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Abstract
The occurrence of rogue waves (freak waves) associated with electrostatic wavepacket propagation
in a quantum electron–positron–ion plasma is investigated from first principles. Electrons and
positrons follow a Fermi–Dirac distribution, while the ions are subject to a quantum (Fermi)
pressure. A fluid model is proposed and analyzed via a multiscale technique. The evolution of the
wave envelope is shown to be described by a nonlinear Schrödinger equation (NLSE). Criteria for
modulational instability are obtained in terms of the intrinsic plasma parameters. Analytical
solutions of the NLSE in the form of envelope solitons (of the bright or dark type) and localized
breathers are reviewed. The characteristics of exact solutions in the form of the Peregrine soliton,
the Akhmediev breather and the Kuznetsov–Ma breather are proposed as candidate functions for
rogue waves (freak waves) within the model. The characteristics of the latter and their dependence
on relevant parameters (positron concentration and temperature) are investigated.

Keywords: electrostatic waves, rogue waves, freak waves, nonlinear Schrödinger equation,
quantum plasmas, degenerate plasmas, Fermi plasmas

(Some figures may appear in colour only in the online journal)

1. Introduction

Large ensembles of charged particles (plasmas) have tacitly
been used as testbed for nonlinear theories. Many successful
models have been proposed for classical plasma description.
Whether the many-particle system is modeled as a mixture of
charged fluids, or via a kinetic approach, a large number of
observable plasma phenomena can be explained from basic
physical assumptions.

The classical plasma description bears its own limitations,
however. From a fundamental point of view, when densities
are large and/or temperatures are low, new effects come
into play whose description lies beyond the boundaries of
classical mechanics. A high density requires a short inter-
particle distance, which in turn results in a nonnegligible
overlap among particle wavefunctions. A pressure effect thus
arises due to Pauli’s exclusion principle, which resists the
compression of the particles [1–3].

The study of quantum plasmas has received considerable
impetus since the introduction of the multifluid quantum

plasma model [4]. Electrostatic modes are of relevance
in semiconductor physics where the small dynamical scales
require the inclusion of quantum effects such as tunneling [5],
and also at the opposite end of the scale in astrophysical
plasmas [6].

Various aspects of linear [1, 7–9] and nonlinear [5–14]
electrostatic wave propagation have so far been investigated,
mainly involving the quantum effect due to electron pressure on
the ion dynamics [5–13], but also charged dust concentration
effects [8] and modified electron dynamical effects [14].
Different nonlinear paradigms have been employed in the
description of quantum plasmas. A Korteweg–de Vries (KdV)
equation was derived for ion-acoustic solitary waves in a
cold quantum dusty plasma in [8], later extended to a two-
dimensional Zakharov–Kuznetsov related description [11].
A modified KdV equation was derived in [12] to describe the
evolution of kink-type structures in unmagnetized electron–
positron–ion plasmas. That work was later extended to
a two-dimensional geometry [10] based on a Kadomtsev–
Petviashvili type description or, alternatively, for dense
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magnetized plasmas, a Zakharov–Kuznetsov model [9]. In all
of these works, ions were treated as classical particles, while
quantum effects were introduced via the electron statistics.

One of many generic nonlinear mechanisms dominating
wavepacket propagation in plasmas is amplitude modulation,
accounting for a variation of the wavepacket’s amplitude,
resulting in a nonlinear frequency shift [15, 16]. In general,
this is described by a nonlinear Schrödinger equation (NLSE)
[17], which can be obtained from the plasma-fluid dynamical
equations via a multiscale technique [15, 16]. Such a viewpoint
was adopted in [13] for ion-acoustic wavepackets in a dense
electron–ion quantum plasma, followed by a similar study
on electron-scale wavepackets [14], incorporating diffraction
effects from the so-called Bohm potential. Modulated
wavepackets may be unstable to small perturbations, due
to external noise (plasma turbulence). This modulational
instability mechanism is not only well known to dominate,
e.g., transmission of information along optical fibers, but is
also of importance in other fields of physics [18]. Although
the modulational mechanism is only tractable analytically
in a weak-amplitude regime, it has been postulated as an
intermediate stage toward a fully developed instability, which
may lead to the formation of envelope pulses, e.g. in nonlinear
materials [19], but also in plasmas [20]. An unstable solution
subject to modulational instability may exhibit exponential
growth or decay. Interestingly, it has recently been suggested
that this physical mechanism might underlie the generation of
rogue waves (freak waves) in the ocean [21].

In the quantum plasma framework, one can compare
the effects due to Fermi statistics and quantum diffraction
by means of a nondimensional quantity given by the ratio
between the Fermi energy and the plasmon energy of the charge
carriers [22]. Typically, for ultra-small semiconductor devices
the quantum diffraction represented by the Bohm potential
term becomes dominant. However, for highly degenerate
dense plasmas obtained in laser compression schemes or
astrophysical settings like white dwarfs and neutron stars one
can safely neglect the Bohm term.

Recently, a lot of attention has been paid to the physics
of electron–positron–ion quantum plasmas. In [23], the ion-
acoustic soliton formation in relativistic degenerate electron–
positron–ion (e–p–i) plasma was investigated, with higher
order nonlinear effects taken into account in [24]. A fully
relativistic equation of state was assumed in [25]. In [26],
the nonlinear dynamics of dusty electron–positron–ion plasma
was studied, assuming traveling wave solutions.

Modulational instability as an efficient mechanism for
energy localization has been associated with the occurrence
of so-called rogue waves (or freak waves) in the open sea
[27, 28]. Such ultra-high ghost waves are reported to occur
unexpectedly, propagate for short times and then disappears
without a trace [29, 30]. Rogue waves (or freak waves, or
monster waves, or rogons, or WANDTs, namely Waves that
appear from nowhere and disappear without a trace [31])
are now recognized as proper nonlinear structures. Research
interest has by now advanced beyond the standard ocean-
dynamical problem, tracing rogue waves in nonlinear optics
[32–34], in superfluidity [35], in hydrodynamics [36], in
atmospheric dynamics [37] and even in econophysics [38, 39].

