Nonlinear dust-acoustic solitary waves in strongly coupled dusty plasmas
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Dust-acoustic waves are investigated in a three-component plasma consisting of strongly coupled
dust particles and Maxwellian electrons and ions. A fluid model approach is used, with the effects
of strong coupling being accounted for by an effective electrostatic ‘pressure’ which is a function of
the dust number density and the electrostatic potential. Both linear and weakly nonlinear cases are
considered by derivation and analysis of the linear dispersion relation and the Korteweg-de Vries
equation, respectively. In contrast to previous studies using this model, this paper presents the
results arising from an expansion of the dynamical form of the electrostatic pressure, accounting for
the variations in its value in the vicinity of the wave.

I. INTRODUCTION

A dusty plasma is characterised by the presence of
massive, charged dust particles in addition to the elec-
tron, ion and neutral components that are found in
ordinary plasmas. These dust particles range in size
from nanometres to millimetres, are typically billions
of times more massive than protons and can have be-
tween one thousand and several hundred thousand el-
ementary charges.! The study of dusty plasmas has
become an increasingly important area of research in
plasma physics; its scope encompasses a wide variety
of fields such as astrophysics, semiconductor manu-
facturing and fusion reactors. It is interesting to note
that the first scientific study performed in the Inter-
national Space Station was a dusty plasma physics
experiment?, and it is perhaps an indication of its per-
ceived importance within the scientific community.

The presence of a massive, charged dust compo-
nent in a usual electron-ion plasma can have pro-
found effects on the dynamics of the system. This
article theoretically investigates aspects of two such
effects; namely the introduction of the dust-acoustic
wave (DAW) as a new wave mode, and the possibility
of strong coupling between the dust particles.

The DAW is a very low frequency mode in which
the wave is supported by the inertia of the dust par-
ticles, with the restoring force being provided by the
pressure of both the electrons and ions. The DAW
was first theoretically investigated in 1990 by Rao et
al.?, and experimentally observed by Barkan et al.?,
who were able to produce fascinating images and real-
time videos of the propagation of DAWs due to their
low phase velocity and the large size of the dust par-
ticles. In addition to DAWSs, there may also be the
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associated nonlinear structures such as dust-acoustic
solitary waves, which arise due to a balance between
nonlinear effects and dispersion. Solitons are a par-
ticular type of solitary wave which maintain their
shape and speed after interactions and have been ex-
tensively studied in mathematics and physics due to
their stable structure and also because they arise as
solutions to various exactly solvable models includ-
ing the Korteweg-de Vries (KdV) and the nonlinear
Schrodinger (NLS) equations.

In 1986 Ikezi® predicted that a dusty plasma can en-
ter the strongly coupled regime due to the high charge
and low temperature of the dust. Here, the coupling
parameter, I' > 1 where we have
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with Z4, Ty and ag = ng~ /3 being the charge num-
ber, temperature and mean interparticle distance of
the dust particles, respectively. This prediction was
soon verified in plasma discharges®®, and strongly
coupled plasmas has since become a popular research
area amongst plasma physicists.

The large masses of the dust particles can cause
complications when studying strongly coupled dusty
plasmas on earth-based experiments. This is because
gravity can dominate over some of the more subtle in-
teractions, masking some interesting phenomena. A
series of experiments aboard the TEXUS 35 rocket
flight” and the International Space Station? were able
to study strongly coupled dusty plasmas in both lig-
uid and crystalline forms in an environment with neg-
ligible gravitational effects. Among the interesting re-
sults obtained from these experiments it was seen that
a void, a region which contained plasma but no dust
particles, was formed in the centre of the discharge
due to effects of the ion drag force.

There have subsequently been many approaches
used to theoretically study strongly coupled DAWSs
such as the generalized thermodynamical’®, the



quasilocalized charge approximation'®, kinetic'? and
hydrodynamical'® models. Another model which has
recently been applied to study DAWs is the fluid
approach presented by Gozadinos et al.'*. Drawing
inspiration from previous space experiments®?, they
developed a numerical model to simulate crystalline
dusty plasmas under microgravity conditions. In this
paper they formulated an equation of state for this
regime given by
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where N,,, is the number of nearest neighbours that
determine the dusty plasma’s structure and « is the
lattice parameter, defined as the mean interparti-

cle distance ngl/ 3, divided by the dynamical Debye
screening length, Ap such that
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where Ty, and n, are the temperature and number
density of species s = e, 4, respectively. This model,
although originally developed for crystalline plasma
structures, has recently been applied as an approxima-
tion to the equation of state for strongly coupled plas-
mas near to the liquid-crystal phase transition. This
has included the study of Bohm sheaths'®, double-
layer formation!®!7, the linear DAW mode'®, and
nonlinear solitary wave structures'®2°. This theory
is seen to be in excellent agreement with the experi-
mental observations of linear wave modes, as elegantly
demonstrated by Yaroshenko et al., for example Fig.
5 in Ref. 18. By considering the form of Eqns. (1)
and (2), an effective electrostatic ‘temperature’ was
defined such that
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which is typically a few orders of magnitude larger
than the dust kinetic temperature. In doing so, they
demonstrated that this model predicts the transi-
tion to a thermal mode at high wave numbers for
dispersion curves obtained in previous experimental
studies?!, which the dust kinetic temperature alone
was not great enough to explain.

