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Abstract — The propagation of an electromagnetic wavepacket in an electron-positron plasma,
in the form of coupled localized electromagnetic excitations, is investigated, from first principles.
By means of the Poincaré section method, a special class of superluminal localized nonlinear
stationary solutions, existing along a separatrix curve, are proposed as intrinsic electromagnetic
modes in a relativistic electron-positron plasma. The ratio of the envelope time scale to the carrier
wave time scale of these envelope solitary waves critically depends on carrier’s phase velocity. In
the strongly superluminal regime, vy, /c >> 1, the large difference between the envelope and carrier
time scales enables us to carry out a multiscale perturbative analysis resulting in an analytical
form of the solution envelope. The analytical prediction thus obtained is shown to be in agreement
with the solution obtained via a direct numerical integration.

Introduction. — Electron-positron (e-p) plasmas oc-
cur in various astrophysical environments, including pul-
sar magnetospheres [1-4], in bipolar outflows (jets) in ac-
tive galactic nuclei (AGN) [5,6]. Such plasmas have been
argued to occur at the center of our own galaxy [7], and are
thought of as a first state of matter in the early universe
[8]. Experimental efforts are being made to create such
plasmas in the laboratory in order to mimic astrophysical
conditions, thanks to modern day laser techniques that
promise to deliver pulse intensities exceeding 10%2 W /cm?
in the near future [9]. e-p plasma dynamics arises as a
relevant paradigm in the ultra-high intensity laser plasma
interaction [10]. The feasibility of multiphoton production
of e-p pairs in a plasma by electromagnetic waves has been
discussed in Ref. [11]. Nonrelativistic pair plasmas have
also been created in experiments [12]. Finally, the pos-
sibility of pair production in large magnetic plasma con-
finement fusion devices (tokamaks) [13] due to collisions
between multi-MeV runaway electrons and thermal parti-
cles has been suggested [14]. From a fundamental mod-
eling viewpoint, localized excitations in electron-positron
plasmas may occur either in the presence of an external
magnetic field (e.g., in pulsar magnetospheres), or in un-
magnetized plasmas [15].

The propagation of electromagnetic waves in electron-

positron plasmas has been an active area of research in the
recent past. Many theoretical investigations have been
carried out to understand the instabilities a light wave
might suffer while passing through an electron-positron
plasma [16,17]. Since localized energy lumps (in the
form of solitary waves) are considered to be an intrinsic
element in turbulent plasmas, the occurrence of coherent
electromagnetic modes in an electron-positron plasma is
a topic of fundamental interest. The formation of such
nonlinear coupled modes as a final state of fully devel-
oped modulational instability have been discussed in many
earlier works, both in plasmas [17-20] and, e.g., in con-
densed matter physics [21]. Moreover, a series of ear-
lier works have addressed the problem of linearly po-
larized electromagnetic modes in electron-ion plasmas

[22-26] and in electron-positron plasmas [27]. The case
of circularly polarized dark solitons in an unmagnetized
electron-positron plasma has been investigated by Farina
and Bulanov [28] and that of circularly polarized bright-
type envelope solitary waves in an unmagnetized electron-
positron-ion plasma has been studied by Berezhiani and
Mahajan [18]. In another work, Berezhiani et al. [17] have
investigated large amplitude bright electromagnetic soli-
tary waves in a magnetized electron-positron plasma. In
a recent work by Saxena et al. [29], superluminal soli-
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tary solutions were shown to exist for the case of an elec-
tron plasma with immobile ions. There, the solitary so-
lution was found to correspond to a separatrix curve on
the Poincaré section surface plot. An approximate mathe-
matical form for the envelope of the solitary wave solution
was found for large velocities by using a multiple scale per-
turbative expansion. To our best knowledge, the case of
linearly polarized electromagnetic solitary waves in a cold
unmagnetized pure electron-positron plasma has not yet
been studied and forms the subject of present manuscript.

