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Abstract
The self-compression of a relativistic Gaussian laser pulse propagating in a
non-uniform plasma is investigated. A linear density inhomogeneity (density
ramp) is assumed in the axial direction. The nonlinear Schrödinger equation
is first solved within a one-dimensional geometry by using the paraxial
formalism to demonstrate the occurrence of longitudinal pulse compression
and the associated increase in intensity. Both longitudinal and transverse self-
compression in plasma is examined for a finite extent Gaussian laser pulse.
A pair of appropriate trial functions, for the beam width parameter (in space)
and the pulse width parameter (in time) are defined and the corresponding
equations of space and time evolution are derived. A numerical investigation
shows that inhomogeneity in the plasma can further boost the compression
mechanism and localize the pulse intensity, in comparison with a homogeneous
plasma. A 100 fs pulse is compressed in an inhomogeneous plasma medium by
more than ten times. Our findings indicate the possibility for the generation of
particularly intense and short pulses, with relevance to the future development
of tabletop high-power ultrashort laser pulse based particle acceleration devices
and associated high harmonic generation. An extension of the model is
proposed to investigate relativistic laser pulse compression in magnetized
plasmas.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The interaction of ultraintense very short laser pulses with plasmas [1–7] has attracted a great
deal of attention for fundamental research and technological applications, such as particle
acceleration, inertial confinement fusion, high harmonic generation and x-ray lasers [8–14].
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The standard approach to produce an ultrashort, ultraintense multiterawatt laser pulse is the
chirped-pulse-amplification (CPA) technique [15], in which a laser pulse is stretched, amplified
and recompressed. The CPA scheme has shown the ability to generate subpicosecond petawatt
laser pulses with up to 500 J per pulse. This approach is limited by the finite bandwidth of
the active millimeter amplifiers used in lasers. Ross et al [16] investigated a new scheme of
parametric amplification to produce ultrashort and powerful pulses. Superradiant amplification
of an ultrashort laser pulse was observed by Shvets et al [17] who considered an electromagnetic
(em) beam colliding with a long counterpropagating low-intensity pump in the plasma. The
methods reported by [15–17] need at least two counterpropagating laser pulses. This fact
makes the practical realization of these methods difficult.

At high laser intensities the nonlinear interaction between the plasma and the laser becomes
important, giving rise to a variety of novel physical effects [18–20] which are not observed in
the linear regime. These include relativistic optical guiding, harmonic excitation, wake-field
generation, laser pulse frequency shifting and pulse compression. Akhiezer and Polovin [18]
investigated analytically the propagation of very intense em radiation in overdense plasmas
customarily begining with the exact traveling wave solution. Dawson [19] investigated the
nonlinear longitudinal electron oscillations in a cold plasma considering a plasma of infinite
extent and free from static fields. Sprangle et al [4] developed the nonlinear one-dimensional
theory that describes some important aspects (e.g. nonlinear plasma wake-field generation,
relativistic optical guiding and coherent harmonic radiation production) of intense laser–plasma
interactions. Pukhov [20] discussed in his elegant review some of the important physical effects
emerging at relativistic laser intensities. He also considered the possibility of using plasma as
a medium for short laser pulse amplification in the colliding beam configuration.

A fundamental nonlinear effect occurs in the intense laser field, due to electrons oscillating
at relativistic velocities which exceed 1011 V cm−1, resulting in a significant electron relativistic
mass increase. In particular, the laser pulse’s spatial extension in both transverse and axial
dimensions can be modified by relativistic self-focusing (RSF) and relativistic self-phase
modulation (RSPM). In the former case (RSF), the transverse spot size may decrease when a
transverse gradient of the index of refraction causes the wavefronts to bend, so that energy is
focused radially inward. In the latter case (RSPM), the laser pulse length can be compressed
by a frequency chirp that is induced by the nonlinear dependence of the axial phase velocity.
This leads to an axial chirp of the group velocity where the back of the pulse progresses
faster (higher frequency) and the front of the pulse moves at a slower speed (lower frequency),
causing the pulse to (self-) compress. The pulse compression and focusing mechanisms are
dynamically correlated through the change in the pulse intensity. RSF [21] was theoretically
predicted more than 25 years ago.