Our aim here is to investigate linear and nonlinear
dust-acoustic waves in strongly coupled dusty plas-
mas. We account for strong coupling between the dust
grains by using the model presented by Gozadinos
et al.™, along with the electrostatic temperature ap-
proach of Yaroshenko et al.'®. The reductive pertur-
bation method is employed to derive both the linear

dispersion relation and the Korteweg-de Vries equa-
tion for this system. We then investigate how the
properties of linear and nonlinear waves vary with re-
spect to initial plasma parameters. We choose these
parameters to reflect those typically observed in dusty
plasma experiments and base them on those presented
by Bandyopadhyay et al.?2.

In this paper, the electrons and ions are assumed
to follow the Maxwellian distribution, such that their
densities are dependent on the local electrostatic po-
tential, which varies with the passing of the wave. The
lattice parameter k, through its dependence on the dy-
namically varying screening length Ap, is dependent
on the densities of the Maxwellian species and thus
also varies with the electrostatic potential. The elec-
trostatic pressure is thus a dynamically varying quan-
tity, depending on both &, through the s term, and
ng, both explicitly and through x. In this paper, we
therefore emphasise that

P, = P,(nq, ®) (6)

and so the electrostatic pressure is found to vary due
to the perturbations in ng and ® in the vicinity of the
wave. In previous studies in this area'®?%, an approx-
imation was made such that the electrostatic pressure
is only a function of the equilibrium parameters, and
so an aim of this article is to show what effects this
approximation has on the results predicted by this
model.

The dust charge number, Z; is a function of the
size of the dust particle and of the local plasma con-
ditions. There are various theoretical models which
can be used to estimate the charge number, but here
we use an orbit motion limited (OML) approach?3,
which is based on a balance between electron and ion
currents onto the dust particles. In a real physical sit-
uation, this quantity should vary dynamically in the
vicinity of the wave, but for simplicity in this inves-
tigation, we only consider the equilibrium values in
determining the charge number of the dust, and there-
fore do not apply perturbation theory to Z,.

This article is structured as follows. In Section II,
the fluid equations to model dust-acoustic waves in
a strongly coupled plasma are presented, using the
equation of state derived by Gozadinos et al.'*. This
is followed in Section III, by an outline of the reduc-
tive perturbation method and an introduction to the
concept of ‘electrostatic temperature perturbations’
which are used in this paper. In Section IV, the rel-
evant equations used in this study, namely the linear
dispersion relation and the KdV equation, are derived
from the normalised fluid model. In Section V, a para-
metric investigation is presented for both the linear
and solitary wave cases for typical plasma conditions.
In Section VI we discuss the effects of strong coupling
and of the electrostatic temperature perturbations on
the dynamics of the waves. A summary of the most
important results and conclusions of this paper is pre-
sented in Section VII.



II. MODEL EQUATIONS
A. System Description

We consider linear and nonlinear acoustic waves
propagating through an unbounded, three-component
plasma consisting of dust particles, ions and electrons.
The radius, r4 and the mass, my of the dust particles
are assumed to be constant. The charge of the dust
particles, g = Zge is assumed to be constant, but
with a value determined by the equilibrium plasma pa-
rameters. Two forces acting on the dust particles are
considered. The first is the electrostatic force which
arises from the internally generated electric field of the
wave, while the second is from the dust particles elec-
trostatically repelling each other. No gravitational or
externally applied electromagnetic fields are applied
to the system. In the linear case, the wave propagates
due to the inertia of the dust particles being balanced
by the restoring effects of the electron and ion pres-
sures. For nonlinear wave propagation, we consider a
solitary wave, which is supported due to a balance be-
tween nonlinear effects and dispersion. Far from the
disturbing effects of the wave, the plasma is consid-
ered to be in an equilibrium state. Here the plasma
is macroscopically homogeneous, quasineutral and at
rest. In the proximity of the wave, the charged dust
particles are perturbed by its generated electrostatic
potential. The ions and electrons, which have masses
much less than that of the dust particles, are assumed
to instantaneously redistribute themselves according
to the Maxwellian distribution.

B. Fluid Equations

We use the fluid approach to model linear and
weakly nonlinear dust-acoustic waves in a 1D strongly
coupled plasma, in a liquid rather than crystalline
state. It would be reasonable to ask whether the fluid
equations, typically used for weakly coupled and dif-
fuse plasmas are applicable in the strongly coupled
case. In 1996 however, Wang and Bhattacharjee?*
developed a kinetic theory including strong coupling
from the Klimontovich equation and the Bogolyubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy and
showed that the Vlasov equation, from which the
fluid model may be derived, is still valid in the range
1 < T <« T, where I';,. is the critical coupling pa-
rameter at which crystallization occurs.

