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Abstract. The amplitude modulation of ion-acoustic waves is investigated in a
plasma consisting of adiabatic warm ions, and two different populations of thermal
electrons at different temperatures. The fluid equations are reduced to nonlinear
Schrédinger equation by employing a multi-scale perturbation technique. A linear
stability analysis for the wave packet amplitude reveals that long wavelengths are
always stable, while modulational instability sets in for shorter wavelengths. It is
shown that increasing the value of the hot-to-cold electron temperature ratio (),
for a given value of the hot-to-cold electron density ratio (v), favors instability.
The role of the ion temperature is also discussed. In the limiting case v = 0 (or
v — ), which correspond(s) to an ordinary (single) electron-ion plasma, the results
of previous works are recovered.

1. Introduction

Plasmas are often characterized by a coexistence of cold and hot electron pop-
ulations. Such two-electron-temperature (2¢T) plasmas occur in hot cathode dis-
charge plasma experiments [1,2], in thermonuclear fusion [3,4] and in RF-produced
plasmas in ELMO confinement devices [5]. Various spacecraft observations, e.g.
by the FAST at the auroral region [6, 7], S3-3 [8], Viking [9,10] and GEOTAIL
and POLAR [7,11] missions have reported the occurrence of 2eT plasmas in the
magnetosphere and have recorded localized potential excitations propagating in
them.

The nonlinear behavior of ion-acoustic (IA) solitary waves has been long studied
quite exhaustively, both theoretically (see e.g. in [12-14] and references therein)
and experimentally [14-16]. Naturally, the properties of IA excitations are con-
siderably affected by the simultaneous presence of cold and hot electrons, both
in the linear [2] and in the nonlinear (see e.g. Refs. 17-21) regime(s). Interestingly,
both positive and negative 1A potential perturbation (IA solitons) can propagate in
2eT plasmas [22-24], unlike electron-ion plasma (e-i) plasmas, which only support
positive potential disturbances [14]. As expected, the dynamics of TA solitons in
2eT plasma depends on the relative temperature and density ratio(s) between the
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two electron components [17], which also affect the very conditions for existence
of solitary excitations.

Beyond soliton theories (e.g. of the Korteweg-de Vries type [14]), which domin-
ate weakly dispersive ion-acoustic waves (IAW), shorter carrier wavelength wave
packets are described by nonlinear Schrodinger (NLS)-type [25, 26] perturbative
theories, which provide the modulational (in)stability profile of their envelope and
model the dynamics of envelope soliton structures at the first stage after their
formation. The addition of a small fraction of cold electrons in e-¢ plasma can
drastically affect the modulational dynamics of TA wave packets [27], and may
also their response to oblique perturbations [28-30].

Recently, 2eT plasmas appear to have received new theoretical interest, as wit-
nessed by an increasing number of studies on various plasma modes in such plasmas
in the last decade. The co-existence of cold and hot electrons has been revisited
with respect to ion-acoustic [31, 32] and electron-acoustic [33] pulses and double
layers, surface electron-acoustic waves in dusty plasmas [34], multi-dimensional ES
solitons in electron-positron plasmas [35], quantum plasmas [36], to mention only
a few. Space observations have also attracted interest in the high-frequency elec-
tron modes in 2eT plasmas [37,38], not overlooking related amplitude modulation
studies [39,40].

Our scope here is to revisit the modulational dynamics of electrostatic wave
packets in 2eT plasmas. We shall investigate the occurrence of envelope solitary
excitations, associated with the modulational instability of TAWs propagating in
a collisionless plasma consisting of adiabatic warm ions and electrons. Relying on
a standard multi-scale perturbation technique [12,25], we shall obtain a NLS-
type equation [26] for the wave amplitude, to study its dynamics. The layout of
this paper is as follows. In Sec. 2, a fluid-plasma analytical model is introduced.
Section 3 is devoted to the derivation of the NLS Equation (NLSE) for the wave
amplitude dynamics and to a discussion of the linear stability of the IAW envelope.
A parametric analysis of the stability of the wave packet envelope in terms of
plasma parameters is given in Sec. 5. Finally, the conclusion is given in Sec. 6.

