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A series of numerical simulations based on a recurrence-free Vlasov kinetic model using kinetic
phase point trajectories are presented. Electron-ion plasmas and three-component (electron-ion-
dust) dusty or complex plasmas are considered, via independent simulations. Considering all plasma
components modeled through a kinetic approach, the linear and nonlinear behavior of ion acoustic
excitations is investigated. Maxwellian and Kappa-type (superthermal) distribution functions are
assumed, as initial conditions, in separate simulations for the sake of comparison. The focus is on
the parametric dependence of ion acoustic waves on the electron-to-ion temperature ratio and on

the dust concentration.

I. INTRODUCTION

Considering the textbook description of electro-
static waves in ordinary two-component (i.e., electron-
ion) plasma, two typical modes occur as a standard
rule. Firstly, Langmuir waves, i.e. oscillations of an
inertial electron fluid against a massive (“stationary”)
ion background with kvp; < kvre < w (where vr;
and vp, indicate the thermal velocity of the ions and
of electrons, respectively, while w denotes the angular
frequency of the wave). Secondly, ion-acoustic (IA)
waves (IAWSs), in which ions provide the inertia, while
the electrons behave as a background charge, provid-
ing the necessary restoring force!.

In many real plasma situations, e.g. in astrophysi-
cal and in laboratory plasmas, a third component oc-
curs, namely in the form of massive charged dust par-
ticulates, whose presence affects the charge balance
and may play a crucial rule in shaping the plasma
dynamics?®. The dust particles have been shown to
alter and even introduce new modes of electrostatic
waves. In the presence of the dust component in the
background, dust particles modify the charge balance,
and ionic oscillations give rise to the so-called dust-ion
acoustic (DIA) mode®, characterized by frequency in
the range kvry < kvp; € w < kvpe. At the rele-
vant scale, the electrons can be considered inertialess,
the dust particles are practically stationary, while the
ion population provides the inertia and the electron
pressure, exerted through the electric field, plays the
role of the restoring force. Furthermore, electrostatic
oscillations of the dust component in the plasma give
rise to a completely new branch of electrostatic waves,
called dust-acoustic (DA) waves, with frequency lying
in the range kvrg € w < kvp; < kvpe, implying
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such a low phase speed that an observer may actually
track the wave with their own eyes?.

Electrostatic plasma waves are subject to the well-
known Landau-type damping mechanism®, first pre-
dicted by L.D. Landau in 1946 for Langmuir waves’.
This phenomenon basically describes a process of dis-
sipation of macro-scale electric energy into micro-scale
kinetic energy of particles, in fact even occurring in
collisionless plasma. Linear and nonlinear Landau
damping processes have been intensively studied in
the past, theoretically, computationally and experi-
mentally, and have been a standard focus in plasma
research for decades. It is believed that ‘approximately
every third paper on plasma physics and its applica-
tions contains a direct reference to Landau damping’S.
Despite the wide literature in the topic, including
investigations from both mathematical and physical
viewpoints, there are still many challenging questions,
especially in the nonlinear regime. A detailed math-
ematical theory for Landau damping has been pre-
sented recently by C. Villani®. Villani won the Fields
medal, the most prestigious award in mathematics for
this achievement, a fact which reflects the complexity
and importance of the topic.

The nonlinear evolutions stage of Landau damp-
ing in plasmas has been shown to result in the for-
mation of oscillatory BGK modes?. These are col-
lective modes, first predicted by Bernstein, Greene
and Kruskal'® in collisionless, unmagnetized one-
dimensional plasma, representing exact solutions of
the Vlasov-Poisson set of equations, which are non-
linear, stationary and experience no damping. In the
case of Langmuir waves, the existence of an initial field
threshold has been shown, which separates the lin-
ear and nonlinear regimes'' 3. Below this threshold,
exponential decay of the waves occurs, while above
the threshold, linear Landau damping turns out to
be a transient phase which leads to non-zero time-
asymptotic solutions in the form of BGK modes.