The two-fluid plasma-dynamical model (for electrons
and positrons) coupled with the Maxwell equations pro-
vide a working paradigm for understanding the nonlinear
interaction of an intense electromagnetic wave with an un-
magnetized cold electron-positron plasma. Such a nonlin-
ear model admits a wide range of solutions which have
not been fully explored yet. Our work aims at elucidating
a special class of nonlinear localized superluminal solitary
solutions which have not been investigated in the past. To
this effect, we extend the approach proposed in Ref. [29]
for electron-ion plasma with immmobile ions. First, we
derive the fluid-Maxwell set of equations for an electron-
positron plasma. Adopting a transformation of variables,
we derive a simpler set of equations for superluminal pulses
in the traveling reference frame. A constant of motion (a
“pseudo-Hamiltonian”) is then obtained, analogous to a
classical Hamiltonian with two degrees of freedom. The
solutions of the coupled nonlinear system of equations are
shown on Poincaré surface section plots for different val-
ues of the phase velocity variable, in the regime 5 > 1
(8 = vpn/c). It is found that the island structures on
the Poincaré section plots, which correspond to amplitude
modulated waves, disappear as the phase velocity is in-
creased from the weakly superluminal (8 — 1 < 1) to the
strongly superluminal (8 > 1) regime, for a given value of
the total energy of the system (Hamiltonian). We proceed
by showing that a non-chaotic separatrix curve exists in
the regime § — 1 ~ 1, corresponding to a localized elec-
tromagnetic solitary wave. The amplitude of the solitary
wave in this regime is well in the relativistic regime and
the spatiotemporal scales of the solitary wave envelope and
the carrier wave are not too far apart. It is therefore dif-
ficult to obtain an analytical form for the solution in this
parameter region. However, for substantially high veloci-
ties 8 > 1, the amplitudes are weakly relativistic and the
envelope and carrier wave scales differ by orders of magni-
tude. This allows one to obtain an approximate analytical
form for the envelope by means of a multiple scale pertur-
bative analysis. The analytical envelope solution is shown
to nicely match the envelope of the numerically obtained
solution.

The paper is organized as follows. In the next section
we discuss the model equations and their reduction to a
Hamiltonian system with two degrees of freedom. In Sec-
tion III, the possible solutions in different phase velocity
regimes are discussed using Poincaré section surface plots.
The existence of a solitary wave solution along the separa-

trix curve is shown and the differences in the characteris-
tics of solitary solutions in different carrier phase velocity
regimes are investigated. In Section IV, a multiple scale
perturbative analysis is presented in the § > 1 regime
and a comparison of the thus obtained analytical envelope
solution with the numerical solution is made. We then
discuss the characteristics of the novel solitary envelope
solutions presented here. Finally, our results are summa-
rized in the last section.

Model equations and reduction to a Hamiltonian
system. — The interaction of a relativistic laser pulse
with an electron-positron plasma is described by the fol-
lowing one dimensional fluid-Maxwell model:

Amr - Att = <ne + np) Aa (1)
Ye Yp

Gox = Ne— np , (2)
(pem)t = (i(éas - ')/e,p)g,C y (3)

ne e
(Nep), + (”pf’> — 0. (4)

Ve,p T

The relativistic factor ., is given by 7., =

\/1+|A]?+p2,. The indices e and p distinguish the
dynamical relations for the electrons and the positrons,
respectively, while the subscripts = and ¢ denote differen-
tiation with respect to space and time, respectively. Here,
A and ¢ represent the electromagnetic vector potential
and the scalar potential both normalized by m.c?/e where
m. and e are the mass and electric charge of the electron
respectively; n,/, stands for the electron/positron density
normalized by the background plasma density no; p./p the
electron/positron longitudinal momentum and are nor-
malized by mc.c. The length is normalized by the elec-
tron skin depth ¢/wpeo (Where wpeo = \/4mnge? /m. is the
electron plasma frequency) and time by the inverse of the
plasma frequency wz;lo.

