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The propagation of electron-acoustic solitary waves and shock structures is investigated in a
plasma characterized by a superthermal electron population. A three-component plasma model
configuration is employed, consisting of inertial (“cold”) electrons, inertialess κ (kappa) distributed
superthermal (“hot”) electrons and stationary ions. A multiscale method is employed, leading
to a Korteweg-de Vries (KdV) equation for the electrostatic potential (in the absence of dissipa-
tion). Taking into account dissipation, a hybrid Korteweg-de Vries–Burgers (KdVB) equation is
derived. Exact negative-potential pulse- and kink-shaped solutions (shocks) are obtained. The rel-
ative strength among dispersion, nonlinearity and damping coefficients is discussed. Excitations
formed in superthermal plasma (finite κ) are narrower and steeper, compared to the Maxwellian
case (infinite κ). A series of numerical simulations confirms that energy initially stored in a solitary
pulse which propagates in a stable manner for large κ (Maxwellian plasma) may break down to
smaller structures or/and to random oscillations, when it encounters a small-κ (nonthermal) region.
On the other hand, shock structures used as initial conditions for numerical simulations were shown
to be robust, essentially responding to changed in the environment by a simple profile change (in
width).

I. INTRODUCTION

Electron-acoustic (EA) waves (EAWs) occur in a
plasma containing two distinct temperature electrons
(here to be referred to as “hot” and “cold” electrons)
[1–6]. This is a high-frequency mode, for which iner-
tia is provided by the cold electron motion, while the
restoring force comes from the hot electron thermal
pressure. Ions may be safely assumed to be station-
ary, simply maintaining the charge neutrality of the
plasma. The frequency of EAWs lies in the range be-
tween the plasma frequency of the cold and hot elec-
tron components. As a matter of fact, Landau damp-
ing is minimized if the cold electron population con-
sists of 20% to 80% of the total number of electrons
[7–9], i.e., for values of the cold-to-hot electron den-
sity ratio in the range 0.25 ≤ nc0/nh0 ≤ 4. The signa-
ture of EAWs has been traced in the middle-altitude
cusp region [10] by instruments on board CLUSTER
spacecraft and also in the laboratory [11]. EAWs have
also been observed in particle-in-cell simulations as a
result of beam-driven instabilities [12, 13]. Electron
acoustic waves can be driven by electron beams in a
plasma comprising a hot and a cold electron popula-
tion [12]. Furthermore, such waves can also be driven
by ion beams, where a cold and a hot electron compo-
nent naturally arises when the electrostatic instability
saturates [13]. After the collapse of an initial (large)
periodic train of electron phase space holes, smaller
and stable electron acoustic solitary structures may
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survive and propagate in the hot electron distribu-
tion. In that context, the hot electron population
is provided by electrons trapped by the large waves
(we refer an interested reader to the discussion in Ref.
[13]).

Various theoretical investigations have focused on
the linear [2, 3, 7] and nonlinear [5, 6, 8, 9, 14–
18] dynamics of EAWs. In a space-plasma theoret-
ical context, the occurrence of large-amplitude EA
nonlinear structures was investigated by Singh and
Lakhina [19], who considered the relevance of the the-
ory with broadband electrostatic noise (BEN) emis-
sion observed in the auroral zone and in other regions
of the Earth’s magnetosphere [20–23]. Remarkably,
positive-potential solitary excitations may also exist
in the presence of an electron beam [19], or in the
presence of a vortex-type electron distribution, as pre-
dicted by a small amplitude model [6, 14]. The non-
linear properties of EA solitary waves have also been
investigated in a nonthermal plasma [14, 16, 17] by
taking into account nonthermality through a vortex-
like [14] or via a Cairns type [16]. A similar study
relying on a pseudopotential analysis and adopting a
κ type distribution function for the hot electrons has
been presented, independently, in Refs. 17 and 18.
The modulational instability of EA wavepackets and
the occurrence of bright/dark-type envelope solitons
were studied in Refs. [5] and [24] from first principles.

Particle distribution in a plasma near equilibrium
is often assumed to be Maxwellian, for modeling pur-
poses. However, numerous space plasma observa-
tions [25–27] and laboratory experiments [28–30] in-
dicate the presence of highly energetic (“superther-
mal”) particles. This phenomenon can be efficiently
modeled by a generalized Lorentzian or κ− distribu-
tion [31–33], where the real parameter κ measures the
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strength of excess superthermality (the smaller the
value, the larger the deviation from a Maxwellian,
in fact attained for infinite κ). Plasmas with su-
perthermal components (electrons and/or ions) have
received a great interest recently, both theoretically
[8, 9, 24, 34, 35] and experimentally [36]. As ex-
pected, the dynamics of plasma waves are significantly
affected by superthermality. Large-amplitude ion-
acoustic solitons in magnetized superthermal plasmas
was considered in Ref. [34], where the properties and
the existence regions of solitary structure were shown
to change drastically (with respect to the standard
Maxwellian description). Modulated EA wavepack-
ets in superthermal plasma were also investigated in
Ref. [24], where the stability profile was shown to be
dramatically modified by superthermality. The linear
properties of EAWs in κ-distributed plasmas were es-
tablished via a rigorous kinetic approach by Mace et
al [8] and were later revisited by Baluku et al [9], who
showed that EAWs can survive Landau damping in a
wide range of wavenumbers and κ parameter values.