Due to its purely kinetic origin, the Landau damp-
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ing mechanism is treated by resorting to kinetic the-
ory, i.e. in the case of collisionless plasma by di-
rectly solving the Vlasov equation'*. The fundamen-
tal Vlasov kinetic equation has paved the way to the
so-called kinetic simulation of plasmas. Various ki-
netic simulation approaches, involving different com-
putational techniques to solve the Vlasov equation in
combination with Maxwell equations, have been pre-
sented in the past. We note, among others, the split-
ting method!®, among the earliest attempts in this
field, the Fourier transformation approach'®, the con-
servative scheme!”, and the semi-Lagrangian method,
based on following phase-point trajectories'®. All of
these schemes in kinetic simulation are restricted by
an inherent recurrence effect, namely the initial con-
dition of the simulation reappears periodically at
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where k and dv are the wavenumber and the grid step
in the velocity direction respectively’® 2, hence the
simulation results are valid only for ¢ < 7,.(,—1). It is
noted that the recurrence effect is purely artificial (nu-
merical) and reflects no physical truth known so far.
It is worth mentioning that some of the simu-
lation methods mentioned above have tried to
solve this problem by adopting different tech-
niques, mostly by increasing dv and avoiding
the recurrence effect'”20; interestingly, open
boundary conditions have been employed in
the Fourier transformation approach!®, which
appears to remove or at least suppress the re-
currence effect. Landau damping is a kinetic ef-
fect, so it essentially depends on the distribution func-
tion (statistics) of the plasma (precisely speaking, the
shape of distribution function around the phase ve-
locity). Of interest here is the occurrence of non-
Maxwellian plasmas, bearing an excess in superther-
mal particle populations. Such “superthermal” plas-
mas were first studied in Space plasmas?' 23, where
an ad hoc kappa-parametrized distribution function
(df) was proposed®® to explain the long tail ap-
pearing in the velocity distribution at high (veloc-
ity) values. This approach was subsequently proven
to be very successful in modeling non-Maxwellian
situations in various astrophysical and experimental
plasma situations?® 3°. The kappa distribution func-
tion draws its name from a real parameter (x), which
measures the strength of the superthermal tail in the
distribution function, reflecting the excess in highly
energetic particles. For large x the superthermal tail
shrinks, and the Maxwellian distribution is recovered
for kK — oco. The deviation from the Maxwellian df
in superthermal plasmas ultimately modifies the fea-
tures of electrostatic waves propagating in it, e.g., dis-
persion properties, solitary wave characteristics®! and
Landau damping rate3?33,

Our aim in this article is to present some recent
results, and also summarize earlier ones, here corrob-

orated by more rigorous simulations. We focus on
electrostatic waves in multicomponent plasmas, inves-
tigating their propagation characteristics and the oc-
currence of Landau damping, by adopting a unique
methodology, i.e. by treating all plasma components
via a Vlasov equation. In the simulation presented
here, we have relaxed the mass ratio to its natural
value of M; /M. = 1836, thus extending earlier results
where a fictitious ratio of 100 was adopted®?, as a stan-
dard way to cope with computational constraints. We
shall point out the parametric dependence of the dy-
namics on intrinsic plasma parameters, namely on the
dust concentration, the temperature of each plasma
constituent and, importantly, on the shape of distri-
bution function. kappa-type and Maxwellian distribu-
tion functions are employed in separate simulations,
to be critically compared in this report. By adopting
a fully kinetic simulation approach, insight is gained
in the plasma dynamics in a more rigorous way, in
comparison to fluid model; furthermore, the kinetic
method is free from statistical noise, e.g. ubiquitous
in particle-in-cell (PIC) simulations3®37.

The numerical procedure employed here is based
on an original kinetic simulation algorithm, following
phase point trajectories. Basic information needed in
the following is briefly summarized here; interested
readers are referred to, e.g., Ref. 18 for details. A
Vlasov-type kinetic equation is considered for each of
the plasma constituents. By applying a character-
istics method, each of these equations is reduced to
two first order differential equations which in turn are
solved by using a leapfrog algorithm. Generally speak-
ing, the phase points followed dynamically represent
an ensemble of real particles with almost equal speed
and coordinates in the spatial axes. Each phase point
incorporates three quantities: the instantaneous value
of the distribution function f associated with it, ba-
sically reflecting the number of particles it represents;
the average speed v of real particles; and the aver-
age coordinates r of real particles, in the spatial axes.
Throughout the temporal evolution of the simulation,
r and v will vary, obeying the reduced two first-order
differential equations, i.e., the Vlasov equation, while
f remains fixed. By changing speed v and spatial
coordinate 7, the phase points move through the grid-
cells —and grid-points— which are used to discretize the
phase space, and this displacement results in a change
in shape of the distribution function f, and thus the
temporal evolution of the distribution function is ob-
served and followed. The path of phase points in phase
space is identical to the trajectories of real particles in
the phase space, thus as Liouville’s theorem dictates,
the distribution function should remain constant on
these trajectories, hence f remains fixed. In other
known kinetic simulation techniques, the value of f
is reconstructed repeatedly at each time step on the
grid-points and numerical errors arise and accumulate
inevitably, ultimately leading to a deviation from Li-
ouville’s theorem. By allowing for phase points “float-



ing” in phase space without being constantly con-
strained to grid-points, this method prevent the afore-
mentioned anomalous recurrence effect from emerging
through the numerical simulation. Detailed analysis
shows that recurrence effect can be eliminated via a
randomized allocation of phase points in the velocity
direction at the initial stage of the simulation®®.

