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The propagation of linear and nonlinear electrostatic waves is investigated in a magnetized
anisotropic electron-positron-ion (e-p-i) plasma with superthermal electrons and positrons. A two-
dimensional plasma geometry is assumed. The ions are assumed to be warm and anisotropic due
to an external magnetic field. The anisotropic ion pressure is defined using the double adiabatic
Chew-Golberger-Low (CGL) theory. In the linear regime, two normal modes are predicted, whose
characteristics are investigated parametrically, focusing on the effect of superthermality of elec-
trons and positrons, ion pressure anisotropy, positron concentration and magnetic field strength.
A Zakharov-Kuznetsov (ZK) type equation is derived for the electrostatic potential (disturbance)s
via a reductive perturbation method. The parametric role of superthermality, positron content, ion
pressure anisotropy and magnetic field strength on the characteristics of solitary wave structures
is investigated. Following Allen and Rowlands [M. A. Allen and G. Rowlands, J. Plasma Phys.
53, 63 (1995)], we have shown that the pulse soliton solution of the ZK equation is unstable to
oblique perturbations, and have analytically traced the dependence of the instability growth rate
on superthermality and ion pressure anisotropy.

I. INTRODUCTION

In a collisionless medium, the presence of strong mag-
netic field makes the plasma anisotropic, i.e., it behaves
differently in the parallel and perpendicular direction rel-
ative to the external magnetic field [1]. The CGL the-
ory [2] also known as double adiabatic theory, presented
by Chew-Goldberger-Low (CGL) in 1956 is applicable to
such anisotropic plasma provided no coupling exists be-
tween the parallel and perpendicular degrees of freedom
[3]. To describe anisotropic plasma situations, one needs
two separate equations of state to evaluate the ion pres-
sure i.e., p‖i and p⊥i, where p‖i (p⊥i) are the parallel (per-
pendicular, respectively) component of the ion pressure
relative to the ambient magnetic field. Such anisotropy
may be smeared out if there’s a strong correlation be-
tween the parallel and perpendicular directions due to
wave-particle interactions [4, 5]. In Space plasmas, there
are situations where plasma convection results in mag-
netic compression and/or expansion along the field lines.
The magnetic compression leads to an increase in the per-
pendicular temperature T⊥ (relative to magnetic field) of
the particles while expansion leads to a decrease in the
parallel temperature T‖ [4]. This mechanism results in
temperature anisotropy i.e., T⊥i/T‖i 6= 1. Relevant ex-
amples include stream-stream (fast and slow streams of
charged particles) interaction in the solar wind, sunward
flow in the terrestrial and planetary magnetotails and
magnetosheath flow in terrestrial and planetary magne-

tospheres [4].

Electrostatic solitary waves have been studied since
long ago by assuming a Maxwellian particle distribution
for the electron background. However it is well estab-
lished now by evidence from both Space [6–9] and lab-
oratory [10, 11] plasmas, that non-Maxwellian particle
distributions are required to model efficiently the role of
energetic particles, associate with long-tailed (superther-
mal) velocity distributions. Such particles are efficiently
modeled by a generalized Lorentzian velocity distribu-
tion function or a kappa distribution. The form of the
kappa distribution was postulated by Vasyliunas in 1968
[6] to fit observational solar wind data. By now, the
kappa distribution has been employed to describe many
astrophysical and Space plasma situations, e.g. in the
auroral zone [12], in the Earth’s magnetosphere [13], in
the interstellar medium [14] and the solar wind [15]. In-
terestingly, non-Maxwellian particles are also observed in
the lab [10, 11].

Extensive research has recently been devoted to the
effect of superthermal electron distribution on solitary
waves [16–19]. Saini et al. [20] have investigated the
dynamics of electrostatic solitary excitations in the pres-
ence of superthermal electrons by using a pseudopoten-
tial method, and showed that for a fixed Mach number
the profile of solitary waves is steeper and wider than
the usual structures occurring in plasmas. A nonlin-
ear Schrödinger equation formalism was later employed
to describe the role of superthermal particles on elec-
trostatic wavepackets in electron-ion [21] and electron-
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positron-ion [22] plasmas, revealing that superthermality
increases the modulational instability of such wavepack-
ets. The linear and nonlinear dynamics of multidi-
mensional excitations in the presence of superthermal
electrons were recently investigated by Williams and
Kourakis [23]. Ion thermal effects on ion acoustic waves
propagating in a magnetized superthermal plasma have
recently been investigated by Singh et al [24], by us-
ing Sagdeev potential approach, who thus achieved good
agreement with Viking satellite observations in the auro-
ral region.

