cascade model developed on fractal concepts, which
was employed in hydrodynamics and magnetohydrodynamic turbulence [12, 13]. In
the following, we employ the cascade technique to characterize the statistical prop-
erties of oil price time series, taking into account (and distinguishing among) the
self-similarity and multi-fractality features arising in our time series of interest. Our
model is based on two-point increments of oil price, which provide a comprehensive
and scale-dependent characterization of the statistical properties of the system via an
associated probability density function (PDF). It is necessary to stress that the data
series is represented by a finite number of records which do not constitute a stationary
process. The effect of non-stationarity on the detrended fluctuation analysis has been
investigated in Ref. [14]. The detrended fluctuation analysis (DFA) method intro-
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duced by Peng et al. [15] has became a widely-used technique for the determination
of (multi-)fractal scaling properties and the detection of long-range correlations in
noisy, non-stationary time series [14, 15]. We ought to keep in mind that, if the aim
is to analyze fractality properties of fluctuations, one need not necessarily consider a
stationary time series. The fact is that stationary stochastic systems often show scal-
ing in a statistical sense, in consistence with non-Gaussian leptokurtic (heavy-tailed)
statistics. Such a distribution is characterized by an enhanced probability of large
events, in comparison with a Gaussian behavior. Importantly, once the characteris-
tic scaling exponents have been identified, one is able to interpret and estimate the
behavior of the fluctuations, as well as to detect long-range correlations.

Numerous studies indicate the possibility that a stochastic time series may ex-
hibit self-similarity (and/or self-affinity) at short time scales, and yet this property
may break down at longer times. Such a behavior is efficiently modeled by a statistical
distribution with a truncated tail. A self-similar Brownian walk with Gaussian PDF,
which has a scaling exponent 1/2, is a good example of a process which has indepen-
dent increments over all temporal scales. Upon estimating the scaling exponents of
the fluctuations via different methods, one finds that the results are in agrement with
scaling exponents as determined through computing structure functions. It is often
stated that the fluctuations are self-similar (monofractal) if the scaling exponents de-
pend linearly on the order of moments. Nevertheless, a nonlinear dependence points
towards multifractal scaling, which is a signature of the intermittent structure of oil
price fluctuations.

In this paper, we employ data from an exact real oil-price database [16] to study
oil price fluctuations over two distinct time windows/regimes, thus distinguishing
among a “micro-” and a “macroscopic” regime. At micro scales (typically shorter
than 10 days), fluctuations are self-similar and exhibit characteristic scale similarity
properties. This suggests that they obey similar physical laws. As a matter of fact,
a similar behavior has also been found in hydrodynamic and magnetohydrodynamic
(MHD) turbulence, which is associated with lack of any characteristic spatial scale
within the inertial range, as was predicted by Kolmogorov [13, 17, 18, 19]. On the
other hand, the characteristics of macro scales (typically larger than 10 days) appear
to be uncorrelated and converge towards a Gaussian distribution.

Our results, to be exposed below, suggest that there exist various distributions
which can be fitted to the oil price fluctuations. However, the most obvious difference
between the different models involves the wings of the distribution. Distinguishing
among random processes by comparing the distribution wings can be quite difficult
because data sets are limited. According to the Generalized Central Limit Theorem
(GCLT) which can be surprisingly robust when it comes to the condition of indepen-
dent and identically distributed random variables, a Lévy process is proposed [20].
Lévy processes have been identified for example in biological systems [21], financial
markets [3, 22], and physical systems [23, 24]. We find that the oil price fluctuations
are remarkably well described by a Lévy stable symmetric distribution, exception
made for most rare events.

This article is structured as follows. In Section IT we describe our data set. In
Section III, we review the rescaled range analysis (R/S) and the scale windowed
variance analysis (SWV). In Section IV we employ a recently developed technique
[13, 17, 18] that sensitively distinguishes between self-similarity and multifractality
in a time series. Moreover, the scaling exponent of oil price fluctuations is computed
by using generalized structure functions and the peaks of PDFs; and the results are
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TABLE 2.1
Mean value, standard deviation, skewness, and kurtosis of the oil price increments.

Mean Standard Deviation | Skewness | Kurtosis
0.0124274 0.729173 -0.606749 | 9.55225

thus compared with estimated values in Section IV. The micro-scale PDF resembles a
leptokurtic Lévy distribution which will be discussed in Section V. Finally, in Section
VI we summarize our results.

