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Abstract. Space plasmas provide abundant evidence of highly energetic particle population,
resulting in a long-tailed non-Maxwellian distribution. Furthermore, the first stages in the
evolution of plasmas produced during laser-matter interaction are dominated by nonthermal
electrons, as confirmed by experimental observation and computer simulations. This
phenomenon is efficiently modelled via a kappa-type distribution. We present an overview,
from first principles, of the effect of superthermality on the characteristics of electrostatic
plasma waves. We rely on a fluid model for ion-acoustic excitations, employing a kappa
distribution function to model excess superthermality of the electron distribution. Focusing
on nonlinear excitations (solitons), in the form of solitary waves (pulses), shocks and envelope
solitons, and employing standard methodological tools of nonlinear plasmadynamical analysis,
we discuss the role of excess superthermality in their propagation dynamics (existence laws,
stability profile), geometric characteristics and stability. Numerical simulations are employed
to confirm theoretical predictions, namely in terms of the stability of electrostatic pulses, as
well as the modulational stability profile of bright- and dark-type envelope solitons.

1. Introduction

Space plasma observations provide abundant evidence for the existence of highly energetic

particles (electrons, in principle) at velocities exceeding the thermal speed [1, 2]. The

presence of this excess superthermal component, which may be due to various acceleration

mechanisms, gives rise to a long-tailed velocity distribution which may deviate substantially

from the Maxwellian. Aiming at an interpretation of the power-law dependence of the velocity

distribution observed in Space environments, a parametrized distribution function was proposed

in the 1960s, characterized by a real parameter κ (kappa) [1, 3]. The kappa distribution

function (κ-df ) was subsequently widely employed in the interpretation of observed spectra,

and was often proven to fit data more accurately than the Maxwellian approach [3,4]. Success

stories in this field include the use of a bi-kappa approach in comparison with the standard

bi-Maxwellian model in the study of the Saturn magnetosphere [4,5] and a recent study of dust-

particle charging in nonthermal electron environments, with application in electromagnetic
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wave propagation in the solar system [6]. In the laboratory, the kappa distribution was

recently employed in experimental studies of electron-holes [7]. Generation of a superthermal

particle population was also observed in high-power laser plasma interactions, where electron

acceleration was induced by plasma expansion [8], associated with the creation of a shock [9].

Excess superthermality thus arises as an ubiquitous paradigm in plasma dynamics.

It has been shown that excess electron superthermality may alter the propagation

characteristics of plasma modes, a fact to first approach attributed to the dramatic modification

of Debye screening properties [10]. We have recently undertaken a comprehensive series of

investigations, from first principles, of the effect of superthermality on the characteristics of

plasma modes [11–16, 18]. This is a collective effort, which spans a wide region of plasma

modes, ranging from ion-acoustic [11–13] and electron acoustic [14] solitary waves to envelope

solitons [15] and shocks [16,17], complemented by extensive numerical investigations [18]. What

follows is a short overview of the relevant framework, complemented by a brief presentation of

unpublished recent work.

2. Linear wave characteristics in superthermal plasmas

We have earlier proposed a simple model for electrostatic excitations in unmagnetized

collisionless nonthermal plasmas [19], consisting of a (“cold”) fluid description for the ion

species, and nonthermal electrons having a κ distribution [3]

fκ =
ne0

(πκ θ2)3/2

Γ(κ + 1)

Γ(κ− 1/2)

(
1 +

v2

κ θ2

)−(κ+1)

. (1)

Here ne0 is the unperturbed (equilibrium) electron density, and the spectral index

κ measures the strength of the excess superthermality present in the velocity

distribution function. The most probable speed, θ = ([κ − 3/2]/κ)1/2(2kBTe/me)
1/2,

is an effective thermal speed, where Te is the temperature of the equivalent

Maxwellian with the same internal energy. While κ →∞ recovers the Maxwellian,

small values of κ > 3/2 correspond to a strong deviation from the thermal

distribution. Integration of fκ over velocity space leads to the electron density [3]

ne = ne0

{
1− eφ/[(κ− 3

2
)kBTe]

}−κ+1/2
, which, for κ → ∞ yields the usual Boltzmann

expression, ne = ne0e
eφ/kBTe , where φ is the electrostatic potential. Practically,

in fact, Maxwellian-like behaviour is recovered for finite values of κ above

' 10. Normalising the time, space, speed and electrostatic potential variables

with respect to the inverse ion plasma frequency ω−1
p,i = (mi/4πZ2

i ni0e
2)1/2, the

characteristic (Debye screening) length λDi = (kBTe/4πZini0e
2)1/2, the ion acoustic

speed cs = (ZikBTe/mi)
1/2(= ωp,iλDi) and the potential scale φ0 = kBTe/e, respectively,

one obtains the dispersion relation

ω2 =
k2

k2 + C2
κ

, (2)

where ω and k denote the wave’s frequency and wavenumber, scaled by ωp,i and

λ−1
Di , respectively. We have defined C2

κ = κ−1/2
κ−3/2

. We note that the (Debye) charge screening
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mechanism is strongly affected by excess superthermality, leading to a reduced (κ-dependent)

modified screening length [10]