The layout of this paper goes as follows. In the fol-
lowing Section II, we introduce the basic aspects of our
theoretical model. In Sections III and IV, two series of
simulations of DTA waves in the linear regime, adopt-
ing a plasma in thermal equilibrium and a superther-
mal plasma, respectively, are presented and discussed.
The nonlinear regime, i.e. BGK modes, is considered
in Section V for two separate cases (Maxwellian and
kappa-distributed electrons and ions). Section VI is
associated to study of linear regime of dust-acoustic
waves. The concluding Section VII is dedicated to a
summary of our results.

II. MODEL AND NUMERICAL PROCEDURE

We will investigate the dynamical evolution of the
plasma in the electrostatic approximation, based on
the Vlasov-Poisson set of equations. We consider a
a three-component plasma, namely comprising three
elements: electrons (mass me, charge g, = —e), singly
ionized ions (mass m;, charge ¢; = +e) and negatively
charged dust particles (mass mq, charge ¢4 = —Zge).
The dust charge (-Z4) is assumed constant through-
out, thus neglecting charge fluctuations and charging
processes in our simulations. Our study relies on a
(141)-dimensional approach, taking into account one
dimension in space and one dimension in the veloc-
ity axis. Each of the (three) plasma constituents is
modeled by its own Vlasov equation, viz.

Ofs(z,v,t) Ofs(x,v,t)
T
qsE(x,t) Ofs(w,v,t)
+ p— 50 =0. (2

The subscript s = ¢, 4, d henceforth refers to the elec-
tron, ion or dust component, respectively, everywhere.

The electric field generation is modeled through
Poisson equation:

Tl _ L5 Q

s=e,i,d

The above equations are coupled via the density vari-
able(s) appearing in the latter (Poisson) equation,
which result from an integration of the distribution
function as

ps($7t) = QSnS($>t)7 (4)

ng(z,t) = nyoNs(x,t), (5)

and
M@@:/ﬂ@uww (6)

Here, p, ns and Ny represent the charge density, the
scaled physical density and the (particle) number den-
sity, respectively, of each plasma species, while nyg
denotes the density at equilibrium.

At equilibrium, all three plasma elements are unper-
turbed, hence Ny = 1, therefore the self-consistent
electric field vanishes, since Poisson’s equation then
reads

> genso(a,t) = 0. (7)

Charge neutrality is thus assumed at equilibrium
(only); this is often referred to as the quasi-neutrality
hypothesis.

For computational convenience, the above set of
equations (2)-(3) have been normalized, leading to di-
mensionless expressions, as outlined in the following.
Space and time are scaled by Ap; and wp_il respec-
nioe?/(m;ep) is the ion plasma
frequency and Ap; = +/eoKpT;/(nie?) is the ion
Debye length. Given our dynamical scale of inter-
est, the velocity variable v has been scaled by the
ion thermal speed vy, = v/ KpT;/m;, while the elec-
tric field and the electric potential have been scaled
by KgT;/(eAp;) and KpT;/e, respectively (here Kpg
is Boltzmann’s constant). The densities of the three
species are normalized by n;q.

The dimensionless (reduced) Vlasov-Poisson set of
equations read(s)

tively, where wp; =

Ofs(xz,v,t)  Ofs(z,v,t) m; Ofs(z,v,t)
ot T oz +as mSE(Lt) Ov
=0, (s=e,i,d) (8)

where charges are normalized by +e (viz., ¢. = —1,
gi = +1 and ¢4 = —Z3), and

0?p(w,t)
q;xQ Z psoNs(z, 1), (9)

s=e,i,d

where p.o = 0 = neo/nio 5, pio = —1 and pgp = 6 =
Zango/ni0. The normalized number density equation
reads:

Ny(z,t) = /fs(:c,v,t)dv. (10)

Note that the parameters 6 and o are coupled
through the quasi-neutrality condition:

o=1-4. (11)

The real parameter § represents the (normalized)
charge density of the dust particles and is fed to the
simulations as a constant at the initial step: it serves



to regulate the role of the dust concentration. An or-
dinary electron-ion (dust-free) plasma is recovered, by
setting 0 to zero.

The simulation cycle for each time step starts by
calculating the number density (N;) of each species
by integrating of distribution function over the veloci-
ties, via Eq.6, and then solving Poisson’s equation (9)
to obtain the self-consistent electric field. The latter
(field) is then fed into the Vlasov equations (8) (for
s =e,1,d) and the distribution functions for the next
step is computed. This cycle is iterated in a step-
by-step manner. The energy and entropy deviations
(from their respective initial values) -which would in-
dicate violation of conservation laws - are checked
throughout each simulation, and were indeed verified
never to exceed a reliability threshold (say, ~ 0.001)
throughout all the simulations presented herein.