Relativistic mass variation during laser–plasma interaction is the origin of longitudinal
self-compression of a laser pulse down to a single laser cycle in length, with a corresponding
increase in intensity. The main source of nonlinearity is the relativistic mass increase due to the
quiver motion of the electrons in the field of the laser. In the last few years, several scenarios
have been proposed for the self-focusing [22] and self-compression [23] of a laser pulse in
plasma.

Shorokhov et al [24] have employed a 3D PIC simulation to show that a 30 fs long laser
pulse is efficiently compressed to 5 fs by using a periodic plasma–vacuum structure to damp
filamentation. Tsung et al [25] reported a scheme to generate single-cycle laser pulses based
on photon deceleration in underdense plasmas. This robust and tunable process is ideally
suited for lasers above critical power because it takes advantage of the RSF of these lasers
and the nonlinear features of the plasma wake. Ren et al [26] demonstrated the compression
and focusing of a short laser pulse by a thin plasma lens. A set of analytical formulae for
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the spot size and for the length evolution of a short laser pulse were derived in their model.
Shibu et al [27] also proposed the possibility of pulse compression in relativistic homogeneous
plasma and reported the interplay between transverse focusing and longitudinal compression.

It was recently demonstrated numerically [28] that microwave pulses can be compressed
(with or without a frequency shift) inside magnetized plasma by changing the magnitude
or the direction of the magnetic field uniformly in space and adiabatically in time. Balakin
et al [29] investigated the self-focusing of a few optical cycle pulses recently. They showed that
the wave-field self-focusing proceeds with overtaking the steepening of the pulse longitudinal
profile, leading to shock-wave formation. Consequently, a more complex singularity is formed
where an unlimited field increase is followed by wave breaking with a broad power-law pulse
spectrum.

A uniform plasma has been considered in most of the studies on pulse self-compression
cited above [23–28]. Few investigations, to our knowledge, have been devoted to the effect
of plasma inhomogeneity on pulse propagation [30–33] (yet these were limited to transverse
beam focusing). An axial inhomogeneity has been considered in earlier studies, addressing
among other effects the RSF of intense laser radiation in relation to the fast ignitor scheme [30]
and em beam penetration in overdense plasma [31]. Interestingly, third harmonic generation
was investigated in [33], considering the case of a plasma inhomogeneity scale larger than the
em wave wavelength [33].

The injection of a short-pulsed intense laser into a radially inhomogeneous underdense
plasma was studied in [34], and shown to sustain a self-trapped photon channel. The authors
observed that under appropriate conditions the laser and plasma fiber system can provide a slow
em wave structure that is suitable for energy acceleration. The RSF of ultraintense laser pulses
in inhomogeneous plasma was investigated in [35] (considering transverse beam focusing),
where inhomogeneity was argued to play a major role in the self-focusing process. The authors
pointed out that the self-focusing is due to the combined effect of the relativistic electron mass
increase and plasma inhomogeneity, while the ponderomotive force plays a secondary role
in the process [35]. The nonlinear, oblique (non-paraxial) propagation of an intense short
Gaussian laser pulse in a preformed plasma channel having a parabolic density profile was
analyzed in [36]. The authors observed that the presence of the parabolic channel leads to
compression of pulse length.

Reference [37] investigated the higher order paraxial theory of the propagation of an
initially Gaussian em beam in an inhomogeneous plasma with an overdense region. Higher
order terms (up to r4) in the expansion of the dielectric constant and of the eikonal have been
taken into account. The authors observed that the higher order paraxial theory significantly
affects the dependence of em beam width on the distance of propagation.

Modern lasers (e.g. Vulcan Petawatt Upgrade at the Rutherford Appleton Laboratory
Central Laser Facility and the Gekko Petawatt Laser at the Gekko XII facility in the Institute
of Laser Engineering at Osaka University) rely on CPA techniques for amplifying an ultrashort
laser pulse to extremely large intensities. Because of limitations, e.g., in gain bandwidth, high-
power CPA systems are currently limited from below to pulses of order 30 fs. The physical
reason for this limitation is the finite bandwidth of the active medium amplifiers used in the
lasers. The advantage of plasma as an ‘active’ medium for pulse compression is that it sustains
extremely high intensities. Nonlinearity becomes significant only close to the relativistic
threshold and thus high power can be achieved. Filling the gap in existing theoretical research
in longitudinal pulse compression in inhomogeneous relativistic plasmas, from first principles,
is our scope here, and has motivated the theoretical and numerical study presented below.