In this study, we shall focus on rogue wave formation
by means of nonlinear amplitude modulation of ion-acoustic
wavepackets in an e–p–i plasma. We adopt a quantum
approach by incorporating the Fermi statistics of both electrons
and positrons in the description. Parameters entering the
model include the electron to positron temperature ratio and
the ionic Fermi to thermal pressure ratio. In section 2, an
analytical fluid model is introduced. In section 3, a multiscale
perturbation technique is outlined, modeling the evolution of
the electrostatic potential (amplitude). In section 4, the linear
regime, obtained to first order in the perturbation parameter ε,
is briefly discussed. The nonlinear evolution of a wavepacket’s
amplitude is described in section 5. The modulational stability
profile of the electrostatic potential is analyzed in section 6,
and is then studied in terms of relevant plasma parameters
in section 7. Known analytical envelope-soliton solutions of
the amplitude evolution equation are presented in section 8.
The relation to known scenarios for rogue wave formation is
discussed in section 9. Finally, our results are summarized in
the concluding section 10.

2. Quantum ion-fluid model

We consider a three-component plasma consisting of positive
ions, electrons and positrons. A one-dimensional geometry
is adopted, for simplicity. We are interested in studying the
evolution of electrostatic excitations at the ion scale, assuming
electrons and positrons constitute a homogeneous Fermi–
Dirac-distributed background. The ions are subject to the
Fermi pressure, a statistical effect associated with particles
with a significant overlap in position wavefunction. The ion-
fluid pressure is thus given by [2]

P = EFini0

(
ni

ni0

)3

(1)

where EFi is the ion Fermi energy, ni is the ion number density
and ni0 is the ion number density at equilibrium. The ion Fermi
energy is given by EFi = h̄2(3π2ni)

2
3 /2mi, where h̄ is the

scaled Planck’s constant andmi is the ion’s mass. It is evaluated
at the asymptotic value of density wherever it is encountered
throughout this work. The electron/positron Fermi energy is
given in similar fashion by EFe/p = h̄2(3π2ne/p)

2
3 /2me/p. The

electron/positron number density is expressed as [42]

ne/p = −
(

me/pkBTe/p

2
1
3 πh̄2

) 3
2

Li 3
2
(−e

eφ+µe0/p0
kBTe/p ), (2)

where me is the electron mass, kB is Boltzmann’s constant,
Te is the electron temperature, µe0 is the equilibrium electron
chemical potential, e the elementary charge and φ the scalar
potential. Quantities with a subscript ‘p’ refer to the equivalent
for positrons. Li 3

2
denotes the polylogarithm function, arising

from the integration of the Fermi–Dirac distribution. The
polylogarithm can be defined in a recursive manner [43]:

Lis+1(x) =
∫ x

0
dy

Lis(y)

y
. (3)
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The above model is a simpler version of the one discussed
in [42]. It applies to very dense environments where ions,
electrons and positrons are highly degenerate. Besides,
electrons and positrons are described by the equilibrium
Fermi–Dirac distribution, while ions are cold so that a zero-
temperature Fermi gas equation of state applies. In the case
of a nondegenerate plasma, this model would be formulated
in terms of a classical equation of state for the ion fluid
pressure, while electrons and positrons would be thermalized
to Maxwell–Boltzmann equilibria.

The fluid (continuity and momentum) equations for the
ions, coupled to Poisson’s equation, are thus expressed as

∂ni

∂t
+

∂(nivi)

∂x
= 0, (4)

∂vi

∂t
+ vi

∂vi

∂x
= −Zie

mi

∂φ

∂x
− ni0

nimi
EFi

∂

∂x

(
ni

ni0

)3

, (5)

∂2φ

∂x2
= e

ε0
(ne − np − niZi), (6)

where vi is the ion velocity field, ε0 is the vacuum permittivity
and Zie is the ionic charge. For ions, due to their larger mass,
quantum diffraction effects are fully negligible. Regarding
electrons and positrons, only quantum statistical effects were
taken into account, which is correct for highly degenerate
plasma [42].

At equilibrium, the total (algebraic value of the) electric
charge should vanish, so that ne0−np0−niZi = 0. Introducing
the parameter β = np0/Zini0, representing the ratio of positron
charge density to the ion charge density, one may cast Poisson’s
equation in the form

∂2φ

∂x2
= eni0Zi

ε0

(
ne0

ni0Zi

ne

ne0
− np0

ni0Zi

np

np0
− ni

ni0

)
(7)

= eni0Zi

ε0

(
(1 + β)

ne

ne0
− β

np

np0
− ni

ni0

)
. (8)

We proceed by scaling the number densities by their
respective equilibrium values, expanding the power series
expression of the polylogarithm functions (see above) and
rescaling time, ion-fluid speed, potential and length by
characteristic scales T0, V0, φ0 and L0 (= V0T0) respectively
(to be defined at a later stage). The model equations are thus
given in a dimensionless form by

∂n

∂t
+

∂(nv)

∂x
= 0, (9)

∂v

∂t
+ v

∂v

∂x
= −a

∂φ

∂x
− gn

∂n

∂x
, (10)

∂2φ

∂x2
≈ b(1 − n) + c1φ + c2φ

2 + c3φ
3. (11)

The subscript ‘i’ has been dropped as it is clear that density and
speed now relate to ions only. The (dimensionless) parameters
appearing in the latter system are defined by

a = eZiφ0T0

L0V0mi
= Zieφ0

miV
2

0

, (12)

g = 3EFi

miV
2

0

, (13)

b = eZini0L
2
0

ε0φ0
= L2

0

e2Z2
i ni0

ε0Zieφ0
, (14)

cj = b(1 + β)

j !Li 3
2
(−e

µe0
kBTe )

(
eφ0

kBTe

)j

Li 3
2 −j (−e

µe0
kBTe ),

− bβ

j !Li 3
2
(−e

µp0
kBTp )

(−eφ0

kBTp

)j

Li 3
2 −j (−e

µp0
kBTp ). (15)

The above expression for cj is obtained by a Taylor
expansion of the electron and positron densities about φ = 0.
As the argument of the polylogarithm is exponential in φ,
differentiation with respect to φ takes the form

d

dφ
Li 3

2
(−e

eφ+µ

kBT ) = e

kBT
ξ

d

dξ
Li 3

2
(−e

eφ+µ

kBT )|
ξ=−e

eφ+µ
kBT

,

d

dφ
= e

kBT
ξ

d

dξ
.