The initial distribution function is determined for
each of the elements at the initial step. In this
study, we consider (separately) two types of distribu-
tion functions. First of all, we employ the well-known
Maxwellian distribution function, modeling thermal
equilibrium, in its normalized form:

fu(,0) = \fegean(-65) (1)

ms T;

§S:777

m; Ts

where
(s =e,i,d). (13)

Then, a kappa-type (k) distribution function is

adopted, in its normalized form3?:

N (%)
fs(%o)—ml“(n—l/z)

& 0P
(k—3/2) 2

—K
{1 + } . (14)

In order to trigger electrostatic excitations of the
ionic component (DIA, dust-ion-acoustic mode) or of
its dust counterpart (DA, dust-acouctic mode), the
respective inertial element will be perturbed by im-
posing a monochromatic perturbation on the initial
distribution function of that element, in the form:
f[1 + acos (22z)], where o represents the strength
of the perturbation and A represents the wavelength
(scaled by Ap;). While small values of « are sufficient
to excite linear waves, larger values will also be consid-
ered for the nonlinear stage to be triggered. The above
perturbation is imposed either on the ion-distribution
function or on the dust distribution function, in order
to trigger DIA waves or DA waves, respectively.

The parameter values adopted in our simulations
here are: mg/m; = 10°, m;/m. = 1836, T;/Ty =
400, Z4 = 1000, and time step dt = 0.01. Other
parameters, like §, L = A (=the length of the sim-
ulation box), a and T./T; (hereafter §) may vary in

different sets of simulations, thus the respective val-
ues will be mentioned where appropriate. The grid
applied for phase space discretization (M, points in
x-direction and M, points in the x-component of the
velocity) is set to (M., M,,) = (25,3000) for the linear
regime. As a consequence, the phase space is covered
by 7.5 x 10* cubic cells, and in each of the cells, at the
initial step 4 phase points are scattered randomly - in
order to avoid the aforementioned recurrence effect.
Accordingly, the distribution function of each of the
plasma elements is approximated by an array of 3x10°
phase points. Since we are using periodic bound-
ary conditions in the x-direction, the number
of phase points remains constant throughout
the simulations. In the nonlinear regime (i.e. to
study BGK modes), longer time runs are needed, thus
a finer grid with more cells is employed, to reduce the
computational error in the later stages of the simula-
tion.

III. TION-ACOUSTIC AND
DUST-ION-ACOUSTIC VERSUS ELECTRON
PLASMA (LANGMUIR) WAVES

a. FElectron-ion (dust-free) plasma. We shall first
investigate ion-acoustic waves. In order to en-
hance Landau damping, we focus on the region near
(electron-to-ion temperature ratio) § = 1.0. For a
start, we have consider electron-ion plasma (setting
0 = 0). The results are presented in Fig. 1; as ex-
pected, ion-acoustic waves are heavily damped, and
cannot propagate in the plasma; therefore, no oscilla-
tion is observed in the (ion) number density.

For the sake of comparison, Langmuir waves have
also been excited in separate simulation, by adopting
the appropriate wavelength in the initial condition (all
other parameter values being kept identical). A com-
parison of the two cases (both shown in Fig. 1) reveals
that, while IA waves are severely damped, fading out
after just one oscillation (note the ion number density
in 1(b)), for the same plasma parameters, Langmuir
waves do propagate, manifesting a clear exponential
decay later due to Landau damping (note the electron
number density 1(b)). For Langmuir waves, the per-
turbation is imposed on electrons and only Langmuir
waves are excited (1(b)), while for IAWSs, it is applied
on the ions, where both Langmuir waves and IAWs
are ignited (1(c)).

b. Dust-ion acoustic waves in dusty plasma. In
the next step, the effect of the dust (setting § # 0) on
the ion-acoustic wave characteristics are considered.
The outcome of the simulation is shown in Fig.2b. As
theoretically expected, by introducing dust particles,
ion-acoustic waves do propagate in the plasma even
for 6 = 1.0. Physically speaking, this striking fact is
due to a dramatic modification of the phase velocity,
due to the dust species, which removes resonant par-
ticles away from the wave reference frame. On the
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FIG. 1: (a) The evolution of the normalized electric field
versus normalized time (twp;) is depicted, for Langmuir
waves (red-dotted curve) and for jon-acoustic waves (blue-
solid curve), for electron-ion plasma (§ = 0), choosing
0 = 1). The normalized wavelength (A/Ap; = 57) is kept
the same in both cases shown. (b) The normalized number
density of electrons (red-dotted curve) and ions (blue-solid
curve) is depicted, for Langmuir waves. (c¢) The normal-
ized number density of electrons (red-dotted curve) and
ions (blue-solid curve) is shown versus normalized time
(as above), for ion-acoustic waves (taking 6 =0, 0 =1, as
in the other panels).