According to the standard nonlinear description,
small-amplitude solitary waves are usually described
via a Korteweg - de Vries (KdV) equation, which mod-
els the balance between nonlinearity and dispersion
necessary for the formation of stable localized struc-
tures. In dissipative systems, the same analytical
(perturbation) technique gives rise to a KdV-Burgers
equation, featuring an extra term in account of dissi-
pation, with the anticipation that nonlinearity may be
balanced by the combined effect of dispersion and dis-
sipation to form kink-shaped shock excitations. Dis-
sipative effects in plasmas might be due to the inter-
particle collisions, to Landau damping or to kinematic
fluid viscosity, e.g., due to shear stress of the inertial
fluid motion. This situation has been considered for
ion-acoustic [37, 38] waves, and also for dust-acoustic
[39–41] or for dust ion-acoustic [40, 42] waves in dusty
plasmas. Interestingly, Velikovich [43] showed that the
electron-ion collision cross-section is higher than its
ion-ion counterpart by a factor Z2 in high Z plasmas
(where the electron density is Z times larger than the
ion density). Electron viscosity was found to exceed
ion viscosity considerably, e.g., for isothermal plasma
(Ti = Te) with Z > 5. Furthermore, electron viscosity
was shown to dominate for higher electron tempera-
ture values and for higher Z [43]. Relying on the in-
vestigation in Ref. [43], we are interested in a plasma
situation where electron-ion collision cross-section is
larger than the ion-ion collision cross-section and the
electron viscosity can be taken into account. Accord-
ingly, energy dissipation due to electron-ion collisions
will be considered in the following. As regards the
electron-acoustic mode, this situation is analogous to
ion-acoustic waves (though occurring on a different
frequency scale), here letting the cold electrons play
the role of the ions and their kinematic viscosity (due
to dynamic viscosity) damping their fluid motion in
the long wavelength limit. For simplicity, the kine-

matic viscosity is considered constant throughout this
work.

In this work, we take into account the dissipa-
tion effect on small-amplitude electron-acoustic shock
(where solitary structures are recovered in the ab-
sence of dissipation), in a plasma characterized by a
superthermal electron distribution. Throughout this
work, we shall restrict ourselves implicitly in the ex-
istence region for EAWs proposed in earlier works
[7, 8], where Landau damping is minimized. This
manuscript is arranged in the following manner. Our
fluid model is presented in Section II and analyzed
the linear limit in Sec. III. The derivation of a KdVB
equation via a reductive perturbation approach is un-
dertaken in Sec. IV. Sec. V is dedicated for brief
discussions about KdV equation and its solution. The
analytical solution of KdVB equation and the behav-
ior of the associated electric field is presented and dis-
cussed briefly in Sec. VI. A parametric investigation
is carried out in Sec. VII, based on different relevant
parameters for the model and a brief numerical results
for EA solitary waves and shocks are presented in sec-
tion VIII. Finally, our results are summarized in the
concluding section IX.

II. THE MODEL

We consider a three-component plasma, which
is composed of inertial (cold) electrons, kappa-
distributed (hot) electrons, and positive ions. It is un-
derstood that the phase speed of electron-acoustic ex-
citations is larger than the thermal speed of both cold
electrons and ions, and is much smaller than the ther-
mal speed of hot electrons, i.e., vth,c, vth,i ¿ vph ¿
vth,h (where the indices c, h and i represent the cold
electrons, hot electrons and ions, respectively). Ac-
cordingly, the hot electron inertia can be neglected,
while the ions can be safely assumed to be immobile
(simply maintaining the charge neutrality of the sys-
tem).

The fluid evolution equations for the (cold) electron
fluid read:

∂nc

∂t
+

∂(ncuc)
∂x

= 0, (1)

∂uc

∂t
+ uc

∂uc

∂x
=

e

me

∂Φ
∂x

+ ηc
∂2uc

∂x2
, (2)

where nc, uc and Φ represent the cold electron density,
velocity, and the electrostatic potential, respectively
(me is the electron mass). The cold-electron pressure
effect has been neglected. The system is closed by
Poisson’s equation

∂2Φ
∂x2

= 4πe

[
nc + nh0f(Φ)− Zini0

]
, (3)

where the “hot” electron distribution function f(Φ) is
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given by

f(Φ) =
[
1− eΦ

kBTh(κ− 3/2)

]−κ+1/2

, (4)

as obtained by integrating the known form of the
κ (kappa) distribution function [33]. The parame-
ter κ here measures the strength of superthermality.
Smaller values of κ represent a stronger superthermal-
ity; the Maxwellian distribution is recovered in the
limit κ → ∞ [27, 32] (and in fact practically for κ
above, say, 10). Obviously, κ > 3/2 for a physically
acceptable distribution. Here Th is the characteristics
hot electron “temperature” (a real constant) and the
subscript “0” refers to equilibrium (kB is the Boltz-
mann constant). We have defined the electron kine-
matic viscosity ηc = µc/menc0, in terms of the dy-
namic viscosity µc.