(16)

In conjunction with the recursive definition of the
polylogarithm (3), successive applications of this derivative
operator have the form(

d

dφ

)n

Li 3
2
(−e

eφ+µ

kBT ) =
(

e

kBT

)n

Li 3
2 −n(−e

eφ+µ

kBT ). (17)

As it stands, L0, T0 andV0 are completely arbitrary, as long
as they are typical physical scales. However, if we assume, as
in customary with classical plasmas, that miV

2
0 is a measure of

the (ion) thermal energy one will have g � 1, since the Fermi
energy is much larger than the thermal energy. Since we have
a degenerate plasma, the scaling must correspond to the Fermi
energy.

The equations to be scaled are the ion equations. Taking
into account the Fermi statistics, it is appropriate to define
L0, T0 and V0 with reference to the typical ion scales:

V0 =
(

2EFe

mi

)1/2

and

L0 =
(

2ε0EFe

3ni0Z
2
i e

2

)1/2

.

Note that V0 is the formal equivalent of the ion-acoustic
‘sound’ speed in the classical description [16, 40, 41].

The appropriate quantum scales are given:

g = 3EFi

2EFe
= 3

2

(
mi

me

) (
ni0

ne0

) 2
3

= 3me

2mi

1

(Zi(1 + β))
2
3

,

a = Zieφ0

2EFe
,

b = 2EFe

3Zieφ0
= 1

3a
,

cj = b(1 + β)

j !Li 3
2
(−e

µe0
kBTe )

(
2EFe

3bZikBTe

)j

Li 3
2 −j (−e

µe0
kBTe )

− bβ

j !Li 3
2
(−e

µp0
kBTp )

( −2EFe

3bZikBTp

)j

Li 3
2 −j (−e

µp0
kBTp ). (18)
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The contribution of the electrons to cj through the
polylogarithm terms can be expressed in terms of the ratios
of their equilibrium number densities and their temperatures.
Provided the temperature is low (i.e. Te < TFe), the chemical
potential of the electrons at equilibrium can be approximated
by the Sommerfeld expansion:

µe0

kBTe
≈ EFe0

kBTe
− π2

12

kBTe

EFe0
− π4

36

(
kBTe

EFe0

)3

. (19)

We note that, in fact, although the Fermi–Dirac
distribution is valid for arbitrary temperatures, the Sommerfeld
expansion is not. The Sommerfeld expansion of the positron
chemical potential is

µp0

kBTp
≈ EFp0

kBTp
− π2

12

kBTp

EFp0
− π4

36

(
kBTp

EFp0

)3

. (20)

The ratio, kBTp/EFp0 must be much less than unity for
this truncation of the Sommerfeld expansion to be a good
approximation. However, EFp0 = (β/1 + β)

2
3 EFe0 ∼ β

2
3 EFe0

(for β � 1), so for β � (kBTe/EFe0)
3
2 the Sommerfeld

expansion is divergent unless the positron temperature is
reduced accordingly. The physical content of this is that if
the density is so low that kBTp � EFp0, then the positrons
behave as a classical gas.

It can be seen that charge screening is introduced by
c1, which is positive. Nonlinearity is taken into account by
c2 and c3, all of which depend on the electron and positron
temperatures. We spell out, for later reference, the expression
for c1,

c1 = b(1 + β)

Li 3
2
(−e

µe0
kBTe )

(
2EFe

3bZikBTe

)
Li 1

2
(−e

µe0
kBTe )

+
bβ

Li 3
2
(−e

µp0
kBTp )

( −2EFe

3bZikBTp

)
Li 1

2
(−e

µp0
kBTp ), (21)

which is associated with charge screening effects and
determines the sound speed for electrostatic waves.

3. Multiple scales perturbation

We assume each of n, v and φ takes the form of a modulated
envelope—i.e. the composition of a fast carrier wave with a
slow variation in amplitude. We then declare that the carrier
depends on (x, t), but the wave envelope depends on an infinite
set of variables, {X1, X2, . . . , T1, T2, . . .}, where Tr = εr t and
Xr = εrx (for r = 1, 2, 3, . . .) and ε � 1 is a free (real,
small) parameter. Furthermore, the variables are expanded
around their equilibrium values:

n ≈ 1 + εn1 + ε2n2 + · · · ,
v ≈ εv1 + ε2v2 + · · · ,
φ ≈ εφ1 + ε2φ2 + · · · .

(22)

Each of these uj (say, any of nj , vj , φj ) is split into a sum
of Fourier components:

uj =
j∑

r=−j

u
(r)
j eir(kx−ωt). (23)

The number density, speed and potential are real-valued
quantities, so u

(−r)
j = ū

(r)
j (the bar here denoting the complex

conjugate). The stretched variables are treated as independent
variables. After feeding the above information into the model
equations, one obtains a set of vanishing polynomials in ε.
Since ε is a free parameter, the coefficients of ε must vanish.
Solving at successive orders provides a solution for the state
variables, in terms of their harmonic amplitudes. This is
essentially the long established method of multiple scales of
Taniuti and Yajima [15], applied to the case of electrostatic
plasma waves [16].

4. Linear analysis

The equations in the first order of ε can be expressed in the
form of a singular matrix equation, the operator of the equation
possessing a nontrivial kernel. The vanishing determinant of
this operator forms the dispersion relation

ω2 = k2ab

k2 + c1
+ gk2, (24)

The three linear equations in φ1, n1 and v1 are under-
determined, so letting the electric potential (amplitude) φ

(1)
1 =

ψ be a free variable, we obtain:

φ1 = ψei(kx−ωt) + ψ̄e−i(kx−ωt), (25)

n1 = c1 + k2

b
φ, (26)

v1 = ω

k

c1 + k2

b
φ. (27)

A few comments are in order, regarding the dispersion relation
(24). First of all, we note that, taking into account (18), (24)
takes the form

ω2 = k2

3(k2 + c1)
+ gk2. (28)

Recall that the quantity c1, given by (18) above as a function
of the plasma configuration (density and temperature ratios),
is essentially related with the charge screening mechanism
in this model, and in fact affects the phase speed. We note
that the phase speed vph = ω/k � √

ab/c1 + g for large
wavelength values (small wavenumber k). Therefore, the
phase speed is modified by both the electron and positron
statistics (via c1) and the Fermi pressure (via g). On the
opposite limit of ultrashort wavelengths (large k), vph tends
to the constant g (here recovering the quantum equivalent
of ion thermal waves) or to zero (namely, ω → (ab)1/2,
or ω/k → 0), if the Fermi pressure were to be neglected
(setting g = 0). Let us point out that, although we kept
the dispersion relation (24) above in its general form, the
coefficients appearing in it are prescribed as ab = 1/3 for
our scaling adopted in the previous section. Therefore, the
dependence on the plasma configuration (effect of β and of
the positron-to-electron temperature ratio, namely) will appear
only through c1 (recall the definitions (18) above) and also
via g, whose contribution is of order no greater than 10−3.