0.015
0.01
o
.© 0.005]
[
(8]
=t
3 o0
w
0.005]
_ I I RN R TII R
0.01 5 10___15 20 25
Time
0.015
0.01
IAWSs (3 =0, 6=1.0)
k= DIAWS(8=0.7, 6 =1.0)
@ 0.005|
Lo
(&}
=
(8]
3 0 .
i g
0.005}
_ - TR R R
0.0% 0_. 15 20 25
Time

(b)

FIG. 2: The evolution of the (normalized) electric field
versus (normalized) time is depicted, for three different
combinations of § and 6, in the case of ion-acoustic waves.
(a) Comparison between [§ = 0 & 6 = 1] (red-dotted cure)
and [0 = 0 & 6 = 2.5] (blue-solid curve): note that, by
increasing the electron-ion temperature ratio, the Landau
damping rate decreases and TA wave propagation becomes
possible. (b) Comparison between [§ = 0 & 6 = 1] (red-
dotted cure) and [0 = 0.7 & 6 = 1 (dust-ion-acoustic
waves)] (blue-solid curve): having introduced the dust par-
ticles in the plasma, the Landau damping rate decreases.

other hand, Fig. 2a presents a similar observation of
propagating ion-acoustic-waves, this time for higher
0.

Inspired by the qualitative results presented in Figs.
1 and 2, we are now ready to study the quantitative ef-
fect of (the electron-to-ion temperature ratio) 6 and of
(the dust parameter) ¢ on dust-ion-acoustic wavepack-
ets. Here the focus is on the parametric dependence
(variation) of the wave frequency and of the associated
Landau damping rate on the above factors.

Summarizing the results shown in Fig. 3, the ef-
fect of increasing the electron-to-ion temperature
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FIG. 3: (a) The effect of the electron-ion temperature ra-
tio @ = T./T; on the (scaled) frequency (w/wp;) of IA and
DIA waves is depicted for different values of § = Zgnao/nio
(the normalized charge density of dust particles), taking
A/ Api = 57, dt = 0.01, « = 0.01 and 3 x 10° phase points.
(b) The normalized Landau damping rate (v/wp;) is de-
picted, for the same wave and for the same parameters
as in the previous panel. As 0 increases, the frequency
also increases (practically exponentially), while the Lan-
dau damping rate drops, in what resembles qualitatively
an exponential decay. However, this fact mostly applies
to the cases of small 4, i.e. for weak dust concentration.
Near the extreme case of full electron depletion (6 = 0.9 or
even as high as 0.99), both characteristics are independent
from the electron-ion temperature ratio; this was somehow
expected, since the role of electrons is rather limited under
those circumstances.

ratio () is significant upto a certain limit (6 < 30),
whereafter the picture remains practically unchanged
for higher values. In the latter case, both factors tend
to fluctuate around a saturation level which equals
1.15 and 0.08 for the frequency and for the linear Lan-
dau damping rate, respectively (both normalized by

the ion plasma frequency). However, these dependen-
cies are also sensitive to J, in that as J increases, the
saturation level is attained for lower 6 and, in fact, in
the extreme case of 6 = 0.99 (quasi-complete electron
depletion), the sharp and sensitive part no longer ex-
ists and only fluctuations around the saturation values
are visible. In this case, essentially we recover a
two-species plasma consisting of immobile dust
particles and ions vibrating against the sta-
tionary dust particle environment. Naturally,
we recover waves with qualitative characteris-
tics similar to Langmuir waves, since this sit-
uation mimics electron plasma oscillations in
an electron-ion plasma, wherein electrons os-
cillate against a quasi-stationary massive ion
background. The fast drop in the Landau damp-
ing rate can be interpreted by considering that any
increase in frequency (which entails a sharp increase
for # < 30) results in modification of the phase ve-
locity value, which in turns leads to a decrease in
the first derivative of the distribution function around
the phase velocity (affecting the distribution curve);
this implies a drop in Landau damping rate, since the
latter is directly related to the first derivative of the
distribution function in the vicinity of the phase ve-
locity. By exceeding 6 > 30, roughly, the electron
distribution function around the DIA phase velocity
is flattened enough for its first derivative to vanish,
practically, thus electrons cannot behave as resonant
particles, for Landau damping to occur. On the other
hand, for higher values of @, the ions alone cause Lan-
dau damping. Therefore, the (linear) Landau damp-
ing mechanism is no more sensitive to the electron
properties, such as their temperature.