In this paper, we investigate the longitudinal self-compression of a Gaussian laser pulse,
propagating in relativistic plasma with an axial inhomogeneity. We show that inhomogeneity
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of the plasma medium can boost the compression mechanism and lead to an increase in pulse
intensity (in comparison with the same mechanism occurring in homogeneous plasma). We
compare our numerical results showing the longitudinal pulse compression in plasma, both in
the presence and in the absence of inhomogeneity. The simulation results point out the role
of inhomogeneity for pulse amplification and compression. We rely on an earlier approach
[38–40], also recently employed [41] in a study of em pulse profile dynamics in collisional
plasmas, and proceed by introducing a set of trial functions via the intensity profile of the laser
pulse, and following their evolution in space/time in the plasma. As a first step, we adopt
a one-dimensional (1D) model, relying on the em wave equation as derived from Maxwell’s
equations. A nonlinear Schrödinger equation (NLSE) is obtained and solved by using the
paraxial formalism, to demonstrate the occurrence of longitudinal pulse width compression
and energy localization. The role of plasma inhomogeneity is incorporated via a quantitative
plasma non-uniformity ansatz. The analysis is then extended to a three-dimensional (3D) pulse
profile description. A pair of appropriate trial functions is defined, accounting for the beam
width parameter (in space) and the pulse width parameter (in time), whose evolution determines
the dynamics of the pulse. Both longitudinal and transverse self-compression is examined for
a finite extent Gaussian laser pulse through this model. These functions are determined by a
system of coupled nonlinear differential equations, which are integrated numerically to yield
the spatiotemporal laser pulse profile.

We have investigated the self-compression of a laser pulse in a narrow window of plasma
density values from 0.25 nc to slightly below nc, where nc = meω

2/4πe2 is the critical
plasma density for a laser pulse with the frequency ω = 2πc/λ. In this density region,
the Raman instability [42] that otherwise destroys the pulse is impeded. In particular, the
Raman instability, most simply characterized as the resonant decay of an incident photon into
a scattered photon and an electron plasma wave (or plasmon), relies on the frequency and
wave number matching conditions are ω0 = ωs + ωpe; k0 = ks + k, where subscript 0 and s
denote the incident and scattered light wave, respectively. Since the minimum frequency of a
light wave in a plasma is ωpe (the electron plasma frequency), it is clear that Raman Instability
requires strongly underdense conditions, such that ω0 � ωpe i.e. n � ncr/4, where n is the
plasma density and ncr is the critical density. When an ultrashort laser pulse (L < λp where L

and λp are the pulse length and plasma wavelength; λp = 2πc/ωp) propagates in the plasma,
the relativistic nonlinear effect is balanced by the axial ponderomotive effect [43]. The axial
ponderomotive force accumulates the electrons ahead of the laser pulse, thus increasing the
plasma frequency [42, 44], which counteracts the effect of RSF and self-compression of the
laser pulse. In this work, we have considered pulse lengths longer than the plasma wavelength;
we shall neglect the ponderomotive nonlinearity below.

2. 1D laser pulse compression: the analytical framework

The electric field of a circularly polarized laser pulse propagating in the z-direction can be
written as

E(z, t) = 1
2A(z, t)(ex + iey) exp[−i(ωt + kz)]. (1)

The electric field of the laser pulse satisfies the wave equation in 1D,

∂2E

∂z2
− 1

c2

∂2E

∂t2
= 4π

c2

∂J

∂t
, (2)

where J is the current density and is given by

J = n0ev, (3)
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where

v = − ieE

mωγ
(4)

denotes the electron quiver velocity,

γ =
(

1 +
e2|A|2
m2ω2c2

)1/2

(5)

is the relativistic factor, e is the electronic charge, n0 is the background plasma density, ωp is
the background plasma frequency and ω is the frequency of the laser beam.

The dielectric constant of plasma in the relativistic regime [21, 24–28] can be written as

ε = 1 − ω2
p

ω2

1

γ
, (6)

where ωp = (4πn0e
2/m)1/2 is the plasma frequency.