A scaled (dimensionless) set of equations is obtained
by normalizing all variables by appropriate quantities,

∂n

∂t
+

∂(nu)
∂x

= 0, (5)

∂u

∂t
+ u

∂u

∂x
=

∂φ

∂x
+ η

∂2u

∂x2
, (6)

∂2φ

∂x2
≈ β(n− 1) + c1φ + c2φ

2. (7)

Here the cold electron number density n, velocity u
and electrostatic potential φ are normalized by the
equilibrium number density nc0, the hot electron ther-
mal speed v0 = (kBTh/me)1/2 and Φ0 = kBTh/e, re-
spectively. The space x and the time t variables are
scaled by the hot electron screening length λD,h =
(kBTh/4πnh0e

2)1/2 and by the hot electron plasma
period (inverse frequency) ω−1

p,h = (4πnh0e
2/me)−1/2,

respectively. The normalized kinematic viscosity
reads η = ηc/ωphλ2

D,h. We have also defined the pa-
rameter β = nc0/nh0, which denotes the cold-to-hot
electron density ratio. Note that the superthermal
distribution information is now “hidden” in the coef-
ficients

c1 =
κ− 1/2
κ− 3/2

, c2 =
c1(κ + 1/2)
2(κ− 3/2)

. (8)

As expected, the Maxwellian limit is recovered for κ →
∞ (c1 → 1, c2 → 1/2, viz., eφ ' 1 + φ + φ2/2).

III. LINEAR ANALYSIS

Linearizing the system of evolution equations, we
obtain a dispersion relation in the form:

ω2 =
βk2ω2

p,h

k2 + (
√

c1/λD,h)2
, (9)

where we have restored dimensions for a while, for
physical transparency. This relation is analyzed thor-
oughly in Ref. [24], so only the basic informa-
tion is presented here. Eq. (9) can be written in

the form ω2 = ω2
p,c/[1 + 1/k2(λ(κ)

D )2], where ωp,c =
(4πnc0e

2/me)1/2 is the cold electron plasma frequency

and λ
(κ)
D =

[
(κ−3/2)/(κ−1/2)

] 1
2

λD,h is the effective

screening length due to excess superthermality. The
dispersion relation (9) is in agreement with Eq. (3) in
Ref. [8]. Importantly, the charge screening length is
reduced due to superthermality (viz. λ

(κ)
D < λ

(∞)
D ), as

pointed out in Refs. [8] and [24].
In the long wavelength limit (i.e., for k ¿ (λ(κ)

D )−1),
Eq. (9) reads

ω

k
'

√
β

c1
ωp,h λD,h ' v

(κ)
ph , (10)

where the κ− dependent phase speed is defined as
v
(κ)
ph =

√
β/c1 v0 (cf. our definition above), in ex-

act agreement with the EA speed defined in Ref. [8].
The EA phase speed is substantially affected by the
superthermality parameter κ and by the cold-to-hot
electron density ratio β (as shown in Fig. 1). It may
be added, for rigor, that we have implicitly considered
a phase speed much lower than the hot electron ther-
mal speed, in order to validate the fluid description
[1] for the cold electrons. The requirement ensuring
the validity of our model thus translates as:

β

c1
¿ 1, ⇒ β ¿ κ− 1/2

κ− 3/2
. (11)

We have therefore considered values of the cold-to-hot
electron density ratio β obeying Eq. (11), for the re-
spective values of the superthermality parameter κ,
both in our linear and nonlinear analyses. In particu-
lar, for the values considered e.g. in Figure 1 (κ = 3,
5 and 100), (11) implies β ¿ 1.67, 1.29 and 1, re-
spectively. The fluid approximation is therefore valid
for small β values, while for larger ones one may have
to resort to a kinetic approach. We note here that
the RHS of (11) equals 1 in Maxwellian plasma, but
in kappa-superthermal plasma the RHS can be quite
higher, depending on the superthermality index.

IV. MULTISCALE ANALYSIS: DERIVATION
OF A KORTEWEG-DE VRIES – BURGERS

EQUATION IN THE GENERAL
(DISSIPATIVE) CASE

In search of small-amplitude stationary-profile elec-
trostatic waves, we shall adopt the stretched coordi-
nates [44, 45]:

ξ = ε1/2(x− vst), τ = ε3/2t, (12)

[1] Eq. (9) can be obtained from Eq. (3) in Ref. [8] upon
neglecting the second term in the numerator therein.
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FIG. 1: (Color online) The EAW phase velocity is depicted
versus (a) the cold-to-hot electron density ratio β, for dif-
ferent κ values; (b) the superthermality parameter κ, for
different β.

where ε (¿ 1) is a small (real) parameter and vs is the
EA shock speed (to be interpreted as the phase veloc-
ity). We recall that this stretching is valid for non-
linear waves propagating near the sound speed [44].
In order to match the dissipative terms arising within
our expansion, we also assume a weak damping due
to the cold electron kinematic viscosity by considering
η = ε1/2η0. This scaling assumption, at this stage mo-
tivated by analytical convenience (in view of match-
ing the various mechanisms involved in the dynamics),
will be justified by the outcome of the analysis (to be
discussed below). This hypothesis also reflects the fact
that dissipation is assumed to be (small but) finite, en-
tering the nonlinear dynamics, though too weak to be
manifested in the linear regime.