2. The data. Over a twenty-two-year period, approximately, the price of oil has
increased from $25 per barrel in January 1986 to a peak of close to $ 122 per barrel
in the last week of July 2008. Oil price, as recorded in international markets [16],
offers us a unique possibility to gain information on the stochastic dynamics state
in a very large scale range, say from one day up to 200 days. Fig. 6.1 presents the
daily fluctuations in oil price p(¢) in the period 1986-2008. It is evident from the
figure that the fluctuations do not constitute a stationary process; for instance, one
may show that the variance of the signal in some window does not remain stable
upon increasing the window size. Let us introduce the increments dp(t, ) defined
by, op(t,7) = p(t + 7) — p(t). The resulting series for dp(r) is shown in the inset
graph of Fig. 6.1. It is straightforward to show, by measuring the variance of dp(¢, 7)
in a moving window, that dp(¢,7) is stationary. Upon initiating the analysis of the
distribution of oil price increments, the mean, standard deviation, skewness, and
kurtosis of the return series are calculated (see Table 2.1). Throughout this paper we
have used day as the unit of time.

The skewness of a Gaussian distribution is zero, therefore the negative value of
skewness, here A = —0.606749, is viewed as a hallmark of departure of the PDF
from the Gaussian distribution and may thus here be attributed to a stable Lévy
distribution. On the other hand, the large value of kurtosis, x = 9.55225, with
respect to Gaussian kurtosis (k = 3), suggests that the tails of the return distribution
are fatter than the Gaussian ones, which confirms the existence of intermittency in
the fluctuations.

3. Scaling analysis.

3.1. Hurst’s Rescaled-Range Analysis. The first method for analysis of long
records in time series based on random walk theory has been proposed by Harold
Edwin Hurst(1880-1978) [25]. Hurst found that the ratio (R/S) is very well described
for a large number of natural phenomena by the following empirical relation

(3.1) R/S ~ 7,

where 7 and H are defined as the time span and the Hurst exponent, respectively.
For our oil price time series, we define R and S by the following steps.

We first divide the profile (px),k = 1,....,N into Ny = int(N/s) non-overlapping
segments of size s. In the second step, the profile (integrated data) is calculated in
each segment v =1,..., Ny — 1, as

J J . s

(32) YU(.?) = Z(pl/s+i - <pus+i>s) - Zpus+1 - %Zpuerl .

i=1 i=1 i=1

Piecewise constant trends in the data are subsequently eliminated upon a simple
subtraction of the local average. In the third step, the difference between the mini-
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mum and maximum values, R,, and the standard deviations S, in each segment are
calculated, viz.

s 1/2
(3.3) R,(s) =Max{Y,(s)}—Min{Y,(s)} and Su(s) = <i Z Yf(s)) .

Finally, the rescaled range is averaged over all segments to obtain the fluctuation
function R/S,

Ng—1
(3.4) (BS) =5 3 gy ~ "
s 20 v

The R/S analysis can be viewed as a special form of coarse-graining for a time
series. However, the method was developed long before the fractality concept. After
having calculated R/S values for a large range of different time horizons s, we plot
log(R/S)s against logs. By performing a linear least-square fit, we find the slope
of the curve which is our estimate of the Hurst exponent H. The Hurst exponent H
and the fractal dimension D are related as Dy = H — 2 [26]. The Hurst exponent
is called the scaling exponent or correlation exponent, and its value depends on the
correlation properties of the signal. If H = 0.5, there is no correlation and the signal is
an uncorrelated signal; if H < 0.5, the signal is anticorrelated, while if H > 0.5, there
is positive correlation in the signal. Fig. 6.2 presents a log-log plot of the rescaled
range (R/S) fluctuations as a function of s, which results to the value H = 0.65+0.029.
This shows that all daily price changes are correlated with future daily price changes.

3.2. Scale Windowed Variance Analysis. The Scaled Windowed Variance
(SWV) analysis was developed by Cannon et al. (1997) [27]. For oil price time series,
(pr), we define the profile Y () as

%

(3.5) Y @) = 3ok — ().

k=1

The profile Y (¢) is divided into Ny = int(N/s) non-overlapping segments of equal
lengths s. The standard deviation is then calculated within each interval by using

1 s 1/2
(35 swvs =(2 W0 - reR)

i=1

The average standard deviation of all time intervals of length s is computed. This
computation is repeated over all possible interval lengths. The scaled windowed vari-
ance is related to s by a power law

(3.7) SWV ~ st

where H is well-known Hurst exponent. In Fig. (6.3) , we plot in double-logarithmic
scale the corresponding SWV fluctuations against the coarse-graining s. Using the
above procedure, we obtain the following estimate for the Hurst exponent: H =
0.68 £+ 0.022. Since H > 0.5, it is concluded that the oil price fluctuations show
persistence; i.e., strong correlations between consecutive changes.
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4. Statistical self-similarity. A set of time series dp(¢, 7) is obtained for each
time lag 7. The return of the stochastic variable dp(t, ) is said to be self-similar with
parameter « (o >), if for any A

(4.1) op(T) EL Aop(AT).