2. Basic equations

In a plasma, which consists of warm ions, hot and cold electrons, the basic set of
one-dimensional (1D) fluid equations can be written as
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where n;, n. and n;, are ion, cold and hot electron densities, respectively. The
variables s, u;, p; and ¢ respectively denote the ion fluid-velocity, ion fluid-pressure
and the corresponding electrostatic potential. Parameters Z; and m; are ions’
atomic number and mass. Both, electron species (cold and hot) are taken to follow
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the Boltzmann distribution, that is

Ne = ncoe"’;ﬂ , ny = nhUeK;Th . (2.5)
Here, T, and T}, represent the cold and hot electron temperatures, respectively,
and the zero subscript denotes the equilibrium values. The right-hand side of (2.4),
then, cancels out at equilibrium situation due to the overall neutrality condition,
giving rise to the following expression:

Neo + Npo — Zingo = 0. (2.6)

The variables, time () and space (z), are normalized with respect to the ion plasma
period (inverse frequency) defined by w;l = (4nn;0 Z}e? /m;)~"/? and the corres-
ponding effective Debye radius rp .y = (KpTyy/4mnio Zie*)'/%. We also normalize
densities n;, n. and n; to n;0 and the pressure p to p;g = n;0KpT;y. Electrostatic
potential ¢ is scaled to ¢9g = Kp Teff/e and the velocity u; to ion-acoustic speed
Cooff = (KBIﬂZi/mi)lﬂ. Here, T,y is the effective temperature T,y = (np0 +
neo)/ (o /Th + neo /T0).

Equations (2.1)—(2.4) can thus be combined into a set of reduced (dimensionless)
relations, which are as follows:

o e 0, (2.7)
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All quantities in the preceding equations (and everywhere below) are dimensionless;
to be distinguished from the homologous ones in (2.7)-(2.10) by a tilde, say, here
omitted for clarity. The parameter o denotes the ratio of ion temperature to the
effective temperature (o0 = T;/T,;). The dimensionless parameters, o and o, are
related to the fractional electron temperature (u = Tj/T.) and densities (v =
npo /Neo) with the following expressions:

(1+v) (v+p?) o (1+v)* (v+p4?)
(v + p)’ w+w®

Note that & = 1/2 and o — 1/6 in the ordinary electron-ion plasma limit (v — 0).
Although Z; = 1 can be assumed in the forthcoming algebra. in order for our results
to be compared to the existing ones, here we keep Z; arbitrary for generality.

_ 1! _1 (2.11)
) 6 '

3. Perturbation analysis for the wave packet amplitude

In order to obtain an explicit evolution equation, describing the propagation of
modulated electrostatic envelopes, from the basic model (2.7)—(2.10), we shall em-
ploy the standard reductive perturbation (multiple scales) technique [12,25]. The
independent time (¢) and coordinate (z) variables are stretched as 7 = &2t and
¢ = e (z — At), in which € represents a small (real) perturbation parameter and A
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denotes the phase velocity, to be determined by the compatibility requirements.
We define a vector for the corresponding state quantities S, which is a (column)
vector (n;,p;,u;, @)t, defined as:

©
0) + Z E”S(n)
n=1

in which the 8(% is a (column) vector (1,1,0,0) and

Z Sl & 1l kx wt)
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Here, k and w denote the (fast) fundamental-phase variables, i.e. the dimensionless
carrier wave number and frequency (scaled by 27/rp and w,), respectively. All
variables satisfy the reality condition Sl(n) = Sﬁ’;’*, where the superscript star
denotes the complex conjugate (c.c.).

Substituting the above expansion into (2.7)—(2.10) and making use of stretched
variables, we may now isolate distinet orders in €.