From Eq. (12) we can write

∂

∂t
= ε3/2 ∂

∂τ
− ε1/2vs

∂

∂ξ
,

∂

∂x
= ε1/2 ∂

∂ξ
. (13)

Now we expand the dependent variables n, u and φ

near their equilibrium values in a power series in ε as

n = 1 + εn1 + ε2n2 + ε3n3 + · · · , (14)
u = εu1 + ε2u2 + ε3u3 + · · · , (15)
φ = εφ1 + ε2φ2 + ε3φ3 + · · · . (16)

Combining the expressions (13) - (16) into Eqs. (5)
- (7) provides the first order perturbations n1, u1 and
the EAW phase velocity vph:

n1 = −φ1/v2
s , u1 = −φ1/vs , vs =

√
β/c1 .

(17)
Interestingly, the latter expression allows us to iden-
tify vs as the phase speed v

(κ)
ph obtained in (10) above.

This fact is an intrinsic element in the method, and
was expected.

Balancing the coefficients in order ε5/2 from Eqs.
(5) and (6), and in ∼ ε2 from Eq. (7), we obtain

− 1
v2

s

∂φ1

∂τ
− vs

∂n2

∂ξ
+

2
v3

s

φ1
∂φ1

∂ξ
+

∂u2

∂ξ
= 0 , (18)

− 1
vs

∂φ1

∂τ
− vs

∂u2

∂ξ
+

1
v2

s

φ1
∂φ1

∂ξ
− ∂φ2

∂ξ

+
η0

vs

∂2φ1

∂ξ2
= 0 , (19)

∂2φ1

∂ξ2
− βn2 − c1φ2 − c2φ

2
1 = 0 . (20)

Combining Eqs. (18)-(20), we obtain an evolution
equation for the lowest-order electrostatic potential
disturbance φ1 in the form:

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
= C

∂2φ1

∂ξ2
. (21)

This equation bears the general form of a Korteweg –
de Vries Burgers (KdVB) equation. Identifying vari-
ous terms, we distinguish:
— a nonlinearity term

A =−3
2

√
c1

β
− c2

c
3/2
1

√
β

=−3
2

√
1− 2κ

β(3− 2κ)
−
√

β(1 + 2κ)
4κ− 2

√
1 +

2
2κ− 3

,(22)

resulting in wave steepening;
— a dispersion term

B =
1
2

√
β

c
3/2
1

=
√

β

2(1 + 2
2κ−3 )3/2

, (23)

responsible for wave broadening in Fourier space, and
— a dissipative (damping) term

C =
η0

2
, (24)

leading to wave attenuation (decay) in space. Inter-
estingly, the latter two coefficients B and C are al-
ways positive (as intuitively expected), while A is neg-
ative. It will be shown below that the sign of A defines
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the polarity of soliton and shock excitations sustained
in the plasma, thus (A being negative) only negative
pulses and kink-shaped potential jumps are prescribed
within the plasma model considered here.

Importantly, both coefficients A and B depend on
the superthermality parameter κ (via c1, c2; see the
definitions in (8) above). The two coefficients are de-
picted in Figs. 2 and 3. The variation trend in κ
differs between the two competing mechanisms: the
nonlinear coefficient A increases in absolute value,
whereas the dispersive coefficient B decreases, as κ
acquires lower values (aka, deviation from Maxwellian
behavior). Therefore, superthermality (low κ) results
in a loss of balance between dispersion and nonlin-
earity: assuming a soliton-shaped initial condition, a
change in κ would result in loss of ability to sustain
its shape, and energy breakdown to smaller structures
or/and to random oscillations.
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FIG. 2: (Color online) The nonlinearity coefficient A and
the dispersion coefficient B are shown versus κ for different
values of β. The curves correspond, top to bottom, to: β =
1 (solid black curve); β = 0.75 (dotted magenta curve);
β = 0.5 (dashed red curve) and β = 0.25 (dot-dashed blue
curve).
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FIG. 3: (Color online) The nonlinearity coefficient A and
the dispersion coefficient B are shown versus β for different
values of κ. Here, the curves correspond, top to bottom,
to: κ = 100 (solid black curve); κ = 5 (dashed red curve)
and κ = 3 (dot-dashed blue curve).

V. KORTEWEG-DE VRIES EQUATION
(CONSERVATIVE CASE)

It may be instructive, at this stage, to consider the
conservative case (η = 0). In the absence of dissi-
pation, the variable stretching adopted in the previ-
ous Section is generally associated to the Korteweg-
de Vries (KdV) theory for small-amplitude potential
pulses. We needn’t iterate the algebraic details of the
expansion procedure here, as these may be inferred,
step by step, upon setting C = 0, i.e., by neglecting
kinematic viscosity η at every step. As expected, the
evolution equation thus obtained take the form of the
KdV equation:

∂φ1

∂τ
+ Aφ1

∂φ1

∂ξ
+ B

∂3φ1

∂ξ3
= 0 , (25)

where the nonlinearity coefficient A and the dispersive
coefficient B are given by expressions (22) and (23)
above (these are depicted in Figs. 2 and 3).