In order to investigate physical processes of interest in-
volved in the dynamics of real magnetized plasma, there
are various theoretical models based on different assump-
tions and simplifications. Ion pressure anisotropy natu-
rally develops in a low density magnetized plasma, when
the gyro-motion (motion in perpendicular plane) and
the B-field aligned motion are not coupled by collisions
[25]. The magnetic field provides the preferred orienta-
tion, while collisional effects (interparticle collisions, or
collisions with neutrals) tend to drive the plasma to an
isotropic state by evenly distributing the parallel and per-
pendicular momenta with respect to the magnetic field.
If collisionality effects are weak enough (but finite), the
parallel and perpendicular components of the ion pres-
sure tensor may differ, although this difference may be
bounded by instabilities, like firehose, mirror and cy-
clotron instabilities [26]. Space plasmas, our primary
interest, are basically collisionless and hence ion pres-
sure anisotropy can play an important role. Using a fluid
model, Choi et al [4] studied solitary waves in a magne-
tized dusty plasma with anisotropic ion pressure by using
the Sagdeev potential method.

Electron positron ion plasmas (e-p-i) have been the fo-
cus of various studies in recent years [27–32], due to their
occurrence in astrophysical plasma environments, e.g. in
the magnetosphere of neutron stars [33], in active galac-
tic cores [34], and in solar flare plasma [35]. Importantly,
e-p-i plasmas have also been produced in the laboratory
[36–38] and the existence of positrons in other labora-
tory plasmas has been confirmed [39–41]. The process of
electron-positron pair production can occur during the
interaction of a strong laser pulse with plasmas [42–45],
as well as by the interaction of relativistic superther-
mal electrons with high-Z material [46]. The creation
of large numbers of MeV positrons in the laboratory has
led to more antimatter research, including investigation
of the physics underlying various astrophysical phenom-
ena such as black holes and gamma ray bursts, positron-
ium production and Bose-Einstein condensates [47, 48].
Pair-plasma production was also studied for underdense
plasmas and plasma channels [49], when the number of
relativistic electrons can be high, because the laser pulse
can propagate a long distance, whereas the density is lim-
ited by the critical density for the laser pulse. Various
mechanisms can be found for the production of electron-
positron pairs by intense focused laser light pulses; see,
for example, Refs. 50 and 51. Thus the study of the

properties of e-p-i plasmas in the presence of strong and
superstrong laser pulses or non-thermal equilibrium cos-
mic field radiation is of much interest. Currently un-
published results on pair-plasma production via table-
top laser based procedures [52] will generate even more
interest on this topic.

The properties of conventional electron-ion plasma
change due to the presence of positrons (as a priori
obvious from the associated ion-to-electron charge mis-
balance). Importantly, the interaction of high energy
gamma ray photons with the atoms/molecules leads to
the generation of high energy electrons and positrons in
the interstellar medium [53] and the Earth’s upper atmo-
sphere [54–57]. Similarly, the plasma sheet boundary of
earth magneto-tail also contain such energetic particles
(nonthermal) originating partially from the pulsar into
the low density interstellar plasma [58–60].

Our work at hand is motivated by a series of obser-
vations in the magnetosheath, namely by AMPET/CCF
and AMPET/IRM missions, as described in Denton et al
[5], and also partly by the work of Seough et al [26]. Pres-
sure anisotropy also has an essential role in the turbulent
intracluster medium (ICM) as discussed by Nakwacki et
al [61]. They showed that in a low density collision-
less medium, such as ICM the thermal pressure become
anisotropic with respect to the magnetic field orienta-
tion and lead to the evolution of the turbulent gas. The
working hypothesis for ion pressure anisotropy to occur in
such plasma environments is that the ion gyrofrequency
is much larger than the ion-ion collision frequency. Our
aim is to provide a working model for solitary wave re-
lated phenomena in various space and astrophysical en-
vironments in the presence of strong magnetic fields, in
particularly to the magnetosphere and to Earth’s mag-
netosheath [4, 5, 61], where non-thermal electrons with
ion pressure anisotropy may exist.