The relation (4.1) is interpreted as an equality in law (EL), that is the two sides
of the equation have the same statistical properties. For the associated cumulative
probability distribution gp, it follows that

(4.2) p(dp(T) < p) = p(A"dp(AT) < p),
for any real p. This implies for the probability density P
(4.3) P[op(T)] = A" P[]\ %Ops] s

introducing the master PDF Py with dp; = dp(A7). According to Eq. (4.3), there
is a family of PDFs which may collapse to a single curve Ps, if « is independent of
7. This is known as monoscaling, in contrast to multifractal scaling often observed.
To characterize quantitatively the observed stochastic process, we measure P(dp)
of the price fluctuations for different 7, i.e. in an interval whose breadth ranges
between 1 day up to 200 days. In Fig.(6.4) we show the PDFs (normalized with the
variance (6p(7)?)'/?) for various 7, including micro and macro time scale. A simple
comparison to a Gaussian illustrates the highly non-Gaussian nature of the tails of
the PDF's over the micro scales, as shown in the left inset panel of Fig. 6.4. For
7 < 10 days, the distributions expand in an increasing manner without essentially
much changing in form, as we can see in Fig.(6.5). The similarity of the P(dp) on the
micro scales suggests the possibility of monofractality. The monofractality exponent
is expected to be scale-independent at the micro scales. Consequently, this allows
us to apply rescaling procedure given by Eq.(4.3) over the micro time scales. The
distributions lose their leptokurtic shape and converge toward a Gaussian distribution
as T increases, i.e. for 7 > 10. We can see in the right inset panel of Fig.(6.4) that a
Gaussian curve fits well to P(dp) for 7 = 200 days. It is worthwhile to note that, for
experimental data, an approximate collapse of the PDF is an indicator of a dominant
self-similarity trend in the time series, i.e., this method may not be sensitive enough
to detect monofractality, which might in fact manifest itself only during short time
intervals.

The above-mentioned observations can be a hallmark of statistical intermittency over
all time scales. Accordingly, the scaling behavior of the distributions at different time
scales present two different regimes. At micro-scales, correlations between successive
price changes are dominant. Interestingly, the PDFs at micro-scales, which show
similarity, seem to obey the same physical mechanism. On the other hand, long time
effects on the oil price seem to indicate a Gaussian distribution for the fluctuations.
This is a trace of multifractality in the evolution of oil price. It is remarkable that
the micro- time scale regimes can lead to a linear scaling dependence while the entire
range may just as well present a nonlinear dependence.

For a quantitative comparison, we fit the tail of the PDFs to the following function
as [24]

(4.4) P(|op]) ~ exp(—Aldp|"),

with an exponent u, which describes the distribution shape at the wings. As a result,
numerical analysis on positive fluctuations implies that good fits can be obtained
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in the wings of PDFs and in the interval [100,150], where o is standard deviation
the data. Fig. (6.6) shows the dependence of the exponent p on 7 for PDF's of oil
price fluctuations. The exponent u changes as 7 increases. This is a signature of
the presence of multifractality in the stretched tails of PDFs. As expected, at large
scales, p remains close to a value around 2 in which the PDFs collapse to a Gaussian
distribution.

Let us now consider the scaling as defined by the structure functions. The gener-
alized structure function of order n is simply defined as

—+oo
(45) 8" (rizt00) = (091" = [ IopI" Pl6p,7)dGp)

— 00
The analysis which follows is also valid for the moments; however, structure functions
are typically calculated for a data series. The arguments do not apply to structure
functions of odd order, which not only may have negative coefficients, but could also
even change sign of the scaling range. The proof will, however, remain valid for
odd orders when the structure functions are defined with the absolute value of the
increments. Using the relation (4.3) we obtain

(4.6) S™(7;400) = Xn 8™ (dps; +00) ,

where the linear function ¢,, = an reflects the statistical self-similarity, in the monoscal-
ing case. On the contrary, in some cases, one may observe a multifractal scaling, in
the sense that a nonlinear dependence is observed on n where (,, = na(n) is a convex
function of n and ,4+1 > ¢, Vn. This deviation from strict self-similarity over all
time scales 7, also termed multifractal scaling, is caused by the intermittent structure
of turbulence.

