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A series of numerical simulations based on a recurrence-free Vlasov kinetic algorithm presented

earlier [Abbasi et al., Phys. Rev. E 84, 036702 (2011)] are reported. Electron-ion plasmas

and three-component (electron-ion-dust) dusty, or complex, plasmas are considered, via

independent simulations. Considering all plasma components modeled through a kinetic approach,

the nonlinear behavior of ionic scale acoustic excitations is investigated. The focus is on

Bernstein–Greene–Kruskal (BGK) modes generated during the simulations. In particular, we aim

at investigating the parametric dependence of the characteristics of BGK structures, namely of

their time periodicity ðstrapÞ and their amplitude, on the electron-to-ion temperature ratio and on

the dust concentration. In electron-ion plasma, an exponential relation between strap and the

amplitude of BGK modes and the electron-to-ion temperature ratio is observed. It is argued that

both characteristics, namely, the periodicity strap and amplitude, are also related to the size of the

phase-space vortex which is associated with BGK mode creation. In dusty plasmas, BGK modes

characteristics appear to depend on the dust particle density linearly. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4869730]

I. INTRODUCTION

Bernstein–Greene–Kruskal (BGK) modes are exact non-

linear stationary-profile solutions of the Vlasov–Poisson sys-

tem of equations for collisionless and unmagnetized plasma,

known to experience no Landau damping.1 Such structures

have been observed in laboratory experiments2,3 and in space

observations.4–9 In 1965, O’Neil showed for the first time

that nonlinear Landau damping results in the formation of

oscillatory BGK modes.10 These modes appear as excitations

(disturbances) of the electric field envelope with characteris-

tic timescale (periodicity) ðstrapÞ which is related to the par-

ticles’ trapping and to their rotating motion. Particles trapped

in potential wells associated with the propagating wave can

be observed as a spinning vortex in the distribution function

in phase space. Phase-space vortices are the fingerprints of

trapped particles (and of BGK modes) and can be easily dis-

tinguished in phase space snapshots. The constant energy

exchange between trapped particles and the wave leads to a

fluctuating pattern in the electric field amplitude.11,12

The occurrence of BGK modes depends on the relative

strength between the amplitude oscillation period strap ¼
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
me=eEk

p
(where me and e are the electron mass and

charge, E is the electric field amplitude, and k is the wave-

number) and sL ’ c�1
L (here, sL is the time scale associated

to Landau damping, and cL is the Landau damping rate).10 If

strap � sL, no BGK modes are observed. In the opposite

case, when strap � sL, BGK modes occur. A one-

dimensional (1D) geometry will be adopted throughout this

work.

Our investigation relies on triggering an electrostatic

excitation via an appropriate initial disturbance of the ion

plasma species off equilibrium. The fundamental ion-scale

electrostatic (ion-acoustic, IA) mode11 consists of periodic

oscillations of the inertial ion plasma species against an elec-

tron background which provides the necessary restoring

force to sustain the oscillation. Interestingly, the presence of

dust particulates in a so called dusty plasma was shown to

lead, through the modification of the charge balance, to an

increase of the IA wave phase speed. This has by now

been identified as a new mode, termed the dust-ion acoustic

wave (DIAW),13 with a distinct frequency x in the range

kvTd � kvTi � x� kvTe (where vTs denotes the thermal ve-

locity of species s (¼d, i, e for dust, ions, or electrons,

respectively). The nonlinear behavior of DIAWs has been

considered in various theoretical papers; these excitations

have recently been associated with BGK modes (dust-BGK

mode, DBGK).14

The kinetic approach in computer simulation of the

plasma behavior relies on the Vlasov15 equation, in combina-

tion with Poisson’s equation. A “splitting” kinetic simulation

algorithm was proposed by Cheng and Knorr16 while various

improved methods have been introduced in recent years.17–19

Although these simulation methods have provided valuable

insight to plasma behavior, they all share a generic character-

istic, in the form of a numerical error: Initial states of the

distribution function will reappear in the simulation periodi-

cally (in around a recurrence time tr ¼ 2p=ðkdvÞ or its multi-

ples, where k is the wavenumber and dv is the grid step in the
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velocity direction). This recurrence effect, which is entirely

numerical and reflects no physical truth, makes the results of

the simulation rather unreliable beyond time tr. The recurrence

effect has been waived in our simulation method21 by adopt-

ing the algorithm proposed in Refs. 20; we refer the interested

reader to that reference for details on the method.