The number density of the dust particles obeys the
continuity equation such that

O 4 o (naua) =0, )

where ng and ug are the dust number density and the
dust fluid velocity, respectively.

The force arising due to strong coupling between the
dust particles is here modelled by an effective electro-

static pressure gradient, where we have the pressure,
P, = ngkpT, with T, defined in Eqn. (5). It was
shown in Ref. 16 that the electrostatic temperature T}
is always a few orders of magnitude higher than the
kinetic temperature Ty of the dust in the region of the
crystal-liquid phase transition. In this paper we there-
fore follow this assumption and so neglect the effects
of Ty on the dynamics of the system. The momentum
equation for this system can therefore be written as

s (aUd . 3%) = nazae O ()
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The system is then closed by Poisson’s equation
given by

2
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where we have set the ion charge number, Z; = 1
for simplicity. The density of the electrons and ions
in the proximity of the wave is dependent on their
temperature and on the electrostatic potential at that
point such that

P
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and
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Far from the effects of the wave, at equilibrium, Pois-
son’s equation gives the quasineutrality condition such
that n,g — neg — Zgnao = 0.

C. Normalisation

We now normalise the various quantities in
Equns. (7)-(9) by the scalings presented in Table I to
obtain a dimensionless system of equations. The vari-
ables ng, ug, ®, and T, are written in dimension-
less form as n, u, ¢, and d, respectively. The nor-
malised space and time quantities are denoted by a
tilde. Eqns. (7)-(9) thus become
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where for Poisson’s equation the relation exp(mg) =
1+ma¢+ (me)?/2+ ... has been used. The coefficients
in Poisson’s equation are calculated to be

Cc1 = ]., (15)
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TABLE I: Characteristic scales appearing in this investi-
gation
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D. Grain Charging

We consider the dust particles to have a charge
number, Z; which depends on the equilibrium condi-
tions of the plasma, and is constant in time through-
out the system. We determine the value of Z; by using
an orbit motion limited approach?? and assuming that
the electron and ion currents onto the dust particles
are such that I, + I; = 0. In dong so, we obtain the
following equation for Z,

w <,u\/§ exp(9)> — 9] , (20)

where 0 = m./m; and W denotes the Lambert W
function which has recently been applied to the prob-
lem of dust charging?®. This function is included in
programs such as MATLAB and Mathematica and
therefore allows a closed form representation of the
dust charge number, without having to rely on numer-
ical methods. For a derivation of the above equation,
see Appendix A.

Eqn. (20) gives an expression for the charge number
at equilibrium in the plasma. However, as the wave
passes, the local electron and ion densities will change,
resulting in a dynamic variation in charge number.
This effect is neglected in this article for simplicity
and to facilitate the focus on the variations in the
electrostatic temperature in the vicinity of the wave.

Zd _ 47T607;d2kBTe

III. REDUCTIVE PERTURBATION
METHOD

The reductive perturbation method involves the ex-
pansion, in terms of a small parameter €, of the dy-
namical variables of the system about their equilib-
rium states such that

A=Ag+> A, (21)
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where A is the variable to be expanded. Here, the
normalised quantities to be expanded are the dust
number density n, the dust fluid velocity u and the
electrostatic potential ¢ such that

n=1+en; + ng + ..., (22)
u = euy + uy + ... (23)

and
¢ =epr+ P+ ... (24)

From Eqn. (5) it is seen that T}, is a function of ng
and @, through the s term, and thus varies dynam-
ically. For analytical convenience, we introduce the
concept of electrostatic temperature perturbations.
For details of the derivation of the following quan-
tities, see Appendix B. By expanding the dynamic
variables in Eqn. (5), we acquire a form of the nor-
malised electrostatic temperature, d such that

d=dy+edy +e%dy + ... (25)

where the normalised equilibrium electrostatic dust
temperature, dy is expressed as

do = Two/To (26)
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where kg = 1/ naoApo. The perturbations dy and do
are found to be

dy = diiny + di2¢n (28)
and
dy = da1ng + dagy + dasni + daani 1 + dasdi (29)
where we have
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IV. DERIVATION OF MODEL EQUATIONS
A. Linear Dispersion Relation

To obtain the linear dispersion relation for this sys-
tem, the dependent variables in Eqns. (12)-(14) are
expanded in a power series of €, as described in Sec-
tion III, with terms higher than €' neglected. By then
assuming oscillatory solutions to the perturbed quan-
tities we obtain the following system of equations

—ony + kuy =0, (35)
—Bkny + Quy + akdy =0, (36)

and
ny+ o1 (14 k%) =0 (37)

in which @ and & are the normalised frequency and
wavenumber, respectively and we have
azl—dlg, ﬁ:do'f'dll. (38)