In this article, we extend earlier work [62] (in fact
also relaxing the plasma neutrality hypothesis adopted
therein), with aim to explore the dynamics of small-but-
finite amplitude ion acoustic solitary waves in magnetized
plasmas characterized by anisotropy and containing su-
perthermal electron and positron components. The pa-
per at hand is organized in the following manner. In
section II, we present the basic set of fluid dynamical
equations for ion-scale electrostatic excitations in magne-
tized anisotropic e-p-i plasma. Section III is dedicated to
a comprehensive analysis of the linear dynamical regime,
and to a discussion of various subcases. A ZK-type evo-
lution equation is derived in section IV, and an analytical
solitary wave solution is presented in Section V. Section
VI is devoted to a parametric investigation in terms of
various plasma parameters of relevance. In Section VII,
we have discussed the stability of obliquely propagating
solitary waves (obtained as solutions of the ZK equation).
Finally, we summarize our results in the concluding Sec-
tion VIII.
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II. FLUID MODEL

We consider the propagation of electrostatic waves in
a magnetized, collisionless three component plasma, con-
sisting of hot ions and kappa distributed inertialess elec-
trons and positrons. The ionic pressure tensor is assumed
to be anisotropic, with respect to the direction of the am-
bient magnetic field, and is modelled via the adiabatic or
Chew- Golberger-Low (CGL) description [2]. The ambi-
ent magnetic field is uniform and assumed to be along
the x̂-axis i.e. B = B0x̂.
The dynamics of the ion fluid is described by the equa-

tions:

∂tni +∇ · (nivi) = 0 (1)

∂tvi+(vi · ∇)vi =
Ze

mi
E +

Ze

mic
(vi ×B0x̂)−

1

mini
∇·P̃i .

(2)
In the case of a strong magnetic field B0, the plasma be-
comes anisotropic and behaves differently in the perpen-
dicular and parallel directions, thus the pressure tensor

P̃i takes the form [4, 62]:

P̃i = p⊥iÎ+
(
p‖i − p⊥i

)
b̂b̂ , (3)

where Î is the unit tensor and b̂ is the unit vector along
the external magnetic field. The perpendicular and par-
allel pressure terms are defined as [4, 62]

p⊥i = p⊥i0

(
ni

ni0

)
and p‖i = p‖i0

(
ni

ni0

)3

,

(4)
where p⊥i0 = ni0Ti⊥ and p‖i0 = ni0Ti‖ are the equilib-
rium values of the ion perpendicular and parallel pressure
respectively. In the isotropic case, p‖i = p⊥i, and there-

fore ∇ · P̃i = ∇pi.
The particle density of the electrons and positron com-

ponents is expressed as

ne = ne0

[
1−

eφ

Te(κe − 3/2)

]−κe+1/2

and

np = np0

[
1 +

eφ

Tp(κp − 3/2)

]−κp+1/2

(5)

respectively, where κe and κp are spectral indices measur-
ing the slope of the energy spectrum of the electrons and
positrons at the tail of the distribution function, hence
the smaller the value of κe the stronger the electron con-
centration in the superthermal region of the distribution
function (similarly for positrons). The Maxwellian limit
is recovered for infinite κ. The system is closed by Pois-
son’s equation:

∇ ·E = 4πe (ni − ne + np) . (6)

The electric field intensity is defined as E = −∇φ, where
φ is the electrostatic potential (a function of space and
time, here). Charge balance at equilibrium requires ni0+
np0 = ne0.