4
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Figure 1. Illustrative plots of the frequency, the phase speed, vph = ω/k, and the group velocity, vg = dω/dk, versus the wavenumber k, for
different values of the positron–ion charge density ratio, β. The parameter values in this plot have been arbitrarily chosen so that ab = 1/3,
ni0 = 1033 and Te = Tp = 107 K. The plots to the right are made with fixed scales (corresponding to a reference density ne = 1033 m−3;
see discussion in section 7).

Therefore, the quantitative effect of β (and of the positron-
to-electron temperature ratio) on the dispersion characteristics
will admittedly be rather weak, though measurable, as depicted
in figures 1 and 2.

Figure 1 depicts the frequency, phase speed (ω/k) and
group velocity (dω/dk). For each plot, the curves for different
values of the positron–ion charge density ratio converge rapidly
to the same asymptote. The expression for the group velocity
is given in the next section.

Figure 2 provides the same functions, but for different
positron temperatures. The effect of the positron temperature
on the wave frequency is much weaker than that of the charge
density ratio, β.

5. Nonlinear amplitude dynamics

The equations of second order yield expressions for the zeroth,
first and second harmonics. We will summarize the obtained
results below, omitting unnecessary details.

The equations for the first-harmonic components force a
condition on the speed of the envelope:

∂ψ

∂T1
+ vg

∂ψ

∂X1
= 0 (29)

where we have defined the group velocity vg = dω/dk =
(abc1/(c1 + k2)2 + g)k/ω (see figure 1). In account of the
latter constraint, we assume that the envelope moves at the
group velocity, namely ψ = ψ(X1 − vgT1, X2, T2, . . .)).

As with the first-order case, the indeterminacy in the
linear system requires the introduction of another arbitrary
function, ϕ. This, however, can be neglected for physical
reasons, backed up by its self-exclusion in the final evolution
equation. The first-harmonic component of φ can be written:
ε(ψ + εϕ)ei(kx−ωt), so ϕ is an infinitesimal correction to ψ and
can thus be ignored. Nevertheless, it will be left in for the sake
of completeness:

φ
(1)
2 = ϕ, (30)

n
(1)
2 = c1 + k2

b
ϕ − 2ik

b

∂ψ

∂X1
, (31)
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Figure 2. Illustrative plots of the frequency, the phase speed and the group velocity, versus the wavenumber for different positron
temperatures with fixed electron temperature. The parameter values in this plot have been arbitrarily chosen so that ab = 1/3, ni0 = 1033,
Te = 107 K and β = 1. The plots to the right are made with fixed scales (corresponding to a reference density ne = 1033 m−3; see discussion
in section 7).

v
(1)
2 = ω

k

c1 + k2

b
ϕ + i

c1 + k2

b

(
ω

k2
− vg

k
− 2ω

c1 + k2

)
∂ψ

∂X1
.

(32)

The second harmonic components are found to be
proportional toψ2, while the zeroth harmonics are proportional
to |ψ |2, as expected [16]. Detailed expressions for the
coefficients are provided in the appendix. It may be noted
that the zeroth harmonics are not entirely obtained from the
second-order equations, so one needs to resort to the third-
order equations for these to be determined.

The third-order equations also yield an evolution equation
for ψ as a consequence of the singular operator in the first-
harmonic equations. In other words, a series of secular terms
arises in the right-hand side, if one considers the first-harmonic
contribution, entering in resonance with the null space of the
first-order operator defined in the first order. This contribution
must be forced to vanish, otherwise the solution will diverge
in time. The condition for annihilation of secular terms leads
precisely to a partial-differential equation for the electrostatic

potential envelope (amplitude), ψ , which takes the form of a
NLSE:

i
∂ψ

∂τ
+ P

∂2ψ

∂X2
1

+ Q|ψ |2ψ = 0. (33)

It is worth noting that the dispersion coefficientP(k; g, c1)

is related to the dispersion relation, as P = 1
2

d2ω
dk2 : this

recovers the expected result from nonlinear optics [18]. The
nonlinearity coefficient Q, on the other hand, is a function of
the wavenumber k and also incorporates the quantum effect
via its dependence on {g, c1, c2, c3}. The lengthy expressions
for these coefficient is reported in the appendix.

It may be interesting to trace the analytical trend for small
k (large wavelength) by deriving approximate expressions for
k � 1. A straightforward McLaurin expansion leads us to the
analytical relation

P ≈ − 3ab

2c2
1

√
ab
c1

+ g
k (34)
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(where we have used the positivity of c1, imposed as a
linear stability requirement—see equation (24)—to simplify
the latter expression). We see that P acquires negative values
near k � 0. On the other hand, Q behaves as ∼ k−1:

Q ≈
[ c2

1
2b

(3ab + 4c1g) − abc2

3ab

+
1

3a
(2ac2 − c2

1

b2
(3ab + 4gc1))

]

×
√

abc1 + gc2
1

b

[
ab2c2

c2
1(ab + gc1)

− 1

− c1

2(ab + gc1)

(
ab

c1
+ 2g

) ]
1

k
. (35)

Details are given in the appendix.
It is noted that P < 0 < Q near k � 0, thus ensuring

stability of the envelope (for any parameter values), as we shall
see in the next section.