Solitary structures are sustained when dispersion
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FIG. 4: (Color online) The electrostatic potential φ1(ξ)
(left panel) and the corresponding electric field E (right
panel) are shown, as they result from Eq. (26) and (28),
respectively. Three cases are depicted: strong superther-
mality, for κ = 3 (dot-dashed blue curve); κ = 5 (dashed
red curve); quasi-Maxwellian case κ = 100 (solid black
curve). The cold-to-hot electron ratio was taken to be
β = 0.5 in both cases.

balances nonlinearity. The known one-soliton solution
of the KdV equation bears the form:

φ1(ξ, τ) = φ0 sech2

(
ξ − V τ

L0

)
, (26)

where the pulse amplitude φ0 and the pulse width L0,
defined as

φ0 = 3V/A , L0 =
√

4B/V , (27)

satisfy the relation φ0L
2
0 = 12B/A. Since A is nega-

tive, only negative potential pulses will occur; see Fig.
4a. The electric field E = −∇φ thus derived from the
electrostatic potential φ1(ξ, τ) reads

E =
6V

AL0
sech2

(
ξ − V τ

L0

)
tanh

(
ξ − V τ

L0

)
, (28)

which represents a bipolar electric field excitation, as
shown in Fig. 4b.

Expressions (26) and (27), in combination with the
definitions (22) and (23) above, provide a diagnostic
tool for superthermal plasmas: for a given value of the
(assumed a priori measurable) potential pulse ampli-
tude or/and width, the value of κ can be inferred from
the above relations. Nonetheless, we see that only low
(e.g., below κ ' 6) values of κ bear a noticeable effect.

We saw above (cf. Fig. 3) that superthermality
results in higher values of |A| (nonlinear coefficient,
in absolute value) and smaller values of B. There-
fore, solitary waves (potential pulses) in superthermal
plasmas are expected to be of smaller amplitude and
narrower width than in Maxwellian plasmas (refer to
the definitions of φ0 and L0 above).

VI. ELECTRIC POTENTIAL SHOCK
EXCITATION

The pulse solitons obtained in the previous Section
were characterized by a vanishing electric potential
at infinity. Let us now look for stationary profile
solutions of the KdVB equation (21) in the form of
shock excitations, possessing a fixed but finite (non-
zero) limit at both infinities. Such a solution can be
obtained via the hyperbolic tangent method [46–49],
and the characteristics of the solution are discussed
in detail in Ref. [50]. We therefore choose to omit
unnecessary details here, yet providing the essential
information in the following.

The exact solution of the KdVB equation (21)
reads:

φ1(ξ, τ) =
V

A
+

3C2

25AB
sech2

(
ξ − V τ

L

)

− 6C2

25AB
tanh

(
ξ − V τ

L

)
. (29)

The parameter L entering the argument of the hy-
perbolic functions represents the width of the shock
structure, which reads:

L =
10B

C
. (30)

The shock wave propagation speed V is related to the
boundary conditions, as can be easily seen by consid-
ering the asymptotic values φ1(ξ → +∞) = V/A −

[2] One may choose to assign a zero value to one of the asymp-
totic values, e.g. at +∞, as in Refs. [47, 48]. However, this
then prescribes the value of V , and shifts all solutions (29)
by a constant. It may also be pointed out that φ = 0 at
infinity (i.e., in regions far ahead of the propagating shock) is
understood in the derivation of (25), and is thus a plausible
requirement to impose (refer to the discussion in Ref. 50).
For the sake of (algebraic) generality though (yet implying
no loss in physical rigor), we chose to proceed by retaining
arbitrary asymptotic values here.
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6C2/25AB and φ1(ξ → −∞) = V/A + 6C2/25AB.
Combining the latter expressions, one obtains the
shock wave amplitude Φ0 in the form

|Φ0| = 12C2

25|A|B . (31)

We stress that the above solution relies on dissi-
pation to exist, and in fact collapses to a constant
in the limit C = 0. There is no way to recover the
pulse-shaped soliton (26) from (29), in any limit (this
is not surprising, as different boundary values were
assumed).

The qualitative effect of dissipation on the shock
profile is evident. Note that the damping term C af-
fects both Φ0 and L, by resulting in steeper (narrower)
and taller shocks, the higher its value. On the other
hand, we remark that the product |Φ0|L2 = 48B/|A|
is independent of C (which is reminiscent of a similar
relation in KdV solitons).

Interestingly, since the sign(s) of B and C (both
positive) and A (negative) is (are) prescribed in our
case, only one polarity is possible, leading to the kink-
shaped excitation depicted in the figures. In the gen-
eral case, the sign of A would prescribe the polarity
of the shock profile (bearing a kink- or an antikink-
shaped form).

We note for rigor that, since the electric potential is
determined up to a(n) (arbitrary, real) constant, being
associated to an electric field E = −∇φ, the constant
term in (29) can be omitted, without loss of physical
meaning (yet against mathematical generality). On
the other hand, either of the above (constant) asymp-
totic limits at ξ → ±∞ can be set to zero[47], which
simplifies the final expression (yet prescribing V in
terms of A,B, C). An interested reader is referred to
the rigorous discussion in Ref. 50. For the sake of
generality, however, we have chosen to retain the gen-
eral expression (29) above, which will be reflected in
the diagrams discussed in the Section VII.