We have assumed linear polarization of the electromag-
netic wave, so that A = aey, and focus on the superlu-
minal case i.e. 8 > 1. Now, we first make a plane wave
ansatz and perform a variable transformation £ = x — [,
from the laboratory frame to a frame moving at the phase
velocity of the carrier electromagnetic wave, 5. Then we
define the moving coordinate ¢ = ¢/(8% —1)*/? (where
the prime in £ will henceforth be dropped) and also de-
fine scaled variables: (/32 — 1) V20— X and 1 +o=—-Z.
The above transformations result in the following simpli-
fied forms for the scalar and vector potential equations:

1
\/ﬂ271+X2+ZQ
1
+
VB2 =1+ X2+ (Z +2)2

X+
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and
7
\/,3271+X2+ZQ
(Z+2)
VB2 =1+ X2+ (Z +2)2

The set of equations (5) and (6) admit the following
constant of motion

1. 1.
H= X2+ 7+ 8|V -1+ X2+ 22

Z+8

—0. (6)

(7)

This set of equations is formally analogous to those ob-
tained for an electron plasma (keeping ions fixed) in Refs.
[24] and [29], and admit a wide class of nonlinear solutions
including periodic, quasi-periodic, amplitude modulated
and solitary wave solutions. In the next section, we nu-
merically obtain some of the solutions and display them
on the Poincaré section surface plots for different param-
eter regimes. Special emphasis is given on a novel class of
solitary wave solutions.

VB -1+ X2+ (Z+27] .

Nonlinear solutions: Poincaré analysis. — The
technique of Poincaré surface section diagrams has been
very helpful in understanding and analyzing the behav-
ior of dynamical systems, as it allows one to trace the
properties of periodic and quasi-periodic orbits of the orig-
inal higher-dimensional system, as projected on a lower-
dimensional space (Poincaré surface). Kaw et al. [24] have
elegantly shown various classes of solutions of a coupled
fluid-Maxwell model describing the electromagnetic wave
propagation in cold electron plasmas with fixed ion back-
ground, by making use of the Poincaré section method.
Saxena et al. [29] extended their analysis to obtain local-
ized solitary solutions along the separatrix curve on the
Poincaré section plot. Here, we extend this formalism
further, in order to obtain similar localized solutions in
the more interesting case of an electron-positron plasma.
We solve the set of equations (5)-(7) by using a 4** or-
der Runge-Kutta method to obtain possible solutions and
to analyze the nonlinear solutions by means of Poincaré
section plots.

In Figures 1a and 1b, we show the Poincaré section plots
for 5 = 1.001, H = 10 and for 8 = 1.1, H = 10, respec-
tively. Upon comparing the two plots, one can notice the
difference between the characteristics of possible solutions.
While in the (weakly superluminal) § = 1.001 case, there
exist interesting island structures corresponding to ampli-
tude modulated waves, such solutions cease to exist for
B8 = 1.1. Moreover, we notice that the separatrix region
in the Poincaré plot is somewhat scattered, whereas the
separatrix curve for § = 1.1 is very clear and corresponds
to a nice localized solitary solution. We depict the corre-
sponding solitary solution in Fig. 2, where we find that
the coupled solitary wave solution exhibits a dip in elec-
tromagnetic potential coupled to a co-propagating hump
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Fig. 1: (color online) Poincaré section surface plot, Z vs Z
(X =0,X >0), for (a) 8 =1.001 and H = 10 (upper subplot)
and (b) 8 = 1.1 and H = 10 (lower subplot).

in the electrostatic potential profile. Also, the time scales
of the carrier wave and the envelope are not very far apart.
The corresponding amplitudes are in the strong relativistic
regime, as a ~ X/4/52? — 1 ~ 100.

In Fig. 3 we depict a solitary wave solution obtain in the
(strongly superluminal) case § = 20. It is worth noting
that the amplitudes for this solution lie in the weakly rela-
tivistic regime, a ~ X/1/B8? — 1 ~ 0.2, unlike the previous
case in (Fig. 2). The electrostatic potential amplitude is
in the overcritical regime [27] and hence the frequencies
of oscillations in electromagnetic potential and electro-
static potential are equal. The density profiles of electron
and positron fluid corresponding to the solution shown in
Fig. 3 are displayed in Fig. 4. We would like to point out
here that the electron and positron fluid densities have a
similar envelope profiles. It can be noticed that in the cen-
tre of the structure their oscillations are completely out of
phase which indicates a strong charge separation and thus
excitation of a strong localized electrostatic wave (repre-
sented by Z in the right plot of Fig. 3). Interestingly, the
scales of the carrier wave and of the envelope are far apart,
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Fig. 2: (color online) Soliton solution corresponding to the
separatrix curve shown in Fig. 1(b), for 8 = 1.1 and H = 10.
The upper panel corresponds to the transverse field X, and the
lower panel shows the profile of the electrostatic field Z.