6. Modulational stability analysis

Let us adopt a reference solution, ψ0 = a0eiQa2
0τ and let us

disturb this solution with two small, real functions, a1 and b1:

ψ0 �→ (a0 + a1)e
i(Qa2

0 +b1) (36)

with a1 � a0, b1 � Qa2
0 and O(a1

b1
) ∼ 1. Since the

disturbances are real, the resulting equation can be split easily
into a real component and an imaginary component, which
constitute a pair of simultaneous equations for a1 and b1:

−b1τ + Pa1xx + 2Qa2
0a1 = 0,

a1τ + Pb1xx = 0.
(37)

If the disturbance is periodic, then a1 = Aei(κx−�τ), b1 =
Bei(κx−�τ) with A and B complex. κ and � are respectively
the perturbation wavenumber and frequency. This allows the
above equations to take a convenient matrix form:(

2Qa2
0 − Pκ2 i�
−i� −Pκ2

) (
A

B

)
=

(
0
0

)
. (38)

The determinant of this matrix must vanish, which yields a
dispersion relation for the perturbation:

�2 = (
Pκ2

)2
(

1 − 2Qa2
0

Pκ2

)
. (39)

When PQ > 0, the frequency becomes imaginary and so
the perturbed function can grow or decay exponentially. The
threshold for instability is given by

κcrit = a0

√
2Q

P
, (40)

values of κ below this give rise to instability. The growth rate

attains its maximum at κmax = a0

√
Q

P
.

The mechanism discussed in this section is tantamount to
a Benjamin–Feir-type instability in hydrodynamics [16, 18].

7. Parametric analysis

We have seen that the relevant plasma configurational
parameters enter the dynamics via the analytical relations
obtained above, and in particularly through the definition of
coefficients P and Q; apart from the carrier wavenumber
k and the associated frequency ω(k), these are the positron
concentration (via the ratio β = np0/(Zini0)), the electron and
positron temperatures, Te and Tp (entering (15)) and the Fermi
energy (via g). We now plan to investigate the effect of these
parameters on the modulational stability profile, as well as on
the dynamics of localized excitations.

We proceed by selecting appropriate scales (see section 2
above). For analytical convenience, we adopt the choice
a = b = 1/

√
3 (that is, for given arbitrary parameter values, in

account of (18) above (we shall assume Zi = 1 throughout the
rest of this section). Furthermore, we shall set (the perturbation
amplitude in (38)–(40)) a0 = 1 for numerical applications in
the following. Electron and positron temperatures are taken as
equal unless otherwise stated.

The plots provided herewith are based on a plasma with
ionic particle density ni0 ∼ 1033 m−3 and a temperature,
Te ∼ 107 K, typical, say, of a red dwarf star (corresponding to
a density of 103 g cm−3 [44]).

An important note is in row, at this stage, regarding
the numerical investigation to follow. Although the scaling
introduced above is convenient and physically transparent, it
is difficult to compare plots for different parameter values since
some of these parameters influence the scales. For example,
L0 depends both on ni0 and ne0 (through eφ0 = EFe0). A
change in β should therefore affect either of them, via the
relation ne0 = (1+β)ni0, and this would affect the other scales
in turn. With this in mind, some of the plots provided in the
following have been accompanied by plots obtained for the
same parameters, but scaled by fixed values (considering an
arbitrary fixed ‘reference plasma density’). In the specific case
of figures 1–10, the scales take the same form except that we
have considered in the place of EFe the Fermi energy of an
electron cloud with ne = 1033 m−3, so that g is no longer
dependent on β (g = 3me/2mi). We resolve to keep ni0 fixed
so that ne0 changes with β. As it turned out, the qualitative
trends of the curves presented in our plots do not depend on the
scaling (compare the left to right panels in all figures, to see
this), although the quantitative values may differ. Therefore,
we have chosen to present both version of the graphs, for clarity
and comparison.

Figure 3 shows how the stability of the solutions changes
for different positron densities. We recall that P is the
dispersion coefficient, while Q is related to the self-interaction
of the carrier wave. It can be seen that, for each value of the
positron-to-ion charge density ratio, β (=np0/(Zini0)), there are
two points in k where PQ = 0. One of these roots corresponds
to Q = 0 and the other occurs when P = 0. An increase
in positron density, relative to ion density (i.e. increasing β),
is tantamount to higher number of mobile electrons (namely,
ne0 = np0 + Zini,0). Instability takes place over a larger range
of k, but also sets in at a higher minimum value. In other words,
the instability window (in carrier wavenumbers) is extended by
introducing more positrons, but the threshold is also increased.
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Figure 3. The effect of positron population (β = np0

ni0Zi
) on P , Q and on their product PQ is shown above (with Te = Tp), in (a), (b) and (c),

respectively. Recall that the region PQ > 0 admits unstable harmonic (and stable bright-type envelope soliton) solutions of the NLSE. The
plots to the right were made with a fixed scale (see discussion in section 7).

Figure 4 shows a similar set of plots, this time for different
values of the positron-to-electron temperature ratio (and fixed
density ratio). Decreasing this ratio with electron temperature
fixed in this case increases both the instability threshold and
its range in k. (The values on the plot are indicative, as one
would expect positrons and electrons to be characterized by
comparable temperature.)

An unstable wavepacket here exhibits exponential growth,
characterized by a growth rate given by (39). This growth rate
is plotted for a range of values of β (see figure 5) and positron
temperatures (see figure 6).

The critical perturbation wavenumber κcrit , given by (40),
is plotted for different values of k over a range of positron–ion
charge density ratios, β, in figure 7. Note that the solution
is stable (κcrit is imaginary) for β above a certain value when
k = 2.3, which is verified by figure 8.

Let us see how positron concentration and temperature
affect the range of values for k which allow for modulational
instability to occur. The instability region is determined by

the sign of PQ (while its root defines the relevant instability
threshold): the product is initially negative, becoming positive
as Q becomes negative and finally becoming negative as P

becomes positive again. The instability carrier wavenumber k

threshold, say kcrit , is therefore given by the root of Q (figure 9).
Let us now look at the effect of temperature and positron

population on the charge shielding radius (‘Debye length’),
here associated with c1, defined above. Figure 10 shows the
variation of the screening radius with the positron–electron
temperature ratio for different positron concentrations. As the
temperature ratio increases, with the positrons becoming more
energetic in comparison to the electrons, the shielding radius
increases. An increase in the number of positrons has the
opposite effect.

8. Envelope solitons

Various types of analytical solutions for the NLSE (33) have
been obtained in the past. Focusing on space-localized

8



Plasma Phys. Control. Fusion 56 (2014) 035007 M McKerr et al

Tp

Te
0.

Tp

Te
1

Tp

Te
1.