The relative magnitude (and the sign) of the coeffi-
cients in the KdVB equation will determine the inter-
play among dispersion, nonlinearity and dissipation,
lying in the heart of our physical problem. Their para-
metric dependence on relevant physical parameters is
depicted in Figs. 2 and 3. As discussed above, the
dispersion coefficient acquires smaller values while, in-
versely, the (absolute value of the) nonlinearity coef-
ficient acquires higher values for stronger superther-
mality; dissipation may thus easily become dominant
after a change in κ (e.g., due a local disturbance in
the plasma properties), resulting in narrower/steeper
[cf. (30)] and taller [cf. (31)] shocks the stronger the
damping - a typical feature in the dynamics of shock
waves. A similar trend is witnessed for lower values
of the cold-to-hot electron density ratio β, suggesting
that the more the hot (superthermal) electrons, the
lower dispersion (and the stronger nonlinearity) will
be, and thus the steeper and taller the shock profile
will be. On the other hand, the damping term C is

constant, i.e., it depends only on the electron kine-
matic viscosity η (and not on κ, nor on the plasma
composition via β).

It is straightforward to obtain an expression for the
electric field E = −∇φ from the above expression (29):

E =
6C2

25ABL
sech2

(
ξ − V τ

L

)[
1 + tanh

(
ξ − V τ

L

)]
.

(32)
This form represents an inverse-bell-shaped (since
A < 0 < B) monopolar localized excitation for the
electric field. Obviously, the above discussion on the
width L also holds here, so steeper electric poten-
tial disturbances should lead to narrower electric field
pulses, while the same holds for the maximum pulse
amplitude ∼ C2/|A|B as obtained from (32); cf. (31).

VII. PARAMETRIC INVESTIGATION

We may now investigate the dynamical properties of
electron-acoustic excitations in terms of the intrinsic
parameters of our model, namely the cold-to-hot elec-
tron density ratio β, the superthermality parameter
κ and the (cold electron) kinematic viscosity η (i.e.,
dissipation via C ∼ η0). We adopt values of the cold-
to-hot electron density ratio β in the range 0.25 − 4,
where Landau damping is mimimized [4, 7, 9].

Phase velocity. The dependence of the EA phase
velocity [defined in (10)] on excess electron superther-
mality (via κ) and on the electron density ratio β is
explored in Fig. 1. The (weak) kinematic viscosity
does not enter the dynamics at the linear level. The
superthermality parameter κ and the cold-to-hot elec-
tron density ratio β play an important role on the lin-
ear behavior of EAWs. The EA phase speed increases
as ∼ √

β for fixed κ, since, having more inertial (cold)
electrons (as compared to the superthermal electrons)
allows for increased inertia to sustain the waves, which
i.e., leads to a higher phase velocity. On the other
hand, keeping β fixed, the EA phase speed decreases
with higher superthermality, i.e., for lower κ; see Fig.
1b.

Effect of superthermality (via κ). The nature of
the electrostatic EA shock profile is significantly af-
fected by superthermality of the considered plasma,
as clearly shown in Fig. 5 (where we have consid-
ered a fixed value of β and of η0 ∼ C). As expected,
a taller and steeper shock profile results from higher
superthermality (lower κ).

The dissipation term only depends on the electron
kinematic viscosity, whereas the dispersion term de-
pends on the cold-to-hot electron density ratio and on
the superthermality parameter κ. For any fixed value
of β, the dispersion term decreases with lower κ, i.e.,
dispersion becomes weaker for stronger superthermal-
ity. As a result, dissipation dominates on EA shock
dynamics for stronger superthermality (as dispersion
fails to balance) and allows for the formation of higher
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FIG. 5: (Color online) The electron-acoustic shock profile
given by Eq. (29) is depicted versus the space coordinate
ξ, for different values of the superthermality parameter κ.
We have taken β = 0.5 and η0 = 0.4.
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FIG. 6: (Color online) The variation of the shock wave (a)
amplitude Φ0, as given in Eq. (31), and (b) width L, as
given in Eq. (30) with β is depicted for different κ, here
η0 = 0.4 in both cases.

amplitude and steeper shock waves. The effect of su-
perthermality on the shock amplitude (left panel) and
width (right panel) is depicted in Fig. 6. We see
that the stronger superthermality (lower κ) effect, the
larger and narrower the shocks will be.

Cold-to-hot electron density ratio (β) effect. The ef-

fect of the cold-to-hot electron density ratio β on the
shock profile is explored in Fig. 7 (keeping the values
of κ and η0 fixed), which shows the spatial variation
of the electrostatic shock for different values of β. We
see that β has a strong influence on the shock wave
amplitude and width. As discussed above, one wit-
nesses a larger (in amplitude) and narrower (in width)
shock profile for lower β. Therefore, considering a
higher population of cold electrons results in smaller
but wider shock structures.

Β=0.5
Β=0.75
Β=1

-40 -20 20 40
Ξ

-0.015

-0.010

-0.005

0.005

0.010

0.015

Φ1HΞL

FIG. 7: (Color online) The shock profile is depicted (versus
the space coordinate ξ) for different values of the cold-to-
hot electron density ratio β, taking κ = 3 and the electron
kinematic viscosity η0 = 0.4.

The geometric characteristics of the shock excita-
tions are investigated in Fig. 8. The amplitude Φ0 is
smaller, while the width L is larger, for higher values
of β, i.e., for a more significant cold-electron popula-
tion; see Fig. 8a, b, respectively.

Effect of kinematic viscosity (via η0). Fig. 9 illus-
trates the effect of kinematic viscosity on the EA shock
profile. Stronger (larger amplitude, steeper) shocks
are predicted for higher η0.