The first-order reduced equations are

—zwni z) + iku Ell> 0,

—iwout) +ikel}) + ikopl}) =0,

(3.1)
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Consequently, (3.1) yield
k2
=3k0+ —— L (3.2)

This is the dispersion relation for IAWs in ordinary electron-ion plasmas (i.e.
for a single electron population in the background), yet note that the details of
our plasma composition here are ‘hidden’ in the normalization above. Thus, the
dispersion relation (3.2) is similar to the one derived in [42], and also reduces
to the expression given by Sharma and Buti [27] in the cold-ion limit. The first-
order harmonic amplitudes in terms of potential components are determined by
the following relations:

1) (1) 1 1 1 o
E = 1¢1 ) 1'7 = U1,1¢§ ), py(;J) = P1,1¢)§ ), (3.3)
where
Ny = %, Uix = wzf%, b= % (3.4)

From the second-order (n = 2) equations for the /st harmonics (I = 1), one can
deduce the following compatibility relation:
oY (w? — 3k%0)?
ok kw ’
It is easily shown that A = v, (k) = dw/0k, therefore the parameter A corresponds
to the group velocity in the (x) direction of modulation.

(3.5)
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The second-order Ist harmonic quantities have the form
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The second harmonic mode of the carrier wave comes from the nonlinear self-
interaction part, which is obtained in terms of ((Z)(11>)2 component. The component
of I = 2 for the second-order (n = 2) reduced equations determine the second
harmonic quantities, which are

2 2
niy = Nos <¢(11)) Juy = Us (¢(11)> ,

@) W\ 4@ (1) o
Pio = P o (¢1 ) 1Py = Do (¢1 )

The second-order coefficients in (3.8) are presented in Appendix A. A zeroth har-
monic mode also appears due to the self-interaction of the modulated carrier wave.
However, the corresponding expression cannot be fully determined within the
second orders and requires considering the third-order equation sets. Therefore,
the [ = 0 components of the third-order (n = 3) part of the reduced equations
determine the following second-order amplitudes of the zero harmonic mode as

nif) = ]as( C ol = U4
@ _ ) (1) |2 39
Pio = ¢() = (1)2,0 ‘¢1 ‘ .

The expressions for the coefficients in (3.9) are presented in Appendix B.
Continuing into n = 3 and | = 1 orders, the condition for suppression of secular

terms leads to the following NLSE

0, p 0% 2

— +P— =0. 3.10

e + Pge + QI (3.10)
This equation describes the slow evolution of the first-order amplitude of the plas-
mas perturbed potential ¢ = (1> . The lengthy expressions for the dispersion
coefficient P and the nonlinear eoefﬁclent @ are given in Appendix C. We note that

the dispersion coefficient P is related to the dispersion curve as P = 82w/28k2.
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A short algebraic manipulation shows that the dispersion coefficient P, given in
(C1), is the same as the one derived in [42]. It is straightforward to check that the
coefficient P is always negative for all parameter values of interest to us here.

For o = 0, the coefficient P reduces to the one given in [27] and P is always
negative for all .

The nonlinear coefficient () expresses the nonlinearity, which is due to the carrier
wave self-interaction.

As we shall discuss below, the sign of the nonlinear coefficient @ (C 2) determines
whether the wave packet is stable (for @ > 0) or not (@ < 0). For different
values of v, u and o, the critical wave number k.., for which the modulation
instability appears, can be obtained from the equation Q(k..,o,a/,0) = 0 by
solving numerically (see in Sec. 5 below). It is pointed out that near the critical
value k., the nonlinearity coefficient @ has a small value, hence (3.10) becomes
linear and no localized excitation can be obtained. In this case one must consider
higher-order nonlinearities, neglected here.

For the sake of gaining some analytical insight in dynamics, the investigation of
behavior of the coefficients P and () in the case of long wavelengths, i.e. kK <1, can be
of interest. In the limit k <1, the dispersion relation (3.2) reduces to w = k,/1 + 30.
The coefficients P and @ are then given by

3k

5«/1—#30’

~

O~ (4o —48a + 7o + (20 — 3)? (3.11)
- 12k 1+ 30 :
In the cold ion limit, for ¢ = 0, we have
P =~ —gk,
0~ (2a — 3)? (3.12)
12k

which coincides with the result in [28]. We note, comparing the latter two expres-
sions, the important role played by ¢ in the value and the sign of Q.