λ
(κ)
Di =

(
κ− 3/2

κ− 1/2

) 1
2

(
kBTe

4πZ2
i ni0e2

)1/2

. (3)

This results in a modified acoustic speed : indeed, the real sound speed in the plasma becomes

c(κ)
s = ωpiλ

(κ)
Di = c(κ→∞)

s

(
κ−3/2
κ−1/2

)1/2
, i.e., it is reduced by a numerical factor C−1

κ . The acoustic

dispersion relation (2) and the associated group velocity are depicted in Fig. 1.
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Figure 1. (Color online) Dispersion relation: the variation of the ion-acoustic wave frequency ω

(left panel) and the group velocity vg = dω/dk (right panel) are depicted versus wavenumber k,
for different values of the superthermality parameter: κ = 3 (dashed curves); κ = 5 (dot-dashed
curves); κ = 100 (solid curves) [20].

3. Solitary waves

Large-amplitude nonlinear theory for supersonic pulses. The existence of large-amplitude ion-

acoustic solitary waves was investigated in the past via a pseudopotential method (known

as the “Sagdeev” approach) [11, 12], a study later extended to dusty plasmas [13]. It

was shown that smaller κ values support larger-amplitude electric potential pulses (solitons),

associated with stronger bipolar forms for the electric field excitation. Only positive potential

pulses occur in electron-ion plasmas. Interestingly, in the presence of charge dust in the plasma,

a positive-to-negative soliton polarity shift was predicted for high (negative) dust concentration,

prescribing a co-existence of weak negative and large positive pulses, while the associated dust

density threshold was shown to be lower for smaller values of κ [13]: superthermality thus

favors the existence of negative-potential ion-acoustic pulses. Opposite polarity coexistence

was predicted by both Sagdeev and modified-Korteweg de Vries (mKdV) theories, but not

by the KdV theory (discussed below). Stationary-profile solitary waves predicted via the

pseudopotential method are generally known to occur in specific regions in configuration space,

which may be conveniently expressed in terms of the Mach number M , i.e. the soliton speed

scaled by the (reference) sound speed. Generally, the “soliton” existence region is delimited by

two values, viz., M1 < M < M2 (e.g., 1 < M < 1.58 in the original Sagdeev [23] ion-acoustic

shock model), where M1 is essentially the true acoustic speed for a given plasma configuration

(and depends on the latter and, namely, on the value of the κ parameter) –thus prescribing

supersonic soliton propagation– while M2 corresponds to an infinite compression limit, imposed
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Figure 2. (Color online) A high-to-low κ shift is considered. Top panels: Stable propagation
of an electrostatic pulse in a Maxwellian plasma. The exact pulse solution (5) was used as
initial condition, taking κ = 100 in Eq. (4) [20]. Bottom panels: the same initial condition
(still for κ = 100) is considered as input in Eq. (4), but for κ = 3 [24].

by reality requirements for the state variables. It was shown [11,12] that both M1 and M2

decrease for lower κ (an interested reader is referred to Fig. 1 in [11]: the existence region

is thus significantly affected by superthermality, and in fact shrinks to nil in the limit κ → 3/2.

It turns out that slower electrostatic excitations are supported in the presence of an excess in

the superthermal plasma component(s). The existence of permitted values of M below unity

may easily be misinterpreted as subsonic propagation; we emphasize that this is not true: the

solitary wave speed always lies above the (true, κ-dependent) sound speed, whose (normalised)

value itself may be below unity.

Korteweg - de Vries small-amplitude theory. Assuming weakly supersonic small-amplitude

electrostatic potential pulses, one may consider the stretched (slow) coordinates ξ = ε1/2(x−cst)

and τ = ε3/2t, where ε ¿ 1 is a small real constant and cs = c(κ)
s is the sound speed defined

above, and expand the dependent variables (n, u and φ) near equilibrium as φ ' εφ1+ε2φ2+ · · ·
(along with analogous expressions for n and u near 1 and 0, respectively). The leading-order

electrostatic potential disturbance is given by the Korteweg - de Vries (KdV) equation

dφ1

dτ
+ Aφ1

dφ1

dξ
+ B

d3φ1

dξ3
= 0 , (4)

where A = 2(κ− 1)/
√

(2κ− 3)(2κ− 1) and B = 1
2
[(2κ− 1)/(2κ− 3)]−3/2 respectively

(recovering A = 2B = 1, as expected, in the known Maxwellian electron limit, κ →∞ [22]).