By combining the above system of equations, it can
be seen that we arrive at a dispersion relation

7.2
- ak
&% =

72 + Bk2. (39)

In the long wavelength limit, Eqn. (39) gives the nor-
malised phase velocity v such that

= /1 +dy+di1 — dia. (40)
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B. KdV Equation

To obtain the KdV equation, in which we balance
nonlinearity with dispersion, we first stretch the space
and time coordinates in Eqns. (12)-(14) in the style
of Washimi and Taniuti?® such that

E=?(z—ol), F=71 (41)

By then applying the reductive perturbation method
as outlined in Section III, to lowest order in € we ob-
tain
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By integrating Eqns. (42)-(44), noting that the per-
turbations tend to zero at £ — 400, we obtain equa-
tions for the dust fluid density and dust fluid velocity
perturbations in terms of the electrostatic potential
perturbation such that

ny=-—¢1,  ur=-—vh (45)

as well as an expression for the normalised phase ve-
locity which is the same as Eqn. (40).
To next lowest order in €, we obtain
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where the relations in Eqn. (45) have been used to
express the first order perturbed quantities solely in
terms of ¢;. By differentiating Eqn. (48) with respect

to £, an equation for dngy / A€ can be obtained, which
can then be substituted into Eqn. (47) to get an equa-

tion for dus/ O€. These expressions for both dnsy / o€

and Quy /€ can then be substituted into Eqn. (46) to
obtain an equation of the form
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in which we have
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where « is defined in Eqn. (38) and + is defined as
v =d11 — di12 + da3 — dag + dos. (52)
Eqn. (49) can be solved by separation of variables,
giving a solution of
£-UF
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U
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where U is the normalised velocity of the nonlinear
wave in the moving reference frame. We now trans-
form back to the laboratory frame, in which the soli-
tary wave is travelling with a normalised velocity V,
which is greater than the sound speed in the plasma
by an amount §V. Taking ¢ to the first order of €, we
then have

60,0 = o | X (54)
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are the amplitude and width of the solitary wave and
x=z—Vt.

where

V. PARAMETRIC INVESTIGATION

In this section, we present a parametric investiga-
tion based on the equations derived in Section IV. In
the previous sections, we have demonstrated that both
the linear dispersion relation and the KdV equation
are dependent on the following equilibrium quantities:
N30y Neo, Liy Te, 0 = me/m;, T4 and mg. To deter-
mine the coupling parameter of the system, so that its
phase state may be estimated, the dust temperature
T, must be specified. When considering solitary wave
solutions to the KdV equation, we must also specify
the velocity of the solitary wave relative to the sound
speed in the plasma, which in dimensional form may
be expressed as 0V = V —wv,,. From these nine quanti-
ties, the various attributes of the linear and nonlinear
wave structures can be derived.

Here, we choose to investigate the effects of vary-
ing the densities and temperatures of the Maxwellian
species and fix the other quantities. For the purposes
of this section, the scalings shown in Table I are inap-
propriate, since they are dependent on these parame-
ters, so in this section we analyse the dimensional form
of the equations. Some of the normalisation quanti-
ties presented in Table I arise naturally in the algebra
however, so the notation of the various dimensionless
quantities will be retained in this section.

We will be using the parameters shown in Table 11
for this investigation which are based on those mea-
sured by Bandyopadhyay et al.22. The value of the

Parameter = Parameter Range
Nio (5—8) x 10"* m™3
Neo (1 —4) x 10"* m™3
kBT; (0.2—-1) eV
kgTe. (3—18) eV
kBTd 0.3 eV
Td 0.2 um
ma 1x 1071 kg
o= me/m; 1.3732 x 107°
oV 2 mm/s

TABLE II: Parameters studied in this investigation

ratio ¢ = me/m; is for the commonly used argon
plasma, but here we set the ion charge number, Z; = 1
for simplicity. We choose N,,,, = 12, corresponding to
an fcc crystal lattice. We choose the range of temper-
atures and densities under investigation such that we
expect that the dust particles to be strongly coupled,
but the plasma is in a fluid rather than crystalline
state.

Vaulina and Khrapak?” found that the coupling pa-
rameter required for crystallisation is

106 exp(ko)

N =
T (1 + Ko + K2)

(56)

and therefore the equation of state, Eqn. (2) is valid
in the region in which we have approximately 1 < I' <
I'., so we restrict our parameters to values such that
this inequality holds. Here we have used the equilib-
rium quantities to determine the coupling parameter,
and therefore we do not take into account the effects
of the wave perturbations on the phase state of the
system.

As described in Section IID, the charge of the dust
grain is dependent on the temperatures and densities
of the Maxwellian species. To determine how the cou-
pling parameter varies with these quantities, the dust
charge number, Z; should first be calculated, accord-
ing to Eqn. (20). Fig. 1 shows how the dust charge
number, Z; is dependent on the parameters used in
this investigation, and it is seen to vary between ap-
proximately 1100 and 3200 for this parameter range.
Using Eqns. (1) and (56), it can then be shown that
this corresponds to values of I' which fall approxi-
mately in the desired range.