One can formally express the effective permittivity as

ε = εo + ϕ(|A|2), (7)

where

εo = 1 − ω2
p

ω2
(8)

is the classical (non-relativistic) part and [27, 45]

ϕ(|A|2) = ω2
p

ω2

γ − 1

γ
(9)

For a slowly time varying envelope A,

∂J

∂t
= −n0e

∂v

∂t
. (10)

Combining equations (1), (7) and (10) into the wave equation (equation (2)), one is led to

2ik

(
∂A

∂z
+

1

vg

∂A

∂t

)
− 1

c2

∂2A

∂t2
+

k2ϕ(|A|2)
ε0

A = 0. (11)

The laser pulse propagates at the group velocity vg = c2k/ω, where k = 2π/λ = ωε
1/2
0 /c is

the wave number given by the plasma dispersion relation, c2k2 = ω2 − ω2
p.

We shall now introduce the new dimensionless variables ζ = ωz/c and τ = (z/vg − t)ω,
and the normalized laser field a = eA/mωc.

We note that

a = 0.85 × 10−9
√

Iλ, (12)

where I is expressed in W cm−2 and λ is expressed in µm.
Equation (11) can thus be cast in the form

2iε1/2
0

∂a

∂ζ
+

∂2a

∂τ 2
+ ϕ(|a|2)a = 0. (13)

For a weakly relativistic circularly polarized laser pulse, one has |a| � 1, i.e. γ � 1 and
ϕ(|a|2) ∼= (ω2

p/ω
2)|a|2.

Equation (13) is a NLSE, where the second term represents the dispersion broadening and
the third term representing the nonlinear compression. When the two effects balance each other,
one obtains a coherent structure in the form of a solitary wave. The NLSE (13) has been derived
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in various forms and via different methods earlier by many authors [3, 22–24, 29, 45–47]. We
follow here the paraxial approach introduced by Akhmanov in [38], later extended by Sodha
and coworkers in [39] and later revisited by Sharma et al [41].

We shall consider a laser pulse having an initial Gaussian geometrical (beam spot) profile
at z = 0, given by

a2(z = 0, t) = a2
0 exp(−t2/τ 2

0 ), (14)

where τ0 is the initial pulse width.
We shall now investigate the beam profile (14) in the plasma medium, by substituting

into the NLSE (13), and using the paraxial approach (t � τ0g, where g is the pulse width
parameter expressed by equation (16)) [39].

The time/space advanced beam (field) profile is given by

a2(ζ, τ ) = a2
0T (0)

T (ζ )
exp

(
− τ 2

T (ζ )2
− i

ε
1/2
0

2

τ 2

T (ζ )

dT (ζ )

dζ

)
, (15)

where T (z) = τ1g(z) is the pulse width of laser in plasma and g(z) is the pulse width parameter.
Retain that T (0) = τ1 = τ0ω is the initial dimensionless pulse width (in time).

The pulse width T (z) can be evaluated by solving the second order nonlinear differential
equation for the pulse width parameter g(z)

ε0
d2g

dζ 2
= 1

τ 4
1 g3

− 2(ω2
p/ω

2)|a|2
τ 2

1 g2(1 + |a|2/g)3/2
. (16)

Equation (16) has been obtained by solving the NLSE (13) in the paraxial approach
[38, 39, 41, 48]. The first term in the RHS of equation (16) represents diffraction of the beam
while the second term corresponds to the nonlinear part of the relativistic dielectric constant,
given by equation (9). Using the paraxial approach we have expanded the expression of ϕ(|A|2)
and obtained the term as a coefficient of r2, which appears as the second term in RHS (16).
We shall now proceed by investigating the dynamic evolution of the beam profile, relying on
(16) in combination with (15) (and (8)).

3. Inhomogeneous plasmas: exact results

Let us consider a plasma with a slow variation of the electron density n along the z (variable
ζ = ωz/c) direction:

n(ζ ) = n(0)ϕ(ζ ), (17)

where

ϕ(ζ ) = 1 + bζ. (18)

The plasma frequency in the presence of a weak density gradient in the plasma can be expressed
as [31]

ω2
p = ω2

p0(1 + bζ ), (19)

ωp0 here being the plasma frequency corresponding to electron density n0 at z = 0, while b is
a characteristic inhomogeneity parameter (inverse length).