The dependence of DIA characteristics on the pa-
rameter ¢ follows a practically linear trend, as por-
trayed in Fig. 4: both quantities depicted follow a
similar trend, thus the curves obtained for three dif-
ferent values of 6 tend to 1.15 and 0.08, respectively,
as § — 1.0 for the (normalized) angular frequency
and for the (normalized) linear Landau damping rate
respectively. These two values follow from the asymp-
totic values in Fig. 3: this fact suggests that, either
increasing the electron thermal velocity (via 6), or re-
ducing the electron contribution by increasing § (re-
call that § = 1 denotes full electron depletion in the
plasma), results in a similar modification in the DIA
wave properties.

An exhaustive discussion about the above analyti-
cal considerations and a comparison with theoretical
results can be found in Ref. 34. We note that the
ion-to-electron mass ratio was set to a fictitious value
of 100 in Ref. 34, while it was relaxed to its natural
value of 1836 in our simulations for this paper, the
trend remains unchanged; furthermore, the values of
the frequency and of the linear Landau damping rate
in the depleted-electron case are practically identical,
while the new simulations (based on the natural val-
ues of the mass-ratio) are in better agreement with
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FIG. 4: (a) The normalized angular frequency (w/wp;)
of dust-ion-acoustic waves is depicted versus the (normal-
ized) charge density of dust particles (0 = Zgndo/nio) for
three different values of the electron-to-ion temperature
ratio 6. (b) The (reduced) Landau damping rate (y/wpi)
is depicted in the same range as in the first panel. Both
characteristics show a practically linear variation in §. As
0 grows, enhancement in frequency occurs while the Lan-
dau damping rate drops in value. However, the slope of
either growth or fall decreases as 6 increases.

the theoretical values.

IV. THE EFFECT OF SUPERTHERMAL
PARTICLES ON DUST-ION-ACOUSTIC
WAVES

In order to study the effect of energetic (superther-
mal) ions and/or electrons on dust-ion-acoustic
wave propagation, we adopt the kappa distribution
function3'3?, adopting the same value of x for both
electrons and ions, for simplicity. Fig. 5 presents
the outcome of a series of simulations for two ex-
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FIG. 5: (a) The (normalized) frequency (w/wp;) is shown
versus a large domain of normalized wavelength values
(A/Api) (b) Fitting of the Landau damping rate (v/wp:)
of dust-ion-acoustic waves over the wavelength (A/Ap;) is
shown, for two distinct distribution functions. Here, we
have taken 6 = 0.99 and 6 = 10.

tremely different distribution functions, namely con-
sidering a strongly non-Maxwellian distribution func-
tion with kK = 2 and the Maxwellian distribution func-
tion. As above, we have focused on the normalized
frequency (w/wp;) and the normalized Landau damp-
ing rate y/wp;. These features are depicted against a
wide range of normalized wavelength values (A/Ap;).
As the wavelength grows, a sharp decrease is observed
in both of these features and they both go down until
they reach an asymptotic values, approximately zero
for the Landau damping rate and almost 0.9 for the
frequency. However, the details of this curve decline
appear to differ between the two cases (distribution
functions) considered. The kappa distribution func-
tion manifests a slower decline in Landau damping
rate and acquires smaller value for the frequency.



It has been suggested by Villani® — and also by
Landau in his original paper’ — that linear Landau
damping of Langmuir waves can only exist for small
wavelengths in two-component plasmas. In this study,
it was numerically shown that the same fact holds
for DIA waves, although a three-component plasma
model was consider in our study (and, generally speak-
ing, Landau damping does not occur beyond a cer-
tain wavelength, say A). Note that the threshold A
was found to differ between the two distribution func-
tions considered herein: A = A/Ap;, ~ 25 for the
Maxwellian distribution function, while A = A/Ap; ~
50 for the kappa-distribution function (with k = 2,
in the case considered). As shown in Fig. 5b, Lan-
dau damping may occur in a relatively narrow range
of wavelength values, and the Landau damping rate
in this domain actually presents a peak. The occur-
rence of the peak appears to be in qualitative agree-
ment with Ref. 40. Qualitatively speaking, one
would expect that the peak is related to a
change in phase speed”. Interestingly, the peak
also appears, for certain parameter values, in
a kinetic-theoretical study now in progress3,
and the qualitative explanation will be dis-
cussed therein. We plan to comment on this
in separate future work®4. Note that, due to com-
putational noise, the weaker peak of the kappa distri-
bution function cannot be tracked (in contrast with
Ref. 42, where the noise was eliminated by using a
much smaller ion-electron mass ratio).