by orders of magnitude. At this stage, one may exploit the
smallness of field amplitudes as well as the large separa-
tion between the scales (ratio ~ 3% —1 ~ 400), in order to
to obtain an approximate mathematical form of the soli-
tary wave envelope by performing a multiple-scale pertur-
bative analysis. We present such an analysis in the next
Section, and then provide a comparison of the analytical
envelope solution with the envelope of the solitary wave
solution obtained via numerical simulation of the original
fluid system.

Multiple scale perturbative analysis: envelope
solution in the 5 > 1 regime. — As a matter of
fact, the set of coupled nonlinear equations (5)-(7) can
be solved numerically, for any values of the relevant pa-
rameters. Nonetheless, it is certainly beneficial to dispose
of analytical insight on possible nonlinear solutions. A
handy analytical expression for these coupled electromag-
netic modes will be useful to have, for a better theoretical
understanding of the coupling between the longitudinal
and transverse waves. In principle, having an analytical
solution at hand should also provide a platform for further
investigating the stability of the localized solutions (this
is, however, outside the scope of present investigation). In
this Section, we follow a similar methodology as used by
Saxena et al. for electron-ion plasma with fixed ions [29],
to find an analytical form of the envelope of small ampli-
tude solitary solution in strong superluminal regime.

In the limit 8> 1 and for [X%+ (Z +2)?] /(8*—1) <
1, we may Taylor-expand the nonlinear terms in equa-
tions (5)-(7), thus reducing them in the lowest nonlinear
approximation to

d>X

?X wg
dg?

WX - X (X + 22 42242) =0 (8)
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Fig. 3: (color online) Soliton solution for § = 20 and H = 410.
The left plot shows the spatial profile of scaled electromagnetic
potential (X)) whereas right plot displays the profile of electro-
static potential (Z). In the inset of each plot, expanded view
around the central part of the corresponding profile is shown.

and
P2 2z +1) - Bz (x2 4 22
d7§2+w0(+)_7[( +27%)
+X%+3Z°+6Z+4] =0. (9)
where wy = /26/+/8% — 1 is the frequency of the lin-

earized equations, and € = 1/(3% — 1) is a (real) smallness
parameter.

Following the standard procedure of multiple time scale
perturbation analysis [30], we define new time variables
& = € and & = €€, and proceed to obtain, in successive
orders

a0 0

T T

d? 92 92

— = — +2 2y, 1
@ = e om0 (10)

Furthermore, the fields can be expanded as

X=XO4ex®  7=2720_4z0, (11)

Following a similar methodology used in Saxena et al.
[29], the analytical expressions of the envelope are ob-
tained as

A(E) = {z\xfg +/MZ=3MyM, +/MZ—3M;M,

3M, M,
) 1/2
o[ (M2 — 30, 0,) "

sech? {( 3 5 2My) (e€ + dl):| (12)

and
Ly+ /L2 +3LsLy /L2 +3L2L4
B&)=4- 3L " L
4 4
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Fig. 4: (color online) The profiles of electron and positron fluid
densities associated with the solution shown in Fig. 3. The
envelopes of the two species densities overlap with each other,
however, on expanding the central region of the profiles, one
can see that electron density (solid line) and positron density
(dashed curve) are completely out of phase indicating a strong
space charge separation.