The lower bound for the velocity of a solitary wave
is given by the sound speed in the plasma, and so it
is important to consider the linear case, even when
investigating nonlinear waves. Restoring dimensions
to Eqn. (39) we see that the dispersion relation may
be written as

(.L)2 _ kBTO Oth
mq \ 1+ Ahok?

+ Bk2> , (57)

which in the limit kApg < 1, shows a predicted phase
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FIG. 1: (Colour online) The charge number of the dust
particles studied in this investigation, as functions of (a)
the temperatures (eV), and (b) the densities (x10** m™3)
of the Maxwellian species. In both plots we have mg = 1 X
107 kg, rg = 0.2 pm, kpTy = 0.3 eV o = 1.3732 x 1075,
In (a) we have n;o = 7 X 108 m™3, nep =4 x 10*® m~3
and in (b) we have kgT; = 0.3 eV, kpT. =8 eV.

velocity of

w o \/kB(To + Tho + Tia1 — Tha2) (58)
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In this and the following equations, the terms writ-
ten T,;; are the electrostatic temperature perturba-
tion coefficients in dimensional form, corresponding
to Eqns. (30)-(34). Fig. 2 shows how the phase ve-
locity varies with the parameters under investigation.

Restoring dimensions to Eqn. (49) and rearranging,
we obtain

8@1 8@1 83(1)1
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This gives a solution in the laboratory frame of

®(z,t) = ®,,sech? (%) , (62)

FIG. 2: (Colour online) The phase velocity, vpn (cm/s)
of the dust-acoustic waves studied in this investigation,
as functions of (a) the temperatures (eV), and (b) the
densities (x10'® m™3) of the Maxwellian species. In both
plots we have mg = 1 x 10713 kg, 74 = 0.2 ym and ¢ =
1.3732x107°. In (a) we have njo = 7x 10" m™3 n.o = 4x
10 m~3 and in (b) we have kgT; = 0.3 eV, kpT. = 8 ¢€V.

which is the dimensional form of Eqn. (54). Since
|®,,] = 30V/|A] and A = /4B/§V, we see that
the amplitude and width of the solitary waves have
two main dependences. The first is a dependence on
the velocity of the solitary wave relative to the sound
speed in the plasma, §V, such that the amplitude
of the solitary wave is directly proportional, and the
width inversely proportional to the square root of its
magnitude. This parameter is related to the strength
of the perturbation and we see that, for constant A
and B, faster solitary waves will be taller and thinner
than slower ones. We also see the well-known rela-
tion that for a particular plasma system, the product
|®,,|A? is independent of §V .

The second dependence is on the coefficients of the
KdV equation, A and B which are unique to the model
being presented. By holding V' constant, we demon-
strate in Figs. 3 and 4 the effects that the varia-
tion of these coefficients with equilibrium plasma pa-
rameters have on the amplitude and width of soli-
tary waves. We emphasise that, although we have
held 6V constant, the absolute speed in the labora-
tory frame of the solitary waves are different, due to
the sound speed also being dependent on these param-
eters. By noting the range of phase velocities shown
in Fig. 2, we see that Figs. 3 and 4 correspond to
solitary waves travelling with a Mach number range
of M =V/vp, = 1.04 — 1.15.



FIG. 3: (Colour online) The amplitude, |®,,| (mV) of
the potential perturbations associated with the solitary
waves studied in this investigation, as functions of (a) the
temperatures (eV), and (b) the densities (x10'® m™3) of
the Maxwellian species. In both plots we have mq =
1 x107" kg, rg = 0.2 um, ¢ = 1.3732 x 10~° and
8V = 2 mm/s. In (a) we have njo = 7 x 10 m™3,
neo = 4 x 10 m™3 and in (b) we have kgT; = 0.3 eV,
kpT. =8 eV.

Model «@ B
T, =Ti(na, ) 1—di2 do + d11
T, =T 1 do
T. =0 1 0

TABLE III: Values of a and f for the three models under

comparison

VI. THE EFFECTS OF STRONG COUPLING
BETWEEN DUST PARTICLES ON
DUST-ACOUSTIC WAVES

In this section, we present a discussion on how
strong coupling between the dust particles, described
via the electrostatic temperature model affects the
attributes of the linear and nonlinear dust-acoustic
waves. We do this by comparing the model presented
in this paper, which in this section we denote as the
T, = Ti(ng,®) case, with a model in which we set
the electrostatic temperature terms to zero such that
T, = 0. This model is well documented, and may be
found for example in Ref. 1, although using a scaling
which is different from that in this article. In addi-
tion to this, we also show the effects of the inclusion
of the electrostatic temperature perturbation terms
by comparison to a model in which the electrostatic

FIG. 4: (Colour online) The width, A (mm) of the po-
tential perturbations associated with the solitary waves
studied in this investigation, as functions of (a) the tem-
peratures (eV), and (b) the densities (x10'* m™3) of
the Maxwellian species. In both plots we have mq =
1x107" kg, rg = 0.2 pm, 0 = 1.3732 x 107° and
8V = 2 mm/s. In (a) we have nyo = 7 x 10® m™3,
Neo = 4 x 10 m™3 and in (b) we have kgT; = 0.3 eV,
kpT. =8 €V.

temperature is set to its equilibrium value such that
T, = Txo, which may be found for example in Ref. 20.
These models may be recovered from the equations
presented in this text in the appropriate limits, which
are discussed in this section.