To test if the above-mentioned interesting observations in oil price are a phe-
nomenon related to inherent properties of stochastic processes, structure functions
S™(7) for different 7, given by Eq. (4.5), are computed. A difficulty that can arise
in the experimental determination of the (,, is that for a finite length times series,
the integral Eq. (4.5) is not sampled over the range (—oo;+00), rather the outlying
measured values of y determine the limit, [—y;+y]. The structure functions for the
data interval studied here are shown in Fig. (6.7). On this log-log plot the slopes
as shown give estimates of the scaling exponents, (,. Importantly, the higher-order
structure functions progressively capture the more intermittent, larger fluctuations.
The micro and macro ranges of scaling are well-defined with a sharp transition at the
break point at ~ 10 days. We plot (,, vs. n for the micro range in the main panel
of Fig. (6.8), and for the macro range in the inset. Surprisingly, the micro range
is monoscaling i.e. globally scale-invariant; in contrast to the macro range which is
multifractal.

To apply the rescaling procedure given by Eq. (4.3) the exponent « is extracted
from the underlying data by two independent technique[17, 13]. First, the standard
deviation which is defined by the root of the second-order structure function, o(7) =
[S2(7)]'/? and has the minimum of statistical error, exhibits power-law behavior with
respect to the increment distance, o(7) ~ 7* as depicted in Fig. 6.9. A linear least-
square fit is carried out to obtain a. The characteristic exponent deduced in this way
is @ = 0.66£0.065, which is called the generalized Hurst exponent (GH). Second, in the
micro scales, 7 < 10, the characteristic exponents can be obtained via the amplitude
of P(0,7) ~ 7%, to profit from the fact that the peaks of the PDF's are statistically
the least noisy part of the distributions. The logarithmic plot of P(0,7) versus 7 is
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TABLE 4.1
The values of the Hurst exponent for an oil price time series, as obtained via different approaches.

R/S SWV GH P(0,07)
0.65+0.020 | 0.68 £0.022 | 0.66 £ 0.065 | 0.66 = 0.012

similar to Fig. 6.9, and is omitted here. The scaling exponent obtained by using this
method is in good agreement with the value of o obtained via the PDF variance and
values estimated in Section III (see Table 4.1). Fig. 6.10 shows the rescaled PDFs
according to Eq. (4.3) over the micro scales. As expected, the PDFs collapse for
up to 30 with weak scattering on the master PDF, P,, when using the characteristic
exponents given above. These rescaled PDFs are leptokurtic rather than Gaussian
and are thus strongly suggestive of an underlying nonlinear process. We may model
this PDF by a Lévy distribution, which thus turns out to be a successful fit to the
distribution of oil price fluctuations. On the other hand, the PDF's over all time scales
do not collapse onto a single curve when rescaling Eq. (4.3) is applied (see Fig.(6.11)).
The lack of monoscaling is evident and indicates a multifractal process.

5. Lévy distribution model. Lévy stable laws are a rich class of probabil-
ity distributions (non-Gaussian) that comprise heavy tails and have many intriguing
mathematical properties. They have been proposed as models for many types of
physical and economic systems which exhibit heavy tails. A Lévy process is a time-
dependent or position-dependent process that at an infinitesimal interval has the Lévy
distribution of the process variable. The characteristic function of the Lévy process
is

(5.1) Ku(g;8) = exp(=cs [ ¢ |"),

where s can be a characteristic time or space scale and o = 1/p is equal to Hurst
exponent. If y = 2 the Lévy collapses to the Gaussian distribution. If 4 = 1 the
Lévy becomes a Cauchy distribution. The original Lévy process is given by its inverse
Fourier transform, i.e.