A. Evolution equations in scalar form

Plasma dynamics is essentially two-dimensional (2D),
in this case, since only two direction are of relevance,
say {‖,⊥} = {x, y}, viz. ∇ = (∂x, ∂y, 0). . In other
words, excitations are assumed to evolve and propagate
in the xy-plane, with no loss of generality. Then the
above system takes the form

∂tni + ∂x (nivix) + ∂y (niviy) = 0, (7)

∂tvix + (vix∂x + viy∂y) vix = −
e

mi
∂xφ−

3p‖i0

min3
0ni

n2
i ∂xni,

(8)

∂tviy+(vix∂x + viy∂y) viy = −
e

mi
∂yφ+Ωiviz−

p⊥i0

min0ni
∂yni,

(9)

∂tviz + (vix∂x + viy∂y) viz = −Ωiviy, (10)

and

∂2
xφ+ ∂2

yφ = 4πe (ne − np − ni) . (11)

Here, vix, viy, viz denote the fluid velocity components,

the ion gyro-frequency is defined by Ωi =
eB0

mic
. The quan-

tities e, mi, ne, np, ni, and φ represent the electronic
charge, ion mass, electron fluid density, positron fluid
density and electrostatic potential respectively. Note
that the ionic charge state has been set equal to unity,
i.e. Zi = 1, everywhere.

B. Dimensionless evolution equations

The above system of equations can be written in nor-
malized form as:

∂tni + ∂x (nivix) + ∂y (niviy) = 0, (12)

∂tvix + (vix∂x + viy∂y) vix = −∂xΦ− P‖ni∂xni, (13)

∂tviy + (vix∂x + viy∂y) viy = −∂yΦ+ Ωviz −
P⊥

ni
∂yni,

(14)

∂tviz + (vix∂x + viy∂y) viz = −Ωviy. (15)

In the above relations, the dimensionless parameter Ω

denotes the ratio Ω = Ωi

ωpi
, while P‖ =

3p‖i0

ni0Te
and P⊥ =
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p⊥i0

ni0Te
express the relative strength of the pressure (scaled

by the thermal pressure) in the respective directions.
Assuming small deviations from the equilibrium state,

the particle densities may be expanded as

ne ≃ δ
{
1 + c1Φ+ c2Φ

2 +O(Φ3)
}
, (16)

and

np ≃ p
{
1− d1Φ+ d2Φ

2 +O(Φ3)
}
, (17)

where the coefficients c1, c2, d1 and d2 are functions of
the κ parameter(s):

c1 =

(
κe − 1/2

κe − 3/2

)
, c2 = c1

κe + 1/2

2(κe − 3/2)
,

d1 = σe

(
κp − 1/2

κp − 3/2

)
, d2 = d1

σe(κp + 1/2)

2(κp − 3/2)
. (18)

Accordingly, Poisson’s equation takes the form:

∂2
xΦ+ ∂2

yΦ ≃ 1− ni + µΦ+ νΦ2 . (19)

The terms µ and ν are defined as,

µ = (δc1 + pd1) and ν = (δc2 − pd2).

In the vanishing positron limit (p = 0), µ → c1 and ν →
c2; if, furthermore, one takes κe,p → ∞, one is led to µ =
2ν = 1, as expected [63]. Similarly in the “Maxwellian”
e-p-i plasma limit (κe,p → ∞), the expressions for the
coefficients reduce to µ → δ+σep and ν → 1/2(δ−σ2

ep).
Overall charge neutrality at equilibrium imposes

δ = 1 + p. (20)

we have defined the ratios

δ = ne0/ni0 p = np0/ni0, σe = Te/Tp ,

where ne0, np0 and ni0 represent the unperturbed
value(s) of the electron, positron and ion densities, while

Te and Tp denote the electron and positron temperature,
respectively. Note that c1, c2, d1 and d2 are positive for
all values of κe/κp greater than 3/2. In writing down the
above system, we have adopted the following normaliza-
tion scheme: the space and time variables are scaled by

the ion Debye radius λDi =
(
kBTe/4πni0e

2
)1/2

and the

inverse ion plasma frequency ω−1
pi =

(
mi/4πni0e

2
)1/2

, re-

spectively; the number density variables nj (for species
j = e, p, i) have been scaled by the equilibrium ion den-
sity ni0; the electrostatic potential φ has been scaled by
(Te/e); the ion fluid speed (components) have been nor-

malized by the ion sound speed cs = (Te/mi)
1/2

.