A. Linear dust-acoustic waves

We start with the linear case, and by inspection of
the form of Eqn. (39), we see that the defining terms
for each model are o and S, the values of which are
displayed in Table III. Fig. 5 presents the calculated
dispersion relations for the three models.

1. Short wavelength limit, kApo > 1

As was demonstrated by Yaroshenko et al.'®, a fea-
ture of the dispersion relation which is indicative of
strong coupling is a transition into a regime similar
to that of the thermal mode at high wavenumbers.
This indicates that the electrostatic interactions be-
tween the dust particles produce an effect analogous
to that of a temperature, and we see this effect clearly
in Fig. 5. Here, the term responsible for this effect
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FIG. 5: (Colour online) The normalised dispersion relation
for three different models of dust-acoustic waves. Here we
have n;o = 7 x 10" m™2 ne = 4 x 10"®* m™®, kT, =
0.3eV, kgT. =8 eV, myg =1 x 1073 kg, ry = 0.2 pm,
and 0 = 1.3732 x 1075,

is f in Eqn. (39). In the weakly coupled case, since
we do not consider any temperature-like terms, we
have f = 0 and so the wave frequency saturates at
the dust plasma frequency for high wavenumbers, as
can be seen from the solid blue line in Fig. 5. For the
strongly coupled models, we have non-zero g terms, so
for large wavenumbers, these models predict a transi-
tion to the thermal mode, such that & — /Bk. Since
the value of 3 is larger for the T, = Ty (ng4, ) model
than the T, = T,o case, we see that the inclusion
of dust electrostatic temperature perturbations in the
model makes this effect even more pronounced.

2. Long wavelength limit, kApo < 1

In the case of low wavenumbers such that kApg < 1
Yaroshenko et al.'® predicted an increase in the phase
velocity of the wave due to the effects of strong cou-
pling. Here, we see that in this limit, v = a + 3.
For the scaling we have chosen, the T, = 0 model has
a phase velocity of 1. Since the phase velocity for the
T, = T, model is /1 + dy, we see that an effect of
including strong coupling in the model is an increase
in the phase velocity in the long wavelength limit. In
this paper, for the T, = T, (n4, ®) case, we have a
phase velocity of v = /1 +dgy + di1 — di2. For the
parameters considered in Section V, we have d17 > dy2
across the entire range, so we see that the electrostatic
temperature perturbations further increase the pre-
dicted phase velocity. The difference in phase velocity
between the models is a function of the equilibrium
plasma parameters. To get a sense of the magnitude
that these differences amount to, we produced graphs
similar to Fig. 2 for the two other models, which are
excluded from this work for brevity. In doing so, it
may be seen that the approach used in this paper pre-
dicts phase speeds that are up to approximately 20%
greater than the T, = 0 model, and up to approxi-
mately 5% greater than the T, = T.o model for the
parameter range considered in Section V.
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FIG. 6: (Colour online) Normalised solitary wave struc-
tures for three different models. Here we have n,g =
7x 10" m™3 ne = 4 x 10® m™3, kgT; = 0.3 eV,
kgT. = 8 eV, mg = 1 X 10713 kg, ra« = 0.2 pm,
0=13732%x107% and V = 1.2.

B. Nonlinear dust-acoustic solitary waves

We now discuss the nonlinear case. By considering
the form of Eqn. (55), we see there are two key factors
affecting the attributes of the nonlinear solitary waves.
The first is the sound speed excess, dV of the solitary
wave, and the second is the values of the coefficients in
the KdV equation, A and B. Both of these factors are
dependent on the model used, so we will now discuss
each of them in turn.

1. Differences in the calculated sound speed excess

For a measured solitary wave speed in the labora-
tory frame V', each model will give a different value
of §V upon which the amplitude and width of the
solitary waves are dependent. For example, using the
same parameters which were used for the compari-
son in Fig. 5, the normalised phase speeds, v for the
dynamically varying electrostatic temperature model,
the constant electrostatic temperature model and the
electrostatically cold model are 1.14, 1.10 and 1, re-
spectively. For a solitary wave moving in the labora-
tory frame with a normalised velocity of V' = 1.2, the
three models then give §V = (V — v) of 0.06, 0.1 and
0.2, respectively. Since the amplitude is directly pro-
portional to, and the width is inversely proportional
to the square root of 4V, it is seen that this factor
contributes to the strongly coupled models predicting
shorter, but wider solitary waves.