0.2 0.4 0.6 0.8 1.0 k

0.04

0.03

0.02

0.01

P

Tp

Te
0.

Tp

Te
1

Tp

Te
1.

0.2 0.4 0.6 0.8 1.0 k

0.07

0.06

0.05

0.04

0.03

0.02

0.01

P

(a)

Tp

Te
0.

Tp

Te
1

Tp

Te
1.

0.2 0.4 0.6 0.8 1.0 k

200

400

600

800

1000

1200

Q

Tp

Te
0.

Tp

Te
1

Tp

Te
1.

0.2 0.4 0.6 0.8 1.0 k

100

200

300

400

Q

(b)

Tp

Te
1.

Tp

Te
1

Tp

Te
0.

0.2 0.4 0.6 0.8 1.0 k

6.5

6.0

5.5

5.0

PQ
Tp

Te
1.

Tp

Te
1

Tp

Te
0.

0.2 0.4 0.6 0.8 1.0 k

4.0

3.5

3.0

2.5

PQ

(c)

Figure 4. The effect of electron–positron temperature ratio on P , Q, PQ is shown above for β = 1. The curve in red shows Q with
Tp/Te = 0.5; the blue, dashed curve is for Tp/Te = 1; and the black, dotted curve is for Tp/Te = 1.5. The plots to the right were made with
a fixed scale (see discussion in section 7).
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Figure 5. The modulational instability growth rate is depicted as a function of perturbation wavenumber, κ , for different values of β.
Positron temperature is here equal to the electron temperature, κ is in units of κmax for β = 0. k = 3.5 for all three curves. The plot to the
right was made with a fixed scale (see discussion in section 7).

solutions of the envelope-soliton type, of particular importance
here, let us briefly recall bright-type envelope (pulse) solitons
and gray- or dark-type envelope solitons (holes) can exist in
this system [18, 45–47]. In the following, we shall summarize
relevant information on these solutions, before we proceed
to an investigation of their characteristics in our physical
problem.

The solutions of interest are found by setting ψ = ρei�,
and then obtaining expressions for the nonlinear phase shift

� and the envelope form ρ. Therefore, one distinguishes two
components: an internal oscillation and an envelope formed
by the variation in amplitude. In the remaining part of this
Section, we omit analytical details, focusing on the qualitative
aspects of the solutions. Details on the algebraic derivation of
the fundamental envelope-soliton solutions can be found, e.g.,
in [16, 17, 47].

The bright soliton form represents an envelope pulse
modulating an internal oscillation (see figure 11). Bright-type
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Figure 6. The modulational instability growth rate is depicted as a function of perturbation wavenumber, κ , for different positron
temperatures. κ is in units of κmax for Tp = Te. k = 3.5 for all three curves. The plot to the right was made with a fixed scale (see discussion
in section 7).
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Figure 7. An increase in positron population affects the stability threshold (40) as shown above. The plot to the right was made with a fixed
scale (see discussion in section 7).

envelope solitons exist for positive values of the PQ product,
and are thus expected to occur in the large wavelength (small
wavenumber) region; see figures discussed in the preceding
section.

A different class of solitons, classified as either of gray or
dark type, correspond to a propagating void (a hole) amidst a
constant region. The gray soliton represents a local reduction
in intensity in the medium through which it travels. The dark
soliton is a traveling region of zero intensity; see figure 12.
Dark-type envelope solitons exist for negative values of thePQ

product, and are thus expected to occur for shorter wavelengths
(larger wavenumbers) (again, the reader is referred to the plots
presented in the preceding section).

9. Rogue waves

Rogue waves (or freak waves) are extreme events which occur
in abundance in the ocean surface [21, 27, 48]. These are
structures which may be localized (restricted) in both space
and time domains. The term is earned by their behavior: a
sudden appearance from an oscillating ambient background,
accompanied by a narrowing of width and growth of
amplitude far exceeding the ‘average’ background turbulence,
followed by an equally rapid decay to the background
medium [48, 49].

It was earlier suggested [50] that a class of breather-type
solutions of the NLSE may be good candidates for modeling
of rogue waves, as they capture the essential physics and
the qualitative features of freak waves. In plasma physics,

this is still a practically unexplored area, beyond a few first
phenomenological investigations (see e.g. [51, 52]). In the
following, we shall summarize the current state of the art,
regarding analytical rogue-wave-like solutions of the NLSE
(33), briefly discussing their relevance in our current context.

The Peregrine soliton. The Peregrine ‘soliton’ [49, 50]
appears to be a good qualitative candidate for a freak-wave-
like behavior based on a NLS description. A pioneering
recent study has focused on the relevance of this solution
in nonlinear optics [33], while its validity has been tested
against controllable experimental observations in water basins
[36]. Most interestingly, a first experimental observation of
Peregrine solitons in plasmas has been reported [53], yet in
restricted conditions which are far from being thoroughly
understood.

The Peregrine solution reads:

ψ = eiQt

[
1 − 4(1 + 2iQt)

1 + 2Q

P
x2 + 4Q2t2

]
. (41)

The corresponding waveform decays to a plane wave
asymptotic background for either large x or t , but exhibits
nontrivial behavior over a small region of (x, t); see figure 13.
Obviously, for parametric investigation purposes, all physical
information is contained within the coefficients P and Q

in (41) (and (33)) which are functions of relevant plasma
parameters.
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Figure 8. For large k (k = 2.3 in this plot), solutions are unstable for small β.
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Figure 9. Plot of kcrit versus β for different values of the ratio Te/Tp. (a) gives the upper bound on k, whereas (b) gives the lower bound on
k. Between these bounds are the values of k which allow instability. The plots to the right were made with a fixed scale (see discussion in
section 7).
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Figure 10. Debye radius (∼ 1/
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made with a fixed scale (see discussion in section 7).
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Figure 11. The bright envelope soliton amplitude varies roughly as
sech(x − vt).
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Figure 12. Heuristic plot of the gray-type envelope soliton, whose
amplitude varies roughly as [1 − d2sech2(x − vt)]1/2. Setting d = 1
results in a dark-type envelope soliton.
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Figure 13. Plot of Peregrine’s solution for different values of t .
From (41), it can be seen that |ψ | is an even function of t . The lump
rises from a small, oscillating background for t < 0, reaches a peak
amplitude and disappears again.