V. BGK MODES ASSOCIATED WITH
LARGE AMPLITUDE DUST-ION-ACOUSTIC
WAVES

In order to push the ionic excitations into the non-
linear regime, the magnitude of the initial perturba-
tion («) imposed on the ions must be increased above
a certain threshold. The existence of a threshold,
above which Landau damping switches its long-time
asymptotic behavior from zero to non-zero for Lang-
muir waves, has been discussed intensively in Refs 11—
13. Fig. 6 suggests thats a similar transition occurs
in dust-ion-acoustic waves. For o = 0.01, which lies
beneath the presumed threshold, a plain exponential
damping occurs and the amplitude goes down to zero.
On the other hand, for o = 0.05 (seemingly above the
threshold), Landau damping is observed until ¢ < 80,
beyond which the field amplitude decay stops and
the amplitude subsequently starts to increase: a dis-
tinctive feature of nonlinear Landau damping. We
have not attempted to trace the exact value of this
threshold (say, roughly speaking, between o = 0.01
and a = 0.05), leaving this tedious task for future
work. Nonlinear Landau damping results into the cre-
ation of BGK modes, in our case to be referred to as
dust-BGK modes (or DBGK, hereafter)*. In Fig. 6,
DBGK modes can be observed as a fluctuation over
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FIG. 6: (a) The evolution of the (normalized) electric field
E(eAp;)/(KpT;) versus time (normalized by wp;) is de-
picted, for the case of A\/Ap; = 5m, 0 = T./T; = 25,
§ = Zanao/nio = 0.5 and a = 0.01, in the range where
linear Landau damping occurs. (b) The time evolution
of the normalized electric field is depicted for the same
parameters with a = 0.05, which triggers nonlinear Lan-
dau damping and results to the occurrence of dust-BGK
modes. The figure shows the first peak in thee dust-BGK
amplitude, which appears around ¢ ~ 140 wp_il.
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the electric field amplitude, and are also associated
with vortex formation in phase space, in the vicinity
of the DIA phase velocity (c.f. Ref 46 for a detailed
discussion).

In a generic manner, BGK modes are identified
by two main characteristics, namely a characteristic
time scale (periodicity) Tpci (here associated with
the time interval between two successive peaks in the
electric field amplitude) and by their amplitude, which
is the value associated to the amplitude of the elec-
tric field at the peaks. These two characteristics are
ultimately dependent on the phase space vortex re-



sponsible for the BGK modes. The temporal period
of BGK modes originates from the vortex periodicity;
as a matter of fact, upon considering the first rotation
in phase space, this time is regarded as the trapping
time. The amplitude, on the other hand, depends on
the size of the vortex. Intuitively speaking, as the vor-
tex grows in size, the amplitude increases along with
it. In order to study the BGK mode profile here, we
shall focus on the first peak of the field waveform,
thus the first peak will be assumed to appear at time
TBGK, and the field amplitude on the first peak will
be taken as the amplitude of BGK modes.

Fig. 7, representing the dependence of the afore-
mentioned quantities on the electron-ion temperature
ratio 6, indicates the existence of a saturation level
beyond 6 = 30, say, around 0.03 and 108 for the am-
plitude and the time scale, respectively. The same
trend was witnessed in Fig. 3 for linear Lan-
dau damping, and the saturation level for lin-
ear Landau damping rate also reaches around
the similar value of # ~ 30. As a matter of
fact, the linear and nonlinear Landau damping
mechanisms are both strongly related to the
shape of the distribution function for velocity
values in the vicinity of the phase velocity, and
also depend on the temperature (in turn af-
fecting the shape of the distribution function);
therefore they are arguably expected to have
similar qualitative features. Fig. 8 focuses on
the effect of the dust particle concentration, i.e. via
the normalized dust charge density parameter . The
intrinsic characteristics of the DBGK excitations (pe-
riodicity and amplitude) depend on § in a quasi-linear
manner, while the slope of the curve decreases as 6 in-
creases. Again, the trend is reminiscent of Fig. 4 for
linear Landau damping.

VI. DUST-ACOUSTIC WAVES

For the sake of comparison and for later reference,
we shall now briefly focus on dust-acoustic waves and,
in particular, on the effect of Lorentzian plasma -
modeled by kappa distribution function- on those.

In order to trigger low-frequency dust-acoustic
waves, the perturbation is applied to the dust distri-
bution function, which follows the Maxwellian distri-
bution. The other two species, namely electrons and
ions, follow a Maxwellian distribution function in one
set of simulations and a kappa distribution functions
in another.

The results of the two sets of simulations are pre-
sented in Fig. 9, showing acceptable qualitative agree-
ment with earlier (analytical) results?".