_ This factor is most important for lower values of
V. To see this, let us consider two separate mod-
els, with phase velocities v; and wvs, respectively. One
may arbitrarily choose vy > v;. It then follows that
o0Vi =V —wv; > 6Va. The ratio §V;/0V2 may then
be seen to increase monotonically as V is decreased
and approaches vs. Thus it follows that the relative
differences in the predicted amplitudes and widths of
the solitary waves, arising from the deviations in §V/



between the models, are greatest for lower values of
V.

2. Differences in the KdV coefficients

We now compare the A and B coefficients in the
KdV equation for the three models, which leads to dif-
ferences in the amplitude and width of the predicted
solitary waves.

Accounting for the differences in @ and v = Va + 8
between the models, it may be seen that the KAV
coefficients for the T, = 0 and T, = T,y models are

~ 3+202 ~ 1
and
~ 2 2 - 1
A:_m B — - (64)

21+ dy PN

respectively. Having calculated the values of these
coeflicients across the parameter range described in
Section V, we find that the Ty, = Ti(ng, ®) model

presented in this paper predicts values of A which
are greater in magnitude than those predicted by the
T, = Ty and T, = 0 models by up to a maximum
of approximately 8% and 15%, respectively. We find
that the corresponding decrease in B reaches approx-
imately 3% and 8%, respectively. The percentage dif-
ference in the coefficients predicted by each model
varies across the equilibrium parameter range, so we
just give the maximum values to give a sense of the
magnitude of these changes. The increase in the ab-
solute value of the A coefficient contributes to the
prediction of lower amplitude solitary waves for the
strongly coupled models. The decrease in B con-
tributes to a narrowing of the solitary waves for the
strongly coupled models, which is in contrast to the
effect arising from the reduction of the value of §V,
which leads to a widening. The net effect on the pre-
dicted width of the solitary waves thus depends on
which factor is dominant, which is determined by the
specific equilibrium plasma parameters and the soli-
tary wave velocity, V.

Fig. 6 shows solitary waves predicted by the three
models for typical plasma parameters. Here we see
that the combination of the reduction of 6V and the
increase of |A| results in a large decrease in the am-
plitude of the solitary waves for the strongly coupled
models. The effect of strong coupling on the width is
more subtle, but Fig. 6 shows slightly wider solitary
waves for the strongly coupled models, which indicates
that for these parameters the effect of the reduction
in 0V dominates over the effect of the reduction in B.

VII. CONCLUSIONS

In this paper we have theoretically investigated
both linear and nonlinear dust-acoustic waves in a
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dusty plasma in which the dust particles are strongly
coupled. We have modelled the effects of strong cou-
pling by utilising the electrostatic temperature ap-
proach of Yaroshenko et al.'®. Uniquely, we have con-
sidered perturbations in the electrostatic temperature,
which is a function of the dust number density and
electrostatic potential, in the locality of the wave and
then demonstrated how these affect the linear disper-
sion relation and the Korteweg-de Vries equation.

Our main objectives were to investigate how the dy-
namics of the waves change for a range of equilibrium
plasma parameters, to describe what effects strong
coupling has on the waves and to provide an overview
of how electrostatic temperature perturbations affect
the model. In summary, the main conclusions of our
paper are:

(a) The phase velocity of the dust-acoustic wave, as
well as the amplitude and width of solitary waves
are seen to vary significantly with the equilibrium
plasma parameters. This is shown in Figs. 2, 3
and 4, respectively, where we have displayed how
the variation of densities and temperatures of the
Maxwellian species affect these attributes.

(b) The predicted phase velocity, v is seen to be larger
when strong coupling effects are accommodated
in the model via the electrostatic temperature ap-
proach.

(¢) The amplitude of the predicted nonlinear solitary
waves is seen to be reduced when strong coupling
is included in the model, due to an increase in the
absolute value of the nonlinear coefficient, A in the
KdV equation. In addition to this, if we consider
a solitary wave travelling with a set velocity in the
laboratory frame V', the increase in phase veloc-
ity arising from strong coupling effects will result
in a reduction in the predicted sound speed ex-
cess, 6V =V — v compared to the weakly coupled
model. This will then result in a further reduc-
tion in the amplitude predicted by the strongly
coupled models.

(d) The width of the predicted nonlinear solitary
waves may be seen to either increase or decrease
with the inclusion of strong coupling effects, de-
pending on which of two factors is dominant. The
first, contributing to a narrowing of the solitary
waves for the parameters under investigation, is
the reduction of the B coefficient in the KdV equa-
tion. The second factor, contributing to a widen-
ing of the solitary waves, is the reduction in §V
brought about by the increased phase velocity in
the strongly coupled model. Which factor dom-
inates is determined by the specific equilibrium
plasma parameters and the solitary wave velocity,
V.