Akhmediev breather. Akhmediev’s breather solution [50] is
given by

ψ = eiQt

×
cosh(Q sin(2ϕ)t − 2iϕ) − cos(ϕ) cos(2 sin(ϕ)

√
Q

2P
x)

cosh(Q sin(2ϕ)t) − cos(ϕ) cos(2 sin(ϕ)

√
Q

2P
x)

.

(42)
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Figure 14. As suggested by (42), the Akhmediev breather is
periodic in space, but not in time.

It is straightforward to see that this waveform is periodic in
space only, while the Peregrine solution is recovered if one
takes the limit of infinite spatial period.

Kuznetsov–Ma breather. The Kuznetsov–Ma breather,
given by

ψ = eiQt

×
cos(Q sinh(2ϕ)t − 2iϕ) − cosh(ϕ) cosh(2 sinh(ϕ)

√
Q

2P
x)

cos(Q sinh(2ϕ)t) − cosh(ϕ) cosh(2 sinh(ϕ)

√
Q

2P
x)

,

(43)

is periodic in time only. Interestingly, the Peregrine solution
is recovered if one takes the limit of infinite temporal
period. Ma’s soliton can be obtained from Akhmediev’s (and
vice versa) upon a formal phase shift, ϕ �→ ±iϕ.

The reader will notice in that the asymptotic values of
Re(ψ) oscillate over the range of t used. This is because both
solutions decay to an exponential eiQt in the limit of large x.
The Kuznetsov–Ma soliton was derived with this as a boundary
condition. It also follows directly from Peregrine’s solution
(41), which looks like its asymptotic function with a localized
disturbance around (0, 0). The quotient of a linear function
of t and a quadratic function of both x and t must approach
zero for large values of these variables. The graphs presented
here in figures 13–15 were plotted with P = Q = 1 (heuristic
ad hoc values).
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Figure 15. Equation (43) shows that Ma’s breather is periodic in
time, but not in space. (a) shows the variation of |ψ | at the point
x = 0 for t ∈ [−10, 10]. (b) shows how the breather is localized in
space.

9.1. Parametric analysis

Plots of the above rogue waveforms against x and t are given in
figures 16–18. In the first of these, the three types of analytical
expressions presented above are depicted, adopting (ad hoc)
values for P = Q = ϕ = 1, for illustrative purposes. The
plots clarify the behavior of each type of excitation. These
excitations are dependent on Q for their periodicity, so it is
possible to ‘tune’ the parameters of the plasma for to obtain a
particular character of rogue wave.

In figure 17, Peregrine’s soliton with β = 0 is compared
with that with β = 0.1. The duration of the excitation is seen
to increase in both space and time. In figure 18, the solution
with Tp = 0.5Te is compared with that which has Tp = 1.5Te.
The duration is greater with lower positron temperature.

A similar set of plots are presented (see figure 19) to show
the effect of β and Tp/Te on the waveform. As might be
expected, Akhmediev’s solution shares some of the traits of
Peregrine’s solution, but also displays new behavior due to its
periodicity. An increase in β results in a wave that is less
localized, so its frequency decreases. On the other hand, an
increase in Tp/Te has the opposite effect to that of increasing
β. Similar qualitative conclusions can be drawn in the case of
Ma’s soliton; see figure 20.

Arguably, any qualitative conclusions drawn on the
dependence of the rogue-like waveforms presented herein on
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Figure 16. The three waveforms, as presented in the text, are here
plotted against x and t : (a) Peregrine’s ‘Soliton’, (b) Akhmediev’s
breather and (c) Ma’s breather. The spatial and temporal behavior of
each is clearly displayed. P = Q = ϕ = 1.

physical parameters (β, temperature ratio Te/Tp) can only be
indicative. In particular, careful observation of the graphs of
P and Q must be made before drawing conclusions about
the physical effects of changing the relevant parameters, from
figures 17–20. We see from the formulas (41)–(43) that
the frequency of Akhmediev’s (respectively, Ma’s) breather
depends on

√
Q/P (respectively, Q), while the rate of decay
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Figure 17. Peregrine’s solution is depicted for two values of β. The
first figure has k = 2.5, Tp/Te = 1 and β = 0, whereas β = 0.1 in
the second, which is of greater duration and spatial extension (i.e.
less localized).

of Peregrine’s solution depends on both of these. Figures 3
and 4 show how the graph of Q is enlarged with β and with
Te/Tp, whereas P exhibits the opposite behavior. However,
the rogue waves exist only in the regions where PQ > 0,
so the position of the roots of P and Q are also important
factors here. These same figures show how the roots are
also shifted upwards. This combination of enlargement and
translation might lead to an increase in the absolute value of
Q (e.g. figure 3(b), k = 0.55, β = 0, 0.1). It might also
decrease it (e.g. figure 3(b), k = 0.65, β = 0, 0.1) or leave
it invariant (corresponding to the intersection of two graphs);
see figure 21. In essence, whereas for one value of the carrier
wavenumber k, the frequency of Ma’s breather might increase
with β, for another the effect might be the opposite. Therefore,
the value of k chosen as a reference value in figures 17–20 also
contributes to the qualitative profile of the waves.

10. Conclusions

We have investigated the nonlinear propagation of modulated
electrostatic wavepackets propagating in an electron–positron–
ion plasma. Electrons and positrons were assumed to follow
a Fermi–Dirac distribution, while the ions are subject to a
Fermi pressure. A fluid model was proposed and analyzed.
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Figure 18. The duration in both space and time of Peregrine’s
solution is observed for two values of Tp/Te. The first figure has
k = 3.5, Tp/Te = 0.5 and β = 1, whereas Tp/Te = 1.5 in the
second, which leads to a shorter duration.

Adopting a perturbative multiscale method, the evolution of
the wave envelope was shown to be described by a nonlinear
Schrödinger equation. Criteria for modulational instability
were obtained, revealing a Benjamin–Feir type instability
mechanism, and were formulated here in terms of the intrinsic
plasma parameters.