1/2

(€ + dz)} } :

where d; and ds are constants of integration, which can
be calculated by using the initial values of A and B. Con-
stants My, My, Mz, My, Ly, Ly, Ly and L4, have the
following definitions

(L3 +3LyLy)""

5 (13)

sech?

w2c2 w2
M, = 21 My, =2 2
1 6 2= g (C1C?* +8Cy)
2 2
Ms = %(Cl+402+16), m:%
OJ2C2 w2
L _ 0~2 Lo = *0 2
' 16 2= g (207~ 8C2)
2 2
) 402 _ %%
Ly = 15 (C2—4C*+16), Li=-

where C' is given by A? + B? = constant = C?, whereas
c, = A? (02 — A2) sin? (¢o — ¢1) + 442, and C,
B? (C? — B?)sin® (¢ — ¢1) — 4B? are constants of inte-
gration. The complete approximate solution can then be
written as

X = A (&) cos (wobo + 1 (&1))

Z = B (&) cos (wolo + ¢2 (&1)) — 1

(14)

(15)

In Fig. 5 we compare the profile of the analytically ob-
tained envelope solutions for A and B from Egs. (12) and
(13), with the exact numerical solutions. As can be seen,
the numerical solutions are in perfect agreement with our
analytical predictions.
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Fig. 5: (color online) Comparison of the analytically obtained
envelopes with the numerically obtained exact solution, for § =
20 and H = 410. The analytical envelope curves drawn in solid
curves are seen to fit the envelope quite nicely.

Discussion. — The solutions discussed in this letter
for a cold unmagnetized electron-positron plasma are new.
The frequencies of oscillations both in the electromagnetic
as well as in the electrostatic field profiles are equal, and
correspond to the overcritical amplitude regime (¢ > 1)
discussed by Shiryaev [27]. This provides a lower bound
on the amplitude of the localized superluminal coupled
solitary wave. It is important to note that, unlike in the
case of an electron-ion plasma with immobile ions [29], in
the present case we have localized solutions even for phase
velocities nearing the speed of light 5 — 1 < 1. Moreover,
for a given phase speed, the carrier frequency wg in the
electron-positron plasma case is v/2 times the carrier fre-
quency in the electron-ion plasma with immobile ions.

The superluminal phase speed ¢/V,;, < 1 of these solu-
tions, corresponds to plasma densities very close to criti-
cal density. Such a near-critical density case has recently
been discussed by Pesch and Kull [31-33] for electron-ion
plasmas with immobile ions. In our opinion, the coupled
envelopes of the electromagnetic wave as well as the elec-
trostatic wave move with a velocity equal to the phase
velocity (and so does the density perturbation), however,
the definition of the group velocity for such coupled struc-
tures is not clear, and appears to be physically close to
the phase speed (since the envelope excitations are static
in the moving frame).

It is important to mention here that superluminal so-
lutions are known to be unstable [34] and possess a finite
lifetime ~ L /(U — ¢), where L is the typical spatial extent
of the structure, U is its phase speed and c is the speed of
light. However, in our case, we notice that the life time of
these localized structures is of the order of several plasma
periods and therefore they will have sufficient time to ex-
cite wake fields by Vavilov-Cerenkov effect [34] which can
be detected by existing diagnostic techniques.
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Summary. — We have considered the propagation
of a relativistically intense electromagnetic wave in cold
collisionless electron-positron plasmas, in the form of
a strongly modulated dark solitary wave like structure
of electromagnetic component coupled with a localized
plasma wave excitation. These coupled modes travel with
superluminal phase velocities and constitute a special class
of nonlinear solutions of the fluid-Maxwell system of equa-
tions describing the coupling of a linearly polarized light
wave to a cold relativistic electron-positron plasma. We
have numerically shown such specialized solutions to ex-
ist for a wide range of amplitudes, however, an analytical
form of their envelope can be obtained only in the low
amplitude case, using multiple scale perturbative analy-
sis. Our results provide a first prediction for the existence
of localized hybrid electrostatic/electromagnetic envelope
excitations in cold unmagnetized electron-positron plas-
mas. This may be an efficient scenario for energy localiza-
tion in e-p plasmas, of potential relevance in ultra-intense
laser-plasma interactions in the laboratory, as well as in
astrophysical environments. Moreover, the availability of
an explicit expression for the solution envelope as well as
the gained knowledge of the parameter regimes of exis-
tence of localized solutions will be useful for investigating
the stability of solutions. This will help in finding the pa-
rameter regime of relevance in future laser plasma experi-
ments where such localized nonlinear excitations involving
positron dynamics can be seen.
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