Finally, the shock wave amplitude and width are
depicted in Fig. 10 versus β, for different values of
the cold electron kinematic viscosity η0 (keeping all
other relevant parameters fixed; in particular, κ = 3
was taken in this plot). We see that, as discussed
above, higher values of the kinematic viscosity result
in larger-amplitude (see Fig. 10a) and narrower (see
Fig. 10b) shock waves.

VIII. NUMERICAL SIMULATION

We have analyzed the propagation of EA solitary
structures and shocks by a numerical integration of
the KdV and the KdVB Equation(s), respectively, em-
ploying a Runge-Kutta 4 method. We have retained
as an intrinsic element in our code the dependence of
the coefficients on the superthermality parameter κ
and on β, as in our analytical model. A time interval
10−4 and a spatial grid size 0.1 were considered.

As a possible scenario in the dynamics, we have
chosen to investigate the response of a stable pulse
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FIG. 8: (Color online) The dependence of the shock wave
(a) amplitude Φ0 (in Eq. (31)) and (b) width L (in Eq.
(30)) with the superthermality parameter κ is shown, for
different β; here η0 = 0.4.
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FIG. 9: (Color online) The shock profile is depicted (versus
the space coordinate ξ) for different kinematic viscosity η0,
taking κ = 3 and β = 0.5 .

propagating in (i.e., an exact solution sustained in)
Maxwellian plasma, when it encounters a region with
a strong deviation of the hot electrons from ther-
mal equilibrium (lower κ value). To this end, we
have considered the pulse soliton solution (26) for
κ = 100 as initial condition. This (same) potential
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FIG. 10: (Color online) The dependence of the shock wave
(a) amplitude Φ0 (in Eq. (31)) and (b) width L (in Eq.
(30)) on the cold-to-hot electron density ratio β is de-
picted, for different cold electron kinematic viscosity η0;
here we have taken κ = 3.

pulse was used as initial condition in three simula-
tions. First, integrating the KdV equation for a high
(quasi-Maxwellian) value of κ (= 100), we have con-
firmed the stability of the pulse (expected, as this was
an exact solution for κ = 100); see Figs. 11a and
12a. Subsequently, we have considered two lower val-
ues, namely κ = 5 and κ = 3. The profiles obtained
numerically are shown in Figure 11. We note here
that this is an idealized assumption. Spatial changes
in the electron distribution tend to equilibrate rapidly
and we can not expect a sharp boundary between two
regions with very different electron velocity distribu-
tions.

In the former case (κ = 5), depicted in Figs. 11b
and 12b, the initial pulse is seen to decompose into a
different (thinner, steeper) pulse, which remains sta-
ble (beyond some initial transition period), followed
by a sea of harmonic oscillations. The interpretation
of this observation is straightforward: we have argued
above that a small change in kappa destabilizes the
soliton, as it bears opposite effects on dispersion and
nonlinearity coefficients, which thus fail to balance.
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FIG. 11: (Color online) Evolution of electrostatic soli-
tary structures (given in Eq. (25)) propagating in: (a)
Maxwellian plasma (κ = 100); (b) a mildly nonthermal
plasma (κ = 5); (c) a strongly nonthermal plasma (κ = 3).
The exact solution (26) was considered as initial condition,
for κ = 100 (i.e. Maxwellian), in all three simulations. We
have set V = 1 and β = 0.5 everywhere.

The energy stored in the pulse may nevertheless be
sufficient to form a smaller (energetically speaking)
pulse, and the remaining amount of energy is carried
by periodic oscillations.

In the latter case (κ = 3), however (depicted in
Figs. 11c and 12c), the initial pulse is seen to decom-
pose exactly into a pair of pulses: a dominant (thin-

(a)

(b)

(c)

FIG. 12: (Color online) Propagation of a solitary wave
(given in Eq. (25)) in the space-time plane for similar
condition as Fig. 11.

ner, steeper) fast pulse, followed by a smaller (and
slower) one. Again, this is due to a delicate energetic
balance having been achieved, as the initial condition
succeeds in providing the energy necessary for the for-
mation of a two-soliton configuration, which appears
to propagate in a stable manner (and presumably co-
incides with a two-soliton solution of the integrable
KdV equation).

The inverse transition is considered in Fig. 13,
where a pulse (an exact soliton solution) obtained for a
superthermal environment (κ = 3) is assumed to enter
a “Maxwellian” (κ = 100) region. In our simulation,
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FIG. 13: (Color online) (a) Evolution of the electrostatic
solitary structures (given in Eq. (25)) propagating in a
Maxwellian plasma (κ = 100). Here, Eq. (26) was con-
sidered as initial condition, for κ = 3 (i.e. superthermal),
where V = 1 and β = 0.5; and (b) showing the propaga-
tion in the space-time plane for same condition as panel
(a).

shown in Fig. 13, we have considered the exact soliton
solution given in Eq. (26) for κ = 3 as initial condi-
tion, while the KdV equation integrated numerically
was considered for κ = 100. In this case (see Fig. 13),
the soliton adapts its shape by initially losing energy
to the medium (via random fluctuations which later
smear out), and then eventually stabilizing to a new
(shorter, wider) pulse configuration, which appears to
be sustained for as long as the simulation ran.