The behavior of the wavepackets, as described by the
NLSE (33), is determined by the values of the coefficients of
the dispersive and the nonlinear terms, P and Q. The curves
of P and Q both cross the k-axis. Naturally, there are very
small intervals in k where either P or Q vanishes and wherein
the evolution equation becomes respectively purely dispersive
or nonlinear. If these regions are ignored (resorting to higher
nonlinear or/and dispersive effects would be necessary in those
small regions), then we have two classes of solution: the dark or
gray solutions for PQ < 0, which are modulationally stable,
and the bright solutions for PQ > 0, which can be unstable.
Multiple-soliton interactions are possible in both cases.

The bright solutions comprise not only the familiar
‘sech’ bell-shaped structures, but also periodic ‘breather’
type solutions, which represent highly localized oscillatory
structures, and are thus good candidates for an analytical
description of rogue waves. These include The Kuznetsov–Ma
and Akhmediev’s breather, and also, interestingly, Peregrine’s
‘soliton’. Rogue waves in dense plasmas are therefore a priori
described by this model.
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Figure 19. Plots of Akhmediev’s breather for different values of β and Te/Tp: (a), (b) k = 2.5, Tp/Te = 1, β = 0, 0.1; (c), (d) k = 3.5,
β = 1, Tp/Te = 0.5, 1.5.

It may be added, for the sake of rigor, that the problem
investigated (quantum ion-acoustic waves) is admittedly
reminiscent of the propagation of (classical) ion-acoustic
wavepackets (widely studied, both experimentally [54]
and theoretically [16, 20, 40, 41, 55]) but nonetheless not
physically amenable to that (and is clearly distinct in scope).
While ion-acoustic waves are sustained by the electron thermal
pressure, the key element here is the Fermi pressure of electrons
and positrons, which is related to their density (assumed
high, in dense plasmas). Certainly, the algebra (see the
dimensionless system (9)–(11) above) is formally analogous to
the classical one; importantly, however, all relevant coefficients
depend on the physical properties of the quantum problem. In
this respect, any comparison to the classical case would be of
no real value beyond a formal, mathematically abstract level.

Our results are of relevance in ultradense situations where
quantum effects are significant. In particular, we expect our
findings to be important in the vicinity of compact stellar
objects as well as in dense electron–positron–ion plasmas
resulting from ultra-intense laser pulses [56].
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Appendix. Perturbative scheme: analytical
expressions

The full solutions obtained up to second order in ε are given
by the following expressions.

A.1. Analytical multi-harmonic solution(s) for the state
variables

Electrostatic potential:

φ ≈ εψei(kx−ωt) + ε2

(
C0

23

2
|ψ |2 + C2

23
ψ2e2i(kx−ωt)

)
+ c.c.

Ion density:

n ≈ 1

2
+ ε

c1 + k2

b
ψei(kx−ωt)

+ε2

(
C0

21

2
|ψ |2 + C1

21

∂ψ

∂X1
ei(kx−ωt) + C2

21
ψ2e2i(kx−ωt)

)
+ c.c.

Ion-fluid speed:

v ≈ ε
ω

k

c1 + k2

b
ψei(kx−ωt)

+ ε2

(
C0

22

2
|ψ |2 + C1

22

∂ψ

∂X1
+ C2

22
ψ2e2i(kx−ωt)

)
+ c.c.

(A.1)

Expressions for various coefficients appearing in the
harmonic amplitudes:

C0
21

=
c1

(
c1+k2

b

)2 (
2vg

ω
k

+ g + ω2

k2

)
− 2ac2

c1v2
g − ab − gc1

, (A.2)
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Figure 20. Plots of Ma’s breather for different values of β and
Te/Tp: (a), (b) k = 2.5, Te/Tp = 1, β = 0, 0.1; (c), (d) k = 3.5,
β = 1, Tp/Te = 0.5,1.5.
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Figure 21. Depending on k, enlargement of the graph of Q, coupled
with the translation of its root, can either increase, decrease or leave
invariant Q(k).

C0
22

= vgC0
21

− 2

(
c1 + k2

b

)2
ω

k
, (A.3)

C0
23

= b

c1
C0

21
− 2c2

c1
, (A.4)

C1
21

= −2ik

b
, (A.5)

C1
22

= i
c1 + k2

b

(
ω

k2
− vg

k
− 2ω

c1 + k2

)
, (A.6)

C2
21

= c1 + 4k2

b
C2

23
+

c2

b
, (A.7)

C2
22

= ω

k
C2

21
−

(
c1 + k2

b

)2
ω

k
, (A.8)

C2
23

=
(c1+k2)2

2b
(3ω2 + gk2) − c2(ω

2 − gk2)

3k2(ω2 − gk2)
. (A.9)

A.2. Coefficients in the NLSE (33)

P = vg

2k
− v2

g

2ω
− 2k

c1 + k2

(
vg − g

k

ω

)
, (A.10)

Q = (ω2 − gk2)(2c2(C0
23

+ C2
23

) + 3c3)

2ω(c1 + k2)

− k(C0
22

+ C2
22

) − (ω2 + gk2)(C0
21

+ C2
21

)

2ω
. (A.11)

A.3. Long-wave approximation

Below are given the expressions for the important functions
for the domain, k � 1.

ω2

k2
= ab

c1 + k2
+ g

≈ ab

c1
+ g − ab

c2
1

k2 = η2
1 − ab

c2
1

k2. (A.12)

Defining η2 = ab

2c2
1η1

,

ω ≈ η1k − η2k
3, (A.13)
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vg = dω

dk
≈ η1 − 3η2k

2, (A.14)

C0
21

≈ c1

3ab

(
2ac2 − c2

1

b2

(
3ab

c1
+ 4g

))
1

k2
,

≈ q1

k2
, (A.15)

C0
22

≈ vgC0
21

≈ η1
q1

k2
, (A.16)

C0
23

≈ b

c1
C0

21
≈ b

c1

q1

k2
, (A.17)

C2
23

≈
c2

1
2b

(3ab + 4c1g) − abc2

3ab

1

k2

≈ m3

k2
, (A.18)

C2
21

≈ c1

b
C2

23
≈ c1m3

bk2
, (A.19)

C2
22

≈ η1c1m3

bk2
. (A.20)

Using these expressions, we obtain

P ≈ − 3ab

2c2
1η1

k, (A.21)

Q ≈
(

m3 +
b

c1
q1

)
γ

k
, (A.22)

γ = abc2

c2
1η1

− η1c1

b
−

(
ab

c1
+ 2g

)
c1

2η1b
. (A.23)
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