The KdV equation (4) yields the well-known soliton solution

φ1(ξ, τ) = φ0 sech2
(

ξ − V τ

L0

)
, (5)
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Figure 3. (Color online) A low-to-high κ interface is considered. The evolution of a pulse
initially moving in a excessively superthermal plasma (for κ = 3, here: top panels) is taken
to enter into a Maxwellian region (here κ = 100: bottom panels) at t = 0. The exact pulse
solution (5) was considered as initial condition, for κ = 3 into the KdV Eq. (4), evaluated at:
κ = 3 (top panels) and κ = 100 (bottom panels) [24].

where the pulse amplitude φ0 = 3V/A and width L0 =
√

4B/V satisfy φ0L
2
0 = 12B/A.

We have undertaken a series of numerical simulations, to investigate the dynamical stability

profile of KdV solitons in superthermal plasmas (briefly discussed in [19], for dusty plasmas).

Adopting, say, the scenario of two colliding plasma clouds, an electrostatic pulse initially

propagating in a Maxwellian plasma is assumed to enter a region characterized by a lower

value of κ. To this end, we have considered the exact solution Eq. (5) for a high value κ = 100,

used as initial condition to integrate Eq. (4), but evaluating the coefficients therein at lower κ

(= 3 here: see the lower panels in Fig. 2). The energy stored in the pulse allows it to evolve into

a faster (also taller and thinner, as expected) pulse, possibly in addition to a slower (weaker,

wider) sister pulse, in the particular case considered in Fig. 2. Pulses crossing into a lower κ

region were observed to accelerate (to see this, compare the top right to bottom right panels in

Fig. 2); this was rather expected, since lower κ values support faster solitons [11–13].

Reversing the above scenario, an exact soliton solution of the KdV Eq. (4) evaluated for

κ = 3, was assumed to enter a Maxwellian region. The results are depicted in Fig. 3. The

pulse slows down slightly and grows wider, while a sea of linear waves are generated behind it,

due to the energetic misbalance between the exact soliton solutions for high and for low κ.

We conclude this part by adding that we have recently employed a hybrid KdV-Burgers

description to investigate the role of dynamical viscosity, associated with the dynamics of

electrostatic shocks in kappa-distributed plasmas. The interested reader is referred to [17] for

details, which are omitted here.
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Figure 4. (Color online) The ratio r = P/Q is shown vs. the carrier wavenumber k, for κ = 3
(dashed curve); κ = 5 (dot-dashed curve); κ = 100 (solid curve) [20].

4. Wavepacket stability and superthermal effect

Let us consider the dynamics of an ion-acoustic wavepacket propagating in superthermal

plasma. A multiscale approach may be employed [25], based on the fluid model presented

above, to separate the fast carrier from the slow envelope wave. The method consists of

considering small (ε ¿ 1) deviations of all state variables, say S (= n, u, φ) from equilibrium as

S = S(0) + Σ∞
n=1ε

n ∑n
l=−n S(nl)eil(kx−ωt), where the l−th harmonic amplitudes S(nl) are assumed

to depend on the slow space and time coordinates ζ = ε(x − vgt) and τ = ε2t. Here ε (¿ 1)

is a real constant and vg = dω/dk is the group velocity (depicted in Fig. 1b). Omitting

unnecessary details of the method, which may be found elsewhere [25], we shall summarize the

relevant results below. The evolution of the leading order (∼ ε) electric potential disturbance

ψ = φ
(1)
1 is shown to obey a nonlinear Schrödinger type evolution equation in the form

i
∂ψ

∂τ
+ P

∂2ψ

∂ζ2
+ Q | ψ |2 ψ = 0 , (6)

which arises as a compatibility condition at the third order in ε. Both the dispersion coefficient

P (related to the curvature of the dispersion curve as P = 1
2

d2ω
dk2 ), and the nonlinearity coefficient

Q are functions of the wavenumber k and of the superthermality index κ (in addition to the

details of the plasma configuration); the lengthy expressions are omitted here.

According to the established nonlinear modulation theory [25], a wavepacket will be

modulationally unstable for PQ > 0, while on the other hand, it will remain stable for PQ < 0.