We have carried out a similar investigation for elec-
trostatic shock fronts, relying on the exact solution of
Eq. (21), given by Eq. (29), as initial condition for
κ = 100 (we have considered V = 6C2/25B here, in
account of a vanishing potential at positive infinity).
The result is shown in Fig. 14. The shock is seen to
maintain its stability (constant amplitude and width)
while propagating in a Maxwellian plasma, i.e. when
Eq. (21) is also considered for κ = 100: see Fig. 14a.
When the same shock profile (also adopted as initial
condition in Fig. 14b) enters a superthermal (κ = 3)
plasma region, it is seen to adapt its width to the new
environment, and in fact slightly accelerates, but oth-
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FIG. 14: (Color online) Evolution of the electrostatic
shock solution given by Eq. (21) (for κ = 100) propa-
gating in (a) a “Maxwellian” plasma (κ = 100), and (b)
a superthermal plasma (κ = 3). Eq. (29) is considered as
initial condition for κ = 100 and β = 0.5, C = 0.3 in both
cases.

erwise suffers no other major structural change. The
acceleration of shocks when entering a lower-κ region
can be physically attributed to the excess superther-
mal hot electrons surrounding them. This is antici-
pated, due to the modification of the sound speed of
EA waves (cf. Fig. 1a), which results in an energy
surplus available for lower κ within the superacoustic
shocks.

In order to investigate the role of the damping co-
efficient, we have considered a solution of the KdVB
Eq. (21) in the form of (29), as obtained for C = 0.1,
suffering a sudden increase in the value of C. To sim-
ulate this situation, we adopt the latter solution as
initial condition to integrate the KdVB Eq. (21) nu-
merically, yet for a higher value of C (= 1). We see
that the shock adapts its shape to the new situation
by stretching its spatial extension, yet otherwise suf-
fers no other change in characteristics, as depicted in
Fig. 15.

The situation considered here is admittedly rather
idealized. Spatial changes in the electron distribu-
tion tend to equilibrate rapidly and we can not ex-
pect a sharp boundary between two regions with very
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FIG. 15: (Color online) Evolution of the shock solution of
Eq. (21) as given by (29), propagating in a superthermal
plasma (κ = 3), which is highly dissipative (taking C =
1). Eq. (29) is considered as initial condition for κ = 3,
C = 0.1. We have taken β = 0.5 everywhere.

different electron velocity distributions. Nonetheless,
our aim was to test the robustness and stability of
electron-acoustic shocks against a change in the elec-
tron velocity distribution. In this sense, our conclu-
sion that shocks are remarkably stable against changes
in the thermal distribution is important.

IX. CONCLUSIONS

The nonlinear propagation of electron-acoustic
shock wave was investigated in a plasma characterized
by a superthermal (non-Maxwellian) electron popu-
lation. A three-component-plasma fluid model was
employed, comprising inertial (“cold”) electrons, iner-
tialess superthermal (“hot”) electrons, and stationary
ions. A κ (kappa) type distribution function was em-
ployed to model the nonthermal (hot) electron com-
ponent. The kinematic viscosity of the (cold) electron
population was taken into account.

A Korteweg-de Vries–Burgers (KdVB) type non-
linear evolution equation was derived for the electro-
static potential via a reductive perturbation method,
and then analyzed analytically and numerically. A

Korteweg-de Vries (KdV) equation was obtained in
the conservative (dissipationless) case. Exact solu-
tions of the KdVB equation were obtained, bear-
ing a monotonic kink-shaped shock profile sustained
by dissipation. A negative pulse solution was ob-
tained through the KdV description. The nonlinear-
ity and dispersion coefficients were shown to depend
on plasma configurational parameters (κ, β), while
the damping coefficient was assumed to be constant.
The parametric dependence of the shock profile on
the plasma concentration (cold-to-hot electron den-
sity ratio) and in particular, on the level of excess
electron superthermality was investigated. The non-
linearity coefficient was found to acquire higher values,
while the dispersion coefficient takes smaller values for
stronger superthermality (lower κ), a fact that sug-
gests that the shocks formed will be narrower/steeper
and stronger, compared to the Maxwellian case. A
similar trend was witnessed for lower values of the
cold-to-hot electron density ratio (β), suggesting that
the more the hot (superthermal) electrons are domi-
nant, the steeper and taller the shock profile will ap-
pear. In highly nonthermal situations, wave damp-
ing dominates over dispersion and nonlinearity, thus
resulting in the formation of narrower and stronger
shock excitations.

Our theoretical predictions were tested numerically.
A hypothetical situation in which a stable pulse (exact
solution) propagating in a Maxwellian plasma enters a
“nonthermal region” (characterized by smaller κ) was
considered. The energy stored in the pulse was the
distributed into a smaller pulse, followed by waves, or
(if the energy balance permits)) into a stable multi-
soliton configuration. Of course, is due to the KdV
equation providing a conservative system, known to
possess an infinite hierarchy of (multi-)soliton solu-
tions at different energy levels. The inverse scenario
(a stable pulse for small κ entering a high κ region)
was shown to lead to decay of the pulse through ran-
dom oscillations (noise).

The stability of the shock profile has been tested
numerically and it has been observed that the shock
was seen to affect its shape, but not its stability profile
while passage from high to low values of κ.

Our results may be useful in understanding the be-
havior of Space or laboratory plasmas which are char-
acterized by a secondary population of energetic (su-
perthermal) electrons.
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