Since BGK mode formation and particle trapping in

general are highly nonlinear phenomena, these cannot be

easily investigated through an analytical approach.

Experimental results or computer simulations provide valua-

ble insight in many questions arising in this area.

Noteworthy is the work of Manfredi,22 who showed that

BGK modes associated with Langmuir waves in electron-ion

plasmas are stable and thus, earlier analytical work23,24 on

decaying or unstable BGK modes should be revisited.

In the article at hand, the focus is on the parametric

dependence of BGK modes on the electron-to-ion tempera-

ture ratio and, in the case of dusty plasma, on dust concentra-

tion. In an earlier paper,25 linear IA and DIAWs have been

studied through kinetic simulations and the dependence of

the Landau damping rate cl on relevant plasma parameters

was investigated.25 Noting that the question of the stability

of one-hole BGK modes has not yet been answered

exactly,26 we will investigate here the first and the second

peak of BGK modes, actually casting the focus on the short

time development of nonlinear Landau damping.

The layout of this study goes as follows. In the Sec. II,

we introduce the basic aspects of our theoretical model. In

Sec. III, the results of a series of computer simulations for

different parameters are presented and discussed. Section IV

is dedicated to summarizing our results.

II. MODEL AND NUMERICAL PROCEDURE

We consider a three-component plasma, consisting of

electrons (mass me, charge qe¼�e), singly ionized ions

(mass mi, charge qi¼þe) and negatively charged dust (mass

md, charge qd¼�Zd e). Importantly, the dust charge will be

assumed constant throughout this paper, i.e., dust charging

mechanisms are neglected, actually a reasonable assumption

at the (ionic) scale of interest. The presentation that follows

proceeds by considering three plasma components, all

appearing through the corresponding distribution function.

In order to consider an “ordinary” electron-ion plasma, the

dust component below will be formally “switched off” in the

analysis, and also in the computer code. A one-dimensional

(1D) Vlasov–Poisson system of equations will be adopted in

our study.

Each plasma species is described by a Vlasov equation

in the form

@fsðx; v; tÞ
@t

þ v
@fsðx; v; tÞ

@x
þ qsEðx; tÞ

ms

� @fsðx; v; tÞ
@v

¼ 0; s ¼ e; i; d; (1)

where s¼ e, i, d denotes the corresponding plasma species in

all algebraic expressions that follow; the variable v denotes

velocity in (1D) phase space.

The densities of the plasma components are given upon

integration as

nsðx; tÞ ¼ ns0

ð
fsðx; v; tÞ dv (2)

and are coupled through Poisson’s equation

@2/ðx; tÞ
@x2

¼ e

�0

neðx; tÞ � niðx; tÞ þ Zdndðx; tÞ½ � : (3)

The equilibrium values ns0 are assumed to satisfy the

quasi-neutrality condition

ne0 � ni0 þ Zdnd0 ¼ 0; (4)

at the initial time step of our simulation.

For the sake of simplicity, the above system of equations

has been cast in dimensionless form (rescaled) as follows.

Space and time are normalized by kDi and x�1
pi , respectively,

where xpi ¼ ½ni0e2=ðmi�0Þ�1=2
denotes the ion plasma fre-

quency and kDi ¼ ½ð�0kBTiÞ=ðni0e2Þ�ð1=2Þ
is the characteristic

ion Debye length. The velocity variable v has been scaled by

the ion thermal speed vthi
¼ ðkBTi=miÞ1=2

, while the electric

field and the electric potential have been scaled by kBTi=ðekDiÞ
and kBTi/e, respectively, (here kB is Boltzmann’s constant).

The densities of the three species are normalized by ni0.

The scaled (dimensionless) Vlasov–Poisson system of

equations forming the basis of our study reads

@feðx; v; tÞ
@t

þ v
@feðx; v; tÞ

@x
� mi

me
Eðx; tÞ @feðx; v; tÞ

@v
¼ 0; (5)

@fiðx; v; tÞ
@t

þ v
@fiðx; v; tÞ

@x
þ Eðx; tÞ @fiðx; v; tÞ

@v
¼ 0; (6)

@fdðx; v; tÞ
@t

þ v
@fdðx; v; tÞ

@x
� Zd

mi

md
Eðx; tÞ @fdðx; v; tÞ

@v
¼ 0;

(7)

and

@2/ðx; tÞ
@x2

¼ neðx; tÞ þ ndðx; tÞ � niðx; tÞ : (8)