We have performed a numerical computation for an initially Gaussian pulse of amplitude
a0 = 0.1, τ0 = 100 fs, n0 = 3.12 × 1021 cm−3, ω = 5 × 1015 rad s−1 and for b = 0.001.
By integrating equation (16), we obtain the curves depicted in figure 1, for the initial pulse
and for the fully compressed pulse in the uniform and non-uniform cases. The plot in figure 1
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Figure 1. The dependence of the normalised laser pulse intensity (I/I0) with τ is depicted: initially
(at z = 0), (dotted curve, black), after compression in homogeneous plasma (at z = 841 µm),
(dashed blue curve) and after compression in inhomogeneous plasma (at z = 440 µm), (solid
red curve for b = 0.001). The initial laser and plasma parameters: a0 = 0.1, τ0 = 100 fs,
n0 = 3.12 × 1021 cm−3, ω = 5 × 1015 rad s−1 and for b = 0.001. (Color online.)

shows how the pulse form changes during its propagation in the plasma in the presence (solid
curve) and in the absence (dashed curve, respectively) of inhomogeneity. As a reference
point, we stress that the dashed curve in figure 1 indicates a strong pulse compression in
homogeneous plasma, in agreement with earlier results [24]. The solid curve in figure 1 shows
that the axial inhomogeneity intensifies the compression of pulse width and pulse intensity.
These numerical results suggest the possibility for compression of a real 100 fs laser pulse in
relativistic inhomogeneous plasma by a factor thirty or higher.

We have seen that the inhomogeneity in the medium strengthens the nonlinear
compression, in a shorter length of the plasma, in comparison with homogeneous plasma.
We have numerically integrated equation (16) together with equation (19) to delineate the
dependence of the compression length on the inhomogeneity factor. The compression length
in the plasma (i.e. the minimum length in the plasma where the pulse becomes compressed
(cf figure 1(b) in [49])), decreases as inhomogeneity (as expressed by b in (18)) increases,
as illustrated in figure 2. It is clear from figure 2 that the compression length is inversely
proportional to the inhomogeneity factor b. In simple terms, if the slope is larger, the pulse
gets compressed on a shorter distance of propagation. In the absence of density gradient
(homogeneous plasma), the relativistic mass variation due to laser–plasma interaction would
be the sole origin for longitudinal self-compression of a laser pulse, and for the corresponding
increase in intensity. In a non-uniform plasma, though, the source of pulse compression and
amplification is the combined density gradient and relativistic nonlinear effect. Due to a weak
density gradient, the pulse sees an increasing plasma density as it starts propagating along
the z-direction, and the laser beam is thus compressed and amplified in an enhanced manner
(in comparison with the uniform plasma case), as shown in figure 1. We point out that the
pulse already gets compressed and amplified at an early stage after entering the plasma, where
the plasma frequency is low in comparison with the laser frequency. However, the overdense
regime of plasma is approached after some time. When the plasma density reaches a critical
value, i.e. when the pulse starts to see an overdense plasma, then the high intense field of the
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Figure 2. The dependence of the compression length in the plasma on the inhomogeneity factor b.
The initial laser and plasma parameters are a0 = 0.1, τ0 = 100 fs, n0 = 3.12 × 1021 cm−3,
ω = 5 × 1015 rad s−1. (Color online.)

amplified pulse enhances the nonlinear relativistic effects causing the pulse to penetrate deeper
into the plasma.

4. 3D pulse compression: extended model and results

In the previous section, we have considered a quasi-1D pulse, i.e. one whose lateral EM
field variation is negligible, so that longitudinal dynamics may essentially be considered.
We shall now extend the analysis to a 3D geometry, by assuming that the transverse extent
of the laser pulse is finite. The Gaussian pulse profile propagating in the plasma can be
written as

a2(r, z = 0, t) = a2
0 exp(−r2/r2

0 ) exp(−t2/τ 2
0 ), (20)

where r = x2 + y2 refers to a cylindrical polar coordinate system and r0 is the initial spot size
of laser. The NLS equation as given by equation (13), in addition to the radial dependence of
em field, can be written as

2iε1/2
0

∂a

∂ζ
+

∂2a

∂τ 2
+

(
∂2

∂ρ2
+

1

ρ

∂

∂ρ

)
a + ϕ(|a|2)a = 0, (21)

where ρ = rω/c.
Equation (21) is the simple equation including both longitudinal compression and