The simulations presented herewith are still at an
early stage. A detailed investigation will be presented
in forthcoming work.
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FIG. 7: (a) The characteristic time scale (periodicity) of
DBGK modes, Tk, is depicted versus the electron-to-
ion temperature ratio 6, for three different values of §. The
remaining parameters are taken as: A\/Ap; = 57, a = 0.05
and 8 x 10° phase points are used for sampling. As 6
increases, Tpg i decreases, until an asymptotic value, here
about ~ 108. The appearance time of the first peak is
depicted in this plot. (b) The dependence of the DBGK
wavepacket amplitude on the electron-to-ion temperature
ratio 0 is shown, for three different values of §. The am-
plitude is seen to grow with 6, while its intensity drops.
The asymptotic value attained for 8 > 30 can be seen to
be around = 0.03. The first electric field peak amplitude
is considered in this plot.

VII. CONCLUSIONS

A recurrence-free, fully kinetic simulation approach
has been adopted as a dynamical model for electro-
static waves in dusty plasma, focusing on the linear
(weak amplitudes) and on the nonlinear (stronger am-
plitude) regime. In the former case, the plasma re-
sponse was probed, in the form of the wave frequency
and the instability (Landau damping) rate, tracing
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FIG. 8: (a) The relationship between the amplitude of
DBGK modes (first peak, A1) and the (normalized) dust
charge density § is shown, for three different values of 6.
An increase in ¢ results in a practically linear increase in
the amplitude. The three different curves obtained for
different 6 tend to the same value (0.035) for § — 1. (b)
The relationship of the trapping time 7pgx of BGK modes
on the (normalized) dust charge density ¢ is depicted, for
different values of 6.

their dependence on the three main parameters of rele-
vance: the electron-ion temperature ratio (6), the dust
charge density (4) and the effect of non-thermality, ex-
pressed via different distribution functions.

We have shown that, by increasing the electron-ion
temperature ratio § above a certain threshold (which
in turn depends on the value of §), the effect of the
electron dynamics on the propagation of electrostatic
waves disappears. Good qualitative agreement was
found with an earlier study3*, which relied on a small
(fictitious) ion-to-electron mass ratio.

Two features of dust-BGK modes have been inves-
tigated parametrically, namely the periodicity 7K
and the amplitude; these were both shown to vary pro-
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FIG. 9: (a) The Landau damping rate (-y) of dust-acoustic
wavepackets —normalized by 1/wp;— is depicted versus the
wavenumber k (normalized by the ion Debye length Ap;)
for two different distribution functions, in the range of 0 <
kX; < 10, namely x = 2 (black, solid line) and Maxwellian
(k — oo)(blue, dotted line). A peak in v appears around
0.5 < kX\; < 2 for both distribution functions. However the
width and hight of these peaks varies for them. The results
displays an acceptable agreement with analytical results®”
(b)Frequency of dust-acoustic waves versus wavenumber
(k) —mormalized by ion Debye length A\;— is shown.

portionally with the dust charge density ¢, while they
appeared to “saturate” to an asymptotic value when
varied against . This qualitative result remained un-
changed in the nonlinear regime.

We have also presented evidence that big-
ger phase space vortices arise by increasing the
electron-to-ion temperature ratio 6, leading to
stronger BGK modes. This can be justified by
paying attention to the role of the electrons.
As 0 increases, hotter electrons can move more
easily and leave the potential well associated
with BGK modes. This in turn increases the



electric field amplitude, hence the amplitude
of DBGK structures, and results in stronger
BGK modes and thus bigger vortex in phase
space. The net result is a substantial velocity
difference between the two ends of the vortex
(in velocity space). This means that the vor-
tex spins faster, and the time periodicity of the
BGK structures becomes shorter. It appears
that the periodicity of dust-BGK modes de-
creases exponentially as the electron-ion tem-
perature ratio (f) increases.

As regards the dependence on the normalized dust
charge density ¢, a similar qualitative result holds (cf.
Figs. 8 and 4), yet in this case presenting a practically
linear curve trend. In the linear regime, the simula-
tion results coincide quite accurately with the theo-
retical expectation. In the nonlinear regimes, on the
other hand, our results provide inspiration for future
theoretical investigations. Admittedly, the question
of DBGK structure stability, lying beyond the scope
of our study, remains unanswered, thus work on this
direction is anticipated.
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The effect of excess superthermal populations of
ions or/and electrons was investigated in Figs.5 and
9, respectively, for DIA and for DA waves. It was
shown that, as expected theoretically, a sharp decline
occurs in the linear Landau damping rate as the wave-
length is increased. A peak was observed in the Lan-
dau damping rate around some wavelength value in
both cases considered, in qualitative agreement with
earlier theoretical considerations?®41:47, Finally, it is
worth mentioning, for the sake of rigor, that a few
differences between theoretical and simulation results
can be identified for DIA waves, in particular; these
will be discussed in detail in forthcoming work*?* (dis-
cussion omitted here, for brevity).
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