Furthermore, in the former case (PQ > 0) Eq. (6) possesses a family of bright-type envelope

soliton solutions, while for PQ < 0 dark-type envelope solitons are sustained (see Figs. 5 and

6 below). Remarkably, the ratio r = P/Q (here depicted in Figure 4, for our model for ion-

acoustic wavepackets in kappa-distributed plasmas) determines both the stability profile and the

structure of the above solutions. In particular, the threshold for modulational instability to set

in is k̃cr = (2Q/P )1/2|ψ0| (here k̃cr is the critical wavenumber of an amplitude perturbation and

|ψ0| is the wavepackets maximum amplitude). On the other hand, the envelope soliton width L

is related to ψ0 by |ψ0|L = (2P/Q)1/2; therefore, higher/lower values of r predict a lower/higher

instability “window” [0, k̃cr] and -independently- wider/narrower envelope excitations, for given

maximum amplitude |ψ0|.
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Figure 5. (Color online) The evolution of a bright envelope soliton is shown for k = 1.2 [20].
The same initial condition (wavepacket) is shown to be (a) stable for κ = 3 (since PQ > 0)
and (b) unstable for κ = 100 (since PQ < 0), in agreement with the prediction in Fig. 4 [20].

We have tested the stability of a bright-type envelope pulse via numerical integration of

Eq. (6). Taking k = 1.2, Fig. 4 predicts r > 0 for κ = 3 but r < 0 for κ = 100. Assuming

the same initial condition (in fact, the exact solution soliton for κ = 3), a bright-type envelope

(pulse) soliton was shown to propagate in a stable manner in the former (superthermal) case,

but then spreads and decays in the latter (Maxwellian) case. These results are depicted in Fig.

5. In an analogous manner, considering the behavior of a dark-type envelope (an envelope void)

as initial condition for the same plasma conditions, we notice that the wavepacket is stable

exactly in the case when its bright sister would be unstable, and vice versa. These results are

depicted in Fig. 6.

−50 0 50
−5

0

5

ζ

ψ

−50 0 50 100
−5

0

5

ζ

ψ

−50 0 50 100
−5

0

5

ζ

ψ

0 50 100
−5

0

5

ζ

ψ

τ=10τ=0.5

τ=20 τ=50

−40 0 40
−4

0

4

ζ

ψ

−20 0 20 60
−4

0

4

ζ

ψ

20 60 100
−4

0

4

ζ

ψ

60 100 140
−4

0

4

ζ

ψ

τ=0.5 τ=20

τ=60 τ=100

Figure 6. (Color online) The evolution of a dark-type envelope soliton is shown, for the same
values as in the previous Figure (k = 1.2). The same initial condition (wavepacket) is shown
to be (a) unstable for κ = 3 (since PQ > 0) and (b) stable for κ = 100 (since PQ < 0), in
agreement with the prediction in Fig. 4 [20].
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As a final remark, the modulational instability growth rate was shown to be strongly

modified (and often increased) by considering low values of κ. Excess electron superthermality

thus appears to enhance modulational instability of electrostatic wavepackets.

5. Summary

We have discussed the fundamental aspects of superthermal particle distributions in space and

laboratory plasmas. Focusing on the modeling of nonlinear electrostatic waves propagating in

plasmas in the presence of an excess superthermal particle component, we have investigated

the basic impact of the latter on the waves’ dynamical characteristics and stability profile. We

have employed a simple (ion-)fluid model, to discuss the occurrence and dynamics of solitary

waves (pulses) as well as envelope solitons. This is a short summary of an extensive series of

theoretical investigations, part of which will be reported in forthcoming reports.

A brief comment is in order, for the sake of completeness, on alternative theories proposed

for the study of nonthermal plasmas, of which the kappa distribution is but one – albeit most

successful – representative. The model proposed by Cairns et al. [26] predicts the appearance

of bilateral “wings” in the electron distribution, and remarkably accounts for a change in the

soliton polarity (e.g., predicts negative potential pulses for ionic dynamics), in agreement with

spacecraft observation [26]. Alternative forms of the kappa distribution have also been proposed

(see the discussion in [3]). Interestingly, some recent studies [27,28] claim to establish an analogy

between the kappa theory and the recently proposed Tsallis theory [29] for non-extensive

thermodynamics. Finally, a recently suggested ad hoc hybrid-Cairns-Tsallis model [30] seems

to combine the pros and cons of both models into a double-parametric phenomenology, which

may be an interesting line of research [31].

Concluding, although this admittedly remains a controversial issue, and various

fundamental questions need to be addressed, the ubiquity of the kappa distribution, however

phenomenologically introduced, appears to have its foundations in an underlying physical truth

which is still not elucidated. Our efforts aim at contributing a modest piece of knowledge in

this direction, but the largest part of the truth is likely still to be found.
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