(e) The inclusion of the electrostatic temperature per-
turbations in the model is seen to amplify the ef-



fects of strong coupling mentioned in points (b)-

(d).

We have seen that the difference between the inclu-
sion or exclusion of the perturbations of the electro-
static temperature affects the value of the linear phase
velocity by only a small amount (the magnitude of this
difference depends on the specific equilibrium plasma
conditions, but is seen to be at most ~ 5% for the pa-
rameter range under investigation). For solitary waves
however, since the sound speed excess will be changed,
this seemingly small modification can result in large
differences in the amplitude and width between the
two models when combined with the changes in the
KdV coefficients. We show therefore that the consid-
eration of the dynamic variation of the electrostatic
temperature can provide important modifications to
more simple models.

The dust charge number Z;, which in this case
was derived using an orbit motion limited approach,
is found to vary significantly with the equilibrium
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plasma parameters and this has a substantial effect
on the dynamics of the wave modes. For a more com-
plete understanding of the system, perturbations of
the dust charge number may also show important ad-
ditions to the model, since Z; is actually dependent
on the dynamically varying electron and ion densities.
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Appendix A: The calculation of the dust charge
number via the Lambert W function

According to OML theory, the electron and ion cur-
rents onto the dust particle may be written as

e@d
I =1, : Al
= e () (A1)

e@d
I=1Io(1- : A2
o(1- ) (A2)

with
kT

Io = V8T1r2ns0qs B (A3)

ms

for species species s = e,i. Here ®4 is the difference
between the grain and plasma potentials. Setting I; +



I. = 0 gives

1 edy edy
—un ] = —_¢ 1— =0 A4
W U@eXp<kBTe>+< kiBTi) (A4)
where we have defined o = m./m;, u = neo/ni0, 0 =

T;/T.. Multiplying through by 0 exp (0 — e®,/kpT.)
and rearranging then gives

e<I>d e<I>d \/6
60— 60— = - 6). (A
(0 o Yo (8- ) =y Lesa). (45)
This equation is of the form X exp(X) = f(u, 8), the
solution to which may be written as X = W (f(u,0))

where W denotes the Lambert W function. This equa-
tion may thus be expressed as

o — ;:j; —W Wf exp(9)> . (A6)

By then substituting &4 = —Zge/(4dmegry) into this
equation and rearranging, we obtain our expression
for the dust charge number, Eqn. (20).

Appendix B: Derivation of electrostatic
temperature coefficients

In this Appendix, we outline a derivation of the
electrostatic temperature coefficients which were pre-
sented in Section III. The electrostatic temperature
depends on the local screening length in the plasma
via the lattice parameter s, and we use this as the
starting point. Looking at the normalised Debye
length, we see that

Ap  (nioTe +neoT; bz
Apo  \ niT. +nT;
1/2

_ 1+ po (B1)

exp (— ka) + pbexp (kg‘l;e)

We may write the electrostatic potential as ® = ¢®Pg,
where the normalization quantity ®g = kpTy/e =
[(1—p)/(1+ ud)](kpT;/e). The denominator of the
last term in Eqn. (B1) may then be written as

e (o) + o e (H2900). (32)

By expressing ¢ in a power series of € and Taylor
expanding, Eqn. (B1) then simplifies to

1/2
AD 1
— - . B3
ADo <Z;’io (J+ 1)Cj+1¢3> (B3)

12

where c; refers to the jth coefficient in Poission’s equa-
tion, as defined in Section II C.

To derive the KdV equation we only require up to
the second order, so we take the lattice parameter, x
to be

1

k= 173
d

= = Ko (1 + 2C2¢) + 3C3¢2) 1/2 ’I’L_l/3 (B4)
)\D’I’L

By expressing the dynamic variables in series of € and
Taylor expanding, we arrive at an equation for the
perturbations in the lattice parameter, such that

K= Ko+ er1 + Erp (B5)
with
1
K1 = —§n1 + co1 (B6)
and
1 2 ¢ 3cs — 2
Rg = —§n2 + a2 + 5”% - §2n1¢)1 + quf
(B7)

This equation for k can now be substituted into
Eqn. (5) to obtain the electrostatic temperature per-
turbation terms. The calculation can be divided up
into three main components, with

nz/?’ ~ n(li(/)?’(l + eny + 2ny)/?

1
~ n(liéB (1 + e% + 625(3712 - n%)) , (B8)

K1 9 K2

(1+k) ~ (1+ ko) (1+61+H0+6 1—|—/£0> (B9)

and

exp(—k) =~ exp(—kKo — €k — €2K?)

= exp(—ko)exp(—ek1 — €2ky)

~ exp(—ko) (1 — k1 + 62(’%_22”2)@310)

The product of these three equations, along with the
constants appearing at the beginning of Eqn. (5),
gives, after normalisation by Tp, the electrostatic tem-
perature perturbations that are presented in Section
I1I.