4. Stability analysis — characteristics of envelope excitations
The stability analysis of the NLS (3.10) consists in hneanzmg around the mono-
chromatic wave solution ¢ = w QT ,1.e. settmg w wo + swl, and then taking
the perturbed 1/)1 to be of the general fonn 1/)1 = z/JLUe (kg—or) (the perturbation
wave number k and the frequency @ should be distinguished from the similar carrier
wave quantities k and w). The dispersion relation

o? = Pk? (PE* —2Qol)

is then obtained. It is obvious that in order for the wave amplitude to be stable, the
value of the product PQ should be negative. Conversely, for positive PQ values,
instability sets in for perturbation wave numbers below a critical value defined by
/Afcr =./2|Q/P| |7f10|, i.e. for wavelengths above a threshold value A\., = 27r/l%c7,. The
maximum instability growth rate is ¢ = [Im@(k)|omax = Mmal; ;5= 1Ql[o2,
which is achieved for k = Izzcr/\/i.
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Arbitrary amplitude localized solutions of the NLS (3.10) can be found in the
form of bright and dark (gray/black) envelope solitons. Exact expressions for these
envelope structures are deduced by substituting ¢ = \/ﬁ expif into (3.10) (where
p and 0 are both real), and separating real and imaginary parts. The detailed
derivation is exposed in [25,41]; therefore, we shall only provide a brief outline
of the properties of envelope solitons and relevant quantities in the following.

A bright-type solution (bright envelope soliton) is obtained for the positive values
of the coefficient product PQ, i.e. for Q) < 0 here. This solution represents a localized
amplitude pulse, which contains (modulates) the fast carrier wave oscillation. These
bell-shaped excitations (vanishing at infinity) are characterized by an internal slow
oscillation (‘breathing’ effect), bearing a maximum amplitude ¢, and a spatial
extension (width) L, which are related by Ly =~ /|P/Q| = constant [25,41].

A dark-type solution (dark envelope soliton) is obtained for a negative value of
the coefficient product, i.e. for PQ) < 0 (or, here Q) > 0). This solution represents a
localized amplitude dip, i.e. a hole (a void) against an elsewhere constant amplitude
(finite everywhere), modulating the fast carrier wave oscillation. These excitations
may either present a vanishing potential at the origin, i.e. at X = 0 (black soliton),
or a finite, i.e. non-zero one (gray soliton). In both cases the asymptotic values
at infinity are constant and finite, i.e. non-zero. Similar to bright solitons, the
maximum amplitude, and the spatial extension L of dark excitations satisfy the

relation Loy =~ 1/|P/Q| = constant [25,41].

5. Numerical analysis and discussion

In this section we shall investigate the linear stability profile of the modulated
amplitude, focusing on its parametric dependence on plasma parameters.

As we have seen, the dispersion coefficient P given by (C1) is the same as the one
given in [42] and does not depend on p (the ratio of hot electron temperature to cold
electron temperature) and v (the ratio of warm electron density to cold electron
density). Figure 1 shows the variation of P versus the normalized wave number k
in the range of 0 < k < 1 for different values of the normalized ion temperature o.
It is observed that P remains negative everywhere in this range and its absolute
value at first increases and reaches maximum and then decreases as k increases for
fixed o. Also it is seen that an increase in the ion temperature leads to a decrease
in the absolute value of P.