transverse self-focusing. The second term in equation (21) is known as the group velocity
dispersion (GVD) term and it results in pulse compression when combined with (balanced by)
nonlinearity. The third term in the above equation (within parentheses) physically represents
diffraction, which is necessary for transverse focusing. The last term in equation (21) represents
the nonlinear effect, which arises from the relativistic motion of the electrons in the intense
laser field. Equation (21) recovers with equation (2.3) of [26] in the weakly relativistic case,
|a| � 1, i.e. (1 + |a|2/g)3/2 ≈ 1. The evolution of a pulse (relying on equation (21), in the
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Figure 3. The pulse profile dynamics are depicted at a fixed distance (equivalent to fixed time)
in the plasma. (a) Initial (at z = 0), profile, (b) after compression in homogeneous plasma
(at z = 330 µm) and (c) after compression in inhomogeneous plasma (at z = 270 µm) for b = 0.01.
The initial laser and plasma parameters: a0 = 0.1, τ0 = 100 fs, n0 = 3.12 × 1021 cm−3, ω =
5 × 1015 rad s−1. The beam width (spatial extension) and the pulse width (in time) are represented
by ρ and τ , respectively. The bar shows the variation in the normalized intensity. (Color online.)

paraxial approximation) in plasma can be expressed as

a2(ζ, τ ) = a2
0(T (0)R(0)2)

T (ζ )R(ζ )2
exp

[
− τ 2

T (ζ )2
− i

ε
1/2
0

2

τ 2

T (ζ )

dT (ζ )

dζ
− ρ2

R(ζ )2

−i
ε

1/2
0

2

ρ2

R(ζ )

dR(ζ )

dζ

]
, (22)

where T (ζ ) = τ1g(ζ ) is the pulse width (time) in plasma and R(ζ ) = ρ1f (ζ ) is the beam width
(space) in the radial direction in plasma. Here, T (0) = τ1 = τ0ω is the initial dimensionless
pulse width (at ζ = 0) and R(0) = ρ1 = r0ω/c is the initial dimensionless beam width.

The evolution of a finite extent Gaussian laser pulse in plasma can be investigated by
calculating the beam width R(z) and the pulse length T (z). These quantities are proportional
to the beam width parameter f (z) (given by equation (23)) and the pulse width parameter g(z))

(given by equation (24)), respectively. Therefore, the spatiotemporal profile of the laser pulse
can be obtained by numerically solving the following two coupled second order differential
equations for the beam width and pulse width:

ε0
d2f

dζ 2
= 1

ρ4
1f 3

− 2(ω2
p/ω

2)

ρ2
1

|a|2
f 3g(1 + |a|2/f 2g)3/2

(23)

and

ε0
d2g

dζ 2
= 1

τ 4
1 g3

− (ω2
p/ω

2)

τ 2
1

2|a|2
f 2g2(1 + |a|2/f 2g)3/2

. (24)

For an initial plane wave the boundary conditions on equation (23) and (24) are taken at ζ = 0
as f = g = 1 . Equations (23) and (24) can be numerically integrated using the initial
boundary conditions to evaluate the beam width parameter f and pulse width parameter g

as a function of z. The nonlinear terms appearing in the above equations are obtained by
expanding the expression of ϕ(|A|2) in the paraxial approach and then collecting the terms
in r2.

In this case we perform the numerical computation for the following laser–plasma
parameters a0 = 0.1, τ0 = 100 fs, n0 = 3.12 × 1021 cm−3, ω = 5 × 1015 rad s−1 and for
b = 0.01. In figure 3, the pulse profile is depicted at a fixed distance (corresponding to a
specific time) in the plasma. Figure 3(a) shows the initial normalized intensity of the Gaussian
laser pulse at z = 0. Figure 3(b) shows the normalized pulse intensity after compression in

9



Plasma Phys. Control. Fusion 52 (2010) 065002 A Sharma and I Kourakis

Figure 4. The spatiotemporal plots of the normalized pulse intensity (I/I0) are depicted at different
fixed times (equivalent to fixed distances). The initial laser and plasma parameters: a0 = 0.1,
τ0 = 100 fs, n0 = 3.12 × 1021 cm−3, ω = 5 × 1015 rad s−1 and b = 0.01. The x and y axes,
respectively, present the pulse width in time (τ ) and beam width in space (ρ). The bar represents
the variation of the normalized intensity. (Color online.)

a homogeneous (uniform density) plasma, at z = 330 µm. To compare, we have traced the
pulse dynamics in the presence of axial inhomogeneity. The results, depicted at a propagation
distance z = 270 µm in figure 3(c), clearly confirm the occurrence of pulse shortening
(compression), in addition to an increase in pulse intensity (localization). The transverse
focusing of the pulse results on account of relativistic mass effect in combination with non-
uniform distribution of the electron density and hence the inhomogeneity of the dielectric
functions. The shortening of the pulse length can be interpreted as a consequence of the
focusing phenomenon. The less intense portions of the pulse would focus less rapidly; hence,
over a distance of the order of a focusing length, the intensity of the peak is considerably
enhanced whereas the portions away from it are less significantly enhanced; this results in
longitudinal pulse compression.