The normalized density functions read

neðx; tÞ ¼ r
ð

feðx; v; tÞdv; (9)

niðx; tÞ ¼
ð

fiðx; v; tÞdv; (10)

and

ndðx; tÞ ¼ d
ð

fdðx; v; tÞdv : (11)

In the above relations, we have defined the Havnes pa-
rameter27,28 d ¼ Zdnd0

ni0
, which represents the scaled charge

density of the dust particles (note that d vanishes in the ab-

sence of dust) and the scaled electron density at equilibrium
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r ¼ ne0

ni0
. The latter two parameters are related to each other

via the scaled quasi-neutrality equation

r ¼ 1� d; (12)

implying overall charge neutrality at equilibrium; cf. (4).

Our numerical procedure is as follows. At each time step,

the distribution functions are calculated from kinetic equa-

tions (5)–(7). Then, the number density of each plasma spe-

cies is obtained by integration of the distribution function

over the velocity range, based on Eqs. (9)–(11). Feeding the

corresponding density values into Poisson’s equation (8), the

electric field is obtained. The instantaneous electric field is

then input in the Vlasov equations and the cycle recom-

mences, so that the next step distribution functions and den-

sity values are obtained. This cycle is iterated, and the results

are retained at every step. Energy preservation is meticulously

tested and, indeed, confirmed throughout the procedure.

A Maxwellian state at equilibrium is assumed for all

species. In order to excite ion acoustic waves, a small peri-

odic perturbation is added to the initial condition for the

ions, i.e., at time t¼ 0

feðt ¼ 0Þ ¼ 1

2p

� �1=2
me

mi

Ti

Te

� �1=2

exp
� me

mi

Ti
Te

� �
; (13)

fiðt ¼ 0Þ ¼ 1

2p

� �1=2

exp�v2=2 1þ acos
2p
k

x

� �� �
; (14)

and

fdðt ¼ 0Þ ¼ d
ð

1

2p

� �1=2
md

mi

Ti

Td

� �1=2

exp
�

md
mi

Ti
Td

� �
v2

2 : (15)

Note that an initial disturbance was imposed on the ions, in

order to trigger the anticipated excitation, whose strength is

denoted by the parameter a appearing in (14). For the sake of

simplicity, we shall set h ¼ Te=Ti in the following:

The constant parameters which remain fixed through all

of our simulations are: md/mi¼ 105, mi/me¼ 102, Ti/Td

¼ 400, Zd¼ 1000, time step dt¼ 0.01, a¼ 0.05, and

L ¼ k ¼ 5p, where L is the length of the simulation box and

k is the initial perturbation wavelength. The values of two

other parameters, namely h and d, were modified between

successive simulations. However, these values were fed into

each simulation at the initial step and remained intact

through it, as rigid constants. We have considered a

two-dimensional phase space with one spatial and one veloc-

ity axis. The phase space grid (Nx, Nv) size is (100, 2500).

We have introduced four phase points per cell, randomly

chosen inside each cell to avoid the aforementioned recur-

rence effect, at the initial step, therefore each simulation

involves of 106 phase points.

III. RESULTS AND DISCUSSION

A. BGK modes in electron-ion plasmas

We shall start by focusing our study on exciting ion-

acoustic excitations in isothermal electron-ion plasma (i.e.,

setting d ¼ 0 in the model described above). In order to

excite IA waves, a periodic perturbation is imposed on the

ion distribution function, given by Eq. (14) with a¼ 0.05.

By increasing the electron-to-ion temperature ratio (h),

Landau damping becomes strongly nonlinear and BGK

modes occur, as seen in Figure 1 (while the value of a
remains unchanged). In the case of linear Landau damping,

parallel filamentation happens in phase space around the

phase velocity of the wave; see Figure 2. However, for non-

linear Landau damping and the associated BGK modes, we

observe the formation around the phase velocity of more

complicated vortex structures which, as far as our study is

considered, appear to be stable; see Figure 3.