The sign of the nonlinear coefficient @ is presented for different values of 1 and
v, in the range of 0 < £ < 1 and 0 < o < 1 in Figs. 2(a)—(d). The dashed lines
split the (kK — o) plane to left/right sections, where the nonlinearity coefficient
is positive/negative, i.e. for which the wave packets are stable/unstable (recall that
P < 0). For any given value of the normalized ion temperature o, instability sets
in above k., where Q(k = k.,) = 0 (see Sec. 3). Upon inspection of Figs. 2(a)—(d)
we note that increasing the value of p, for a given value of v, leads to a decrease
of the stable region in the sense that instability occurs at lower k, for higher p.
Increasing the hot component concentration, therefore, seems to destabilize a wave
packet easily.

It is observed that if one keeps a fixed value of p and increases the density ratio
v, the instability threshold (the separatrix between the two regions in the contour
plots) at first decreases to a minimum value and then increases. This behavior is
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Figure 1. The dispersion coefficient P, from (C 1), is depicted against the normalized wave
number k for ¢ = 0,0.25,0.5 and 0.75 (from bottom to top). The remaining plasma
parameters are set to v = 5 and p = 50.

expected, since the single-electron plasma limit is realized for very high value of v.
This case falls into the same situation with v =0 and p = 1.

For an electron-ion plasma, i.e. when v = 0 or ¥ — o0 or yt = 1, we obtain the
same result as in [42] (cf. Figs. 2(a)—(d) here Fig. 1 in [42]). In the cold-ion limit
(0 = 0), we remark that the k., first decreases and reaches a minimum value and
then increases as v increases (for fixed p), which is in agreement with the result
given in [27].

Finally, a much different behavior is witnessed for slightly larger values of p and
v, as the instability occurs at very small wave numbers for non-zero values of o
(see Fig. 2(d)).

The nonlinear coefficient @), given in (C 2), is depicted against the normalized wave
number k for cold plasma o = 0 in Fig. 3. The remaining plasma parameters are
set to v = 0,1,5,10,50 and g = 5. Our purpose is two-fold here, namely to point
out the effect of v (disregarding thermal effects), and also to compare to earlier
results [43,44] for the critical value of k, i.e. the root of @, where the system becomes
unstable. It is remarked that @ becomes zero at k., =~ 1.47 (for v = 0, i.e. in the
e-i plasma limit), which is in perfect agreement with the results given in [43,44]. It
may be added that such a higher wave number is admittedly invalidated by Landau
damping (overseen in the fluid description), yet the analysis is being provided here
for the sake of reference, thus confirming the validity of our algebraic calculation
via a comparison to existing results.

Let us now consider the envelope soliton width L, which depends on the P and
Q coefficients as L? ~ |P/Q)| (see the previous section). Figure 3 shows the ratio
P/Q versus k for fixed values of p and v, and for three different values of o. It
is seen that the width of dark/bright envelopes increases/decreases as k increases.
As a general conclusion, both the range of existence and the characteristics of
bright/dark envelope excitations can be deduced from Figs. 1-3. The area near
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Figure 2. The @ = 0 contour is shown in the plane of the normalized wave number (k = rp /)
versus the normalized ion-temperature o. The dashed lines in each plot (a, b, ¢, d) split the
o — k plane into left/right regions, in which ) possesses positive/negative values, i.e. the
region in which modulational stability/instability is predicted and, independently, wherein
dark/white-type solitary excitations may exist. The hot-to-cold electron temperature ratio
u = T, /T, here is fixed for each plot, while different values of the hot-to-cold electron
density ratios (v = 0, 1, 5, 10, 50) are considered. Top left: (single-temperature) electron-ion
limit provided, for comparison; top right: 1 = 5; bottom left: u = 10; bottom right: p = 50.

the threshold k = k., is worth a further comment: as we approach the boundary
separating the left from the right region(s) in Figs. 2, the width of envelope solitons
increases (see Iig. 3) as ) approaches zero near the threshold k£ = k.. The model
employed here fails in that region, as higher-than-cubic nonlinearity needs to be
taken into account on a different dynamics scale (not our scope here).
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Figure 3. The nonlinear coefficient @), from (C2), is depicted against the normalized wave
number k for 0 = 0. The remaining plasma parameters are set to v = 0,1, 5,10, and 50 and
w=>5.
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Figure 4. The coefficient ratio P/Q is shown versus the carrier wave number k, for
fixed values of electron density (v = 5), electron temperature ratio (x = 50) and for
different values of ion-temperatures. The different curves correspond to different values
of 0 (¢ = 0.25,0.5and 0.75). Recall that the sign P/Q determines the type of envelope
soliton, while its absolute value determines its width for given maximum amplitude (or vice
versa).