(5.2) P,(z,s) = /dqeiqz*cs‘qw,

and the symmetric Lévy distribution becomes

(5.3) L,(dzas) = l/ exp(—yAsg") cos(qdzas)dq,
™Jo

where the increment is dx = x4, — x5_as; here, 0 < u < 2, and v > 0 is a scale factor.
The maximum event probability leads to

I'(1/p)

(5.4) PO) = Lu(0) = —

The exponent p of the best fits is constant at the micro time scales and amounts
approximately to u ~ 1.51 or @ = 0.66 (see Fig. 6.9). Similar findings have been
reported, for example, in financial systems, e.g. the Tehran price stock market, where
w ~ 1.36 [2], and in physical systems such as the solar wind, where p ~ 3.3 [23]. From
Fig. 6.10, we conclude that the central region of the distribution is well described by
Lévy stable distributions. On the other hand, the tail of distributions deviates from a
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Lévy stable distribution and is approximately exponential as discussed at the previous
section, ensuring that the variance of the distribution is finite. These observations
might at first sight seem to contradict the Lévy process which has an infinite variance
for 4 < 2. But, there is no contradiction, as a recent study finds that the Lévy
process may hold over a long period of time for dynamics of “quasi-stable” stochastic
processes having a finite variance [28].

6. Summary. In this paper, we have presented a statistical analysis of oil price
fluctuations for the period of January 1986 to July 2008. For oil price time series
we have obtained a Hurst exponent greater than 0.5, indicating that the series has
long term dependence (persistence). However, the scaling properties that we have
found via analyzing of the PDFs allow us to detect the occurrence of mono-(multi-)
fractality features in the distribution. Oil price fluctuations are found to be self-
similar, and exhibit a leptokurtic nature for micro time scales, 7 < 10. Fluctuations
on the macro temporal scales, 7 > 10, are uncorrelated, in that their PDF's converge
toward a Gaussian distribution. We found that the PDFs have exponential tails and
the associated exponent p is not constant as time scale 7 change, ranging from micro
to macro time scales. This behavior can be interpreted as an indication of the presence
of multifractality in the system. We have also obtained a good collapse, according
to the rescaling procedure (4.3), onto a single curve over at least three standard
deviations for micro scales. The closeness of the PDF's to Lévy stable distributions is
made plausible by a simple model mimicking nonlinear spectral transfer.
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F1G. 6.1. Semi-log plot of oil price series over the period 1986-2008. Inset: daily return of the
oil price index.
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F1G. 6.2. Rescaled Range (R/S) of fluctuations versus box size s.
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F1G. 6.3. Behavior of Scaled Windowed Variance (SWV) of fluctuations as a function of s.

L S L A A A AR DR ARRARS ERARRARA
F 1=1 day =200 days 1

L 10" y N i

1?101 10? E|

F 10? 7

[ 100 10° %ol ]

10" =104 10° % 3

E 10° B

—_ [ -30-20-10 0 10 20 30 ]
= F ]
g 107¢ 4
o = B
10°%¢ <
10%E o
10'57 Ll L Ll 1 ]
-30 -20 -10 0 10 20 30

3p
Fic. 6.4. The PDFs of oil price fluctuations p for warious T; here, T =

1,10, 20, 40, 60, 80, 120, 140,160 or 200 days. Ezamples of the PDFs for the smallest (T = 1 day)
and largest (T = 200 days) time lags are shown in the left and right inset panels, respectively. The
solid line is a Gaussian PDF for comparison.
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F1G. 6.5. The PDFs of oil price fluctuations at micro scales T < 10. We can see that the shape
of the PDF's does not change fundamentally as a result of monofractality.
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FiGc. 6.6. Ezponent p of the positive tails of the PDFs for different time scales, T =
1,10, 20, 40, 60, 80, 120, 140, 160, 200 days.
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FI1G. 6.7. The structure functions are depicted, as computed from Eq. (4.5). In order to obtain
the scaling exponents, we consider the logarithmic slope via a sequence of linear least-square fits.
The vertical dashed lines show the micro range.
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Fic. 6.8. The scaling exponents (p, of the structure functions are depicted versus the correspond-
ing order n. Main plot: a linear relationship between (n and n on this plot indicates monoscaling
behavior within the micro scales. Inset: (, vs. m for the macro range, this is concave , consistent
with the multifractal nature of the macro range.
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Fic. 6.9. Standard deviation of oil price increments within the desired range. The dashed line
shows a good fit over the micro scales, i.e. for 7 < 10.
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F1c. 6.10. Rescaled PDF's of oil price fluctuations at micro-scales, T < 10. The Lévy distribu-
tion with u = 1.51 is represented( dashed line).
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Fic. 6.11. Rescaled PDF's of oil price fluctuations over some micro-macro time scales. This
shows that the collapse of the PDF’s to a single curve is broken.