FIG. 1. Electric field evolution versus time (normalized by x�1
pi ): (a) For values of h sufficiently low, linear Landau damping occurs; (b) by increasing h, non-

linear Landau damping emerges and BGK modes appear. The figure shows the first two peaks of the E-field associated with BGK modes, the first one appear-

ing around t ¼ 120 x�1
pi and the second one around t ¼ 230 x�1

pi .
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In Fig. 4, we have depicted the effect of the temperature

ratio (h) on the amplitude of the E-field, associated with the

observed BGK modes. This dependence is intuitively

expected. As a matter of fact, the value of the electron-to-ion

temperature ratio h obviously affects the shape of the distri-

bution function, and, in particular, its slope in the vicinity of

the phase velocity (as a matter of fact, the relative slope of

the ion distribution function in comparison to the electron

distribution function). This should lead to a change in the

number of trapped particles, resulting in a modification of

the distribution function vortex size in phase space; see

Fig. 3 above. Since the phase-space distribution (i.e., the vor-

tex size, here) controls the amplitude of the electric field

associated with the BGK modes, it is expected that the elec-

tron-to-ion temperature ratio (h) affects in turn the amplitude

of BGK modes.

Another important aspect of BGK modes is the charac-

teristic time scale of fluctuation, to be referred to as strap, or

the trapping time. As evident in Fig. 5, increasing the tem-

perature ratio of electrons over ions bears a considerable

effect on the time scale of BGK modes, on one hand, and

results in a (nearly exponential) decrease of the trapping-

related time scale strap, on the other.

As discussed above, the generation of BGK modes is

associated with the occurrence of rotating phase-space vorti-

ces in phase space; cf. Fig. 3. Accordingly, it is intuitively

expected that the characteristics of the observed structures

(e.g., time evolution scale, amplitude) should depend on the

time periodicity and on the size of the associated vortex,

respectively. Figs. 4 and 5 suggest that, by increasing the

electron-to-ion temperature ratio, the temporal period of the

vortex decreases, while its size increases. In other words,

according to our observations, larger phase space vortices

rotate faster.

In earlier studies, it has been shown that strap depends

on the strength of the perturbation,10 viz., on a in our model,

but the new element here is that it is shown that it depends

on parameters like h as well. The BGK structure characteris-

tics, namely, the trapping time scale strap and the amplitude

A, seem to have an exponential dependence on h, and, as dis-

cussed earlier, these also depend on the vortex size. We may

postulate, qualitatively, that these vortices have an exponen-

tial dependence on h. A more detailed analysis reveals that

the curves can be approximated as f ðhÞ ¼ C½1� expð�ahÞ�,
in which C is a constant with value around ’0:032. The

value of a is 0.016, 0.03, and 0.15 for d equal to 0, 0.5, and

0.9, respectively. As for Fig. 5, a careful numerical fitting

shows that the data therein follow a functional form

f ðhÞ ¼ D½1� expð�bhÞ��1
, in which D is constant, around

’105:5 in our simulation. The parameter b takes the values:

0.025, 0.064, and 0.25 for d equals 0, 0.5, and 0.9,

respectively.

B. BGK modes in dusty plasmas

In this part, we shall focus on BGK modes formed in the

presence of dust particles, i.e., DBGK modes.14 We shall

investigate their dependence on two parameters, namely, the

electron-to-ion temperature ratio h and the normalized dust

charge density d. Two distinct features of these modes will

be considered: The saturation level of the electric field am-

plitude (here the first peak of BGK modes will be focused

upon) and the time period of the amplitude fluctuation (here,

interpreted as the time of appearance of the first amplitude

peak).

The dependence of the amplitude on the electron-to-ion

temperature ratio (h), on one hand, and the normalized dust

charge density (d), on the other, is shown in Figure 6. As we

FIG. 2. The phase space portrait of the ion distribution function near the ion-acoustic phase velocity is depicted. The plots show: (a) The initial distribution

function (the white/black colored regions, respectively, represent particles with velocities below/above the phase velocity; (b) the distribution function at time

t ¼ 250 x�1
pi , for d ¼ 0 and h ¼ 10. Simple parallel filamentation appears in the vicinity of the phase velocity.
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see in that plot, an increase in the normalized charge density

of the dust particles d results in a higher amplitude. Let us

point out that, as intuitively expected, all three curves (drawn

for different h) tend to the same asymptotic value (0.035) for

d! 1 (representing the “dust-ion” plasma limit, accounting

for complete electron depletion).

Figure 7 represents the (practically linear) dependence

of the trapping time strap on the normalized dust charge den-

sity (d). Three different lines are depicted, for different val-

ues of h, which reach the same point strap ¼ D ¼ 105:5
around d ’ 1.