6. Conclusions

We have investigated the amplitude modulation of IAW in 2eT plasmas. The set
of fluid equations was reduced to a NLSE using a multiple-scales perturbation
technique. The possibility of occurrence of modulated solitary envelope structures
modeled as solutions of the NLSE was studied. The linear stability analysis for
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the amplitude, based on the NLS, has shown that waves will be stable/unstable
for small/large wave numbers, also depending on relevant plasma parameters (ion-
temperature o, hot-to-cold electron temperature p, and density v).

We have pointed out the existence of a critical wave number (whose value depends
on i and v), beyond which instability sets in. Moreover, we have shown that an
increase in the value of pu, for a given value of v, leads to the stability region
being reduced (i.e. modulation instability (MI) occurring at lower k). A different
behavior is met for large values of p, v and at certain non-zero values of o, enabling
MI to occur at very small wave numbers, i.e. enhancing instability. Wave packets
are always modulationally stable in the long wavelength limit. It was shown that
increasing the value of the hot-to-cold electron temperature ratio () for a given
value of the hot-to-cold electron density ratio (v) favors instability. This subtle
mechanism also depends on the ion temperature. The density and temperature
ratio(s) of the two electron populations thus appear to control instability and tune
the formation of envelope solitons.

It may be added, for rigor, that Landau damping, which is inevitably neglected
when using a fluid model, should in principle impede wave propagation for large k.
A Kkinetic description might certainly be a wiser approach in this case, for shorter
wavelengths, yet lies beyond our scope in this article.
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Appendix A. Second-order second harmonic amplitudes (n = 2, | = 2)

The second-order (n = 2) second harmonic (I = 2) contribution amplitudes involve
a set of coefficients — see (3.8) — which are presented below.

k*(w? + ko) !

Byy = g
227 2(w? —3K20) 3K
3k (w? + Ko Ko
Nao = g 2 ?3 + 2122 ’
2(w? — 3k20) (w? —3k%0)
U o — Ew(w? + 9k*0) kw®s 2
227 (w? —3k20) | (w? — 3k%o)’
k4(15w2 —9]{320') 3]{32(1)22
Py = :

2T 92 —3k%0) | (@ —3K%0)

Appendix B. Second-order zeroth harmonic amplitudes (n =2, | = 0)
The second-order zeroth harmonic coefficients in (3.9) are given below:
W2 + 20kw + 3k*o + 2a(w? — 3k20)? (30 — \?)
(30 — X2 + 1)(w? — 3k20)? ’
2w 4+ 283w\ + 3kio D5

N = — J—
20T T B = N)(w? —3k20)2 (30— A2)

Py =—
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Appendix C. NLSE coefficients
The dispersion coefficient P and the nonlinear coefficient ) in the NLSE (3.10) are
given as

p__ (w — kN2 (3Nkw? — Yowk? + 3o M\k? — w?) _ (w—kN) o1
B 2k2(w? — 3k20)3 2k2 7 €1

Q= w;TfM(?a((PQQ + ®99) + 30/) —

k(ckCi +wC>)  C3
w(w? — 3k20) w’

The expressions for C, Cy and Cs appearing in Q) are given by

Cy =k(=Ui 1Py +Us P11 +5Us P11 +3U1 1 Pay),

(C2)

Co =—w(2N1,1Uz 2 + NogUy,1 — NopUs 1)
+k(U12,1N1,1 +U11Uz 0+ Us U s + 2Ny 1Po 9 + Nojg — Na o),

Cy =k(N11Us0 + NagUr 1 + NooUi 1 + N11Us ).
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