In order to investigate the interplay (and also distinguish) between the simultaneously
occurring longitudinal self-compression and transverse self-focusing effects, we have depicted
the spatiotemporal dynamics of the normalized pulse intensity profile, initially (at t = 0) and
at a fixed time (equivalent to fixed distance), as the pulse propagates in the plasma medium.
The results are depicted in figure 4. At times t = 1000, 1500 and 3000 (in units of λ/c),
when inhomogeneity in the plasma medium is weak, the transverse focusing of the laser
pulse dominates over the longitudinal pulse compression. Later on, at times t = 4000, 4050,
4200, 4300 and 4500 (time unit λ/c), when the density gradient in the plasma starts to build
up strongly and the electric field of the laser is strong enough to cause longitudinal pulse
compression to dominate over the transverse focusing phenomena. Hence, we observe that
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when the inhomogeneity is weak, the beam width (in space) reduces from its initial width
leaving unaffected the pulse width (in space) and as the inhomogeneity starts to increase; the
beam width (in space) gets its original size while the compression in pulse width (in time)
becomes more effective. The plots in figure 4 depict the transverse focusing of the laser
pulse, which is followed by a longitudinal pulse compression due to the combined effect
of relativistic mass variation and density gradient present in the plasma. The numerical
results suggest that transverse focusing somehow competes with the process of longitudinal
self-compression.

5. Conclusions

We have investigated the evolution of a relativistic laser beam propagating in a non-uniform
plasma, by focusing on the longitudinal compression (1D) and on the lateral-and-longitudinal
compression of a finite-radius em pulse (3D). Relying on nonlinear paraxial theory (recently
extended by Sharma et al [41]), we have developed an analytical model and then proceeded
by numerical computation. Our results strongly recommend a significant enhancement of
relativistic pulse compression in an axially inhomogeneous plasma.

We have first analyzed the longitudinal pulse compression in 1D geometry, assuming a
uniform transverse distribution of the irradiance profile. We have followed the pulse dynamics,
witnessing the compression of the pulse (by tracing the full-width-half-maximum variation),
along with a significant increase in intensity (localization mechanism). Although the effect
was qualitatively similar with and without plasma non-uniformity taken into account, including
an axial inhomogeneity was shown to lead to a significant enhancement of the compression
and localization mechanisms, in comparison with the same effect in uniform (homogeneous)
plasma. We have observed a length compression by more than ten times, for real laser parameter
values.

We have extended the description to a 3D (cylindrical) geometry, by considering the
longitudinal self-compression and transverse self-focusing of a finite extent Gaussian laser
pulse. We have observed the interplay between longitudinal self-compression and transverse
self-focusing, as the pulse propagates in the plasma. Figures 3 and 4 demonstrate a significant
longitudinal relativistic pulse compression in an inhomogeneous plasma (higher than in a
uniform one).

From a fundamental point of view, the elucidation of the physical mechanisms underlying
the evolution of short intense pulses propagating in plasma is of outmost importance.
The qualitative aspects of our model are generic, and may be adapted to other types of
nonlinearity (e.g., collisional and ponderomotive). Regarding applications, it is challenging
to envisage the achievement of higher peak power short and ultraintense laser pulse regimes
in millimeter-scale plasma. A future advancement in power level and pulse duration achieved
could enable the construction of a new generation of compact, low cast ultrahigh-intensity
laser system, of interest in many areas of science and a potential replacement for particle
accelerators.

The model employed in this paper may be extended further to investigate laser pulse
compression in magnetized plasmas. In principle, a magnetic field is expected to affect
the spatial compression mechanism of the incident wave. Furthermore, the propagation
characteristics (group velocity, frequency) of the wave can be affected by magnetic field
inhomogeneity, e.g., considering a uniform in space, yet adiabatic in time, variation of
the magnitude and/or direction of the magnetic field. A shift in the group velocity could
result in a shortening of the temporal duration and a frequency shift of the outgoing
compressed pulse. The possibility of a dynamical manipulation of laser radiation through
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a plasma medium opens new avenues for manipulating high-power pulses for industrial
applications.
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