The trend in both of the latter two diagrams appears to

be almost linear. In fact, it can be shown in Fig. 6 that the

curves follow the trend y¼ a (x � 1) þ C. Here, C is a

parameter with value: 0.035, and a is 0.02, 0.025, and 0.007,

for h ¼ 30, 50, and 100, respectively. For Fig. 7, the relation

is y¼ b (1 � x) þ D, in which D ’ 105:5 and b is approxi-

mately equal to 65, 35, and 15, for h equal to 30, 50, and

100, respectively.

C. Comparison with theoretical results

In order to interpret the observed characteristics of BGK

modes in a dusty plasma, the method proposed by Bernstein

et al.1,29 will be employed. According to that method, the

stationary state of the plasma is considered; in other words,

the problem will be solved in the moving wave frame (mov-

ing at the phase speed).

FIG. 3. A phase-space vortex is depicted, for different values of the electron-to-ion temperature ratio h. Such vortices are responsible for the generation of

BGK modes on the ion-acoustic range. Note that the vortex size increases with h at the time when the electric field envelope reaches its first peak. The parame-

ter values in these plots are: (a) d ¼ 0; h ¼ 20, at time t ¼ 250 x�1
pi ; (b) d ¼ 0; h ¼ 50, at time t ¼ 141 x�1

pi ; and (c) d ¼ 0 ; h ¼ 200, at time t ¼ 117x�1
pi .
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Recalling that all three elements are characterized by a

Maxwellian distribution function at equilibrium, Poisson’s

equation after linearization and normalization reads

@2u1ðxÞ
@x2

þ 1þ 1� d
h
þ d

Ti

Td

� �
u1ðxÞ ¼ 0 : (16)

The latter relation represents harmonic oscillations, provided

that

k2 ¼ 1þ 1� d
h
þ d

Ti

Td
> 0; (17)

which is always satisfied in our case (recall that 0 � d � 1).

The harmonic solution of (16) reads

/ ¼ /0sinðkxþ bÞ; (18)

where /0 and b are arbitrary constants (and k was defined

previously). The resulting electric field is

E ¼ d/ðxÞ=dx ¼ k/0cosðkxþ bÞ, implying that the maxi-

mum electric field varies as

Emax � 1þ 1� d
h
þ d

Ti

Td

� �1=2

: (19)

In Fig. 8, a comparison between the theoretical and the

observed simulation results is shown, showing good agree-

ment with each other.

FIG. 5. The exponential dependence of the trapping time strap on the elec-

tron-to-ion temperature ratio h is depicted, for different d. Rapid decrease

can be observed in strap by increasing the value of h. However, for h > 90,

the strap reaches its saturation level and stops dropping. This saturation level

is around 100.

FIG. 7. The relationship between the trapping time strap of BGK modes and

the normalized charge density of dust particles d is depicted, for different

value of h.

FIG. 6. The relationship between the amplitude of BGK modes A1 and the

normalized charge density of dust particles d is depicted, for three different

values of h. An increase in d results in a practically linear increase in the am-

plitude. All of the three different curves for different h tend to the same

value (0.035) for d! 1.

FIG. 4. The exponential dependence of the amplitude of BGK modes on the

electron-to-ion temperature ratio h is depicted, for different values of d. As h
increases, the localized E-field amplitude follows an exponential increase and

asymptotically reaches a certain level of saturation, which here is about 0.035.

This actually implies that by increasing h, the size of the phase-space vortex

becomes bigger, since A1 is directly related to the size of the phase-space vor-

tex. The amplitude of the first peak is considered in these plots.
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IV. CONCLUSIONS

We have investigated the characteristics of BGK modes

associated with ionic-scale electrostatic excitations via a se-

ries of kinetic simulations of a two- (electron-ion) and three-

(electron-ion-dust) component plasma. A fully kinetic algo-

rithm has been adopted, i.e., by treating all plasma compo-

nents via a Vlasov equation.

We have focused, in particular, on the characteristics of

BGK-type kinetic structures—namely, the electric field am-

plitude and the periodicity—and have observed how these

depend on the relevant plasma-compositional parameters,

i.e., the electron-to-ion temperature ratio and the dust con-

centration. Summarizing our qualitative observations, we

have seen that the measurable characteristics of the BGK

modes show an exponential dependence on the electron-to-

ion temperature ratio h, while on the other hand, they depend

on the dust charge density (Havnes) parameter d, this rela-

tionship is practically linear.

The amplitude of BGK modes directly depends on the

size of the vortex appearing in the ion distribution in phase

space, hence their dependence on various parameters essen-

tially reflects their effect on the characteristics (size, rotation

speed) of the associated phase space vortices at the first

place.
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