III. LINEAR ANALYSIS

The standard linear procedure consists of Fourier an-
alyzing Eqs.(12-19), by assuming small perturbations ∼
ei(kxx+kyy−ωt). One thus obtains a linear dispersion re-
lation (DR) in the form:

1 =

(
1

k2 + µ
+ P‖

)
k2x
ω2

+

(
1

k2 + µ
+ P⊥

)
k2y

ω2 − Ω2
,

(21)
where k2 = k2x + k2y. Recall that kx = k‖ and ky = k⊥
essentially correspond to the wavenumber (component)
in the parallel and perpendicular direction(s), respec-
tively. The structure of the above DR is self-explanatory:
one notices the superthermality effect via µ (recovering
a Maxwellian limit for κe,p → ∞), as well as the effect of
the ion pressure anisotropy through the appearance of (in
fact, the difference between) P‖ and P⊥. The magnetic
field affects the dynamics via its strength, through the
ratio Ω (defined above), but also qualitatively, setting up
a cylindrical plasma symmetry via the distinct variables
kx and ky. Equation (21) can be solved for the frequency
(square) to give:

ω2
± =

1

2



(

k2

k2 + µ
+ k2xP‖ + k2yP⊥ +Ω2

)
±

√√√√
{(

k2

k2 + µ
+ k2xP‖ + k2yP⊥ +Ω2

)2

− 4

(
k2x

k2 + µ
+ P‖k2x

)
Ω2

}
 ,

(22)

where ω+ and ω− (< ω+) define a fast and a slow elec-
trostatic branch, respectively.

For the sake of rigor, and for later reference, let us
point out that the lower branch (“slow” wave), ω−, de-
fines an acoustic mode, viz. ω− −→

k→0
0 . In particular, the

limit

lim
kx→0

(
ω−

kx

)
=

(
1

µ
+ P‖

)1/2

(23)

provides the phase speed of the magnetoacoustic mode,
that is, in fact, the true sound speed for quasi-parallel
propagation in the presence of anisotropy, as discussed
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in the next section (equation(34)). Note that the latter
relation reduces to unity in the limit P‖ = 0 (cold ions)
and δ = µ = 1 (Maxwellian electrons), i.e. precisely the
ion sound speed (in reduced units). The anisotropy of
the dynamical problem is manifested by the inequality
P‖ 6= P⊥, as obvious upon inspection of Eqs. (21)-(22).
The upper mode, on the other hand, presents a frequency
gap ω+ → Ω at k → 0 (ky = kx = 0), and corresponds,
physically, to upper-hybrid oscillations. It is interesting
to note that, for ky 6= kx = 0 (i.e. for propagation which
is not strictly p), the frequency gap depends on ky.

A. Asymptotic behavior

It may be appropriate to study the analytical behavior
of ω2

± for large wavelength (small wavenumber) values,
based on Eq. (22). Using a Taylor expansion, assuming
that both kx ≡ k‖ ≪ 1 and ky ≡ k⊥ ≪ 1 (in scaled

units) holds, one may express ω2
± as

ω2
− ≈

(
1

µ
+ P‖

)
k2x −

1

µ2

[
1 + µ(P‖ + P⊥ + µP‖P⊥)

Ω2
+ 1

]
k2xk

2
y +O(k3x, k

3
y) , (24)

and

ω2
+ ≈ Ω2 +

(
1

µ
+ P⊥

)
k2y +

1

µ2

[
1 + µ(P‖ + P⊥ + µP‖P⊥)

Ω2
− 1

]
k2xk

2
y +O(k3x, k

3
y). (25)

We notice that the former (acoustic) mode is essentially
related to parallel propagation, and depends paramet-
rically (weakly) on ky and on B, viz. the phase speed
(square) for parallel propagation is

ω2
−

k2x
≈

1

µ
+ P‖ −

1

µ2

[
1 + µ(P‖ + P⊥ + µP‖P⊥)

Ω2
+ 1

]
k2y

+O(k1x, k
3
y) ; (26)

cf. (23). On the other hand, the latter (Langmuir-like,
with cutoff) branch is dominant for larger angles, i.e. for
strong deviation from the direction of the magnetic field.
For perpendicular propagation, viz. kx → 0, the second
mode becomes parabolic, i.e. becomes reminiscent of an
electromagnetic magnetic-field dependent mode.
For large kx ≫ 1, the lower (acoustic) mode in Eq.

(24) saturates as ω2
− → Ω2 (zero phase speed for short

wavelength), while the upper one (25) goes to infinity as
ω2
+ ≈ P‖k

2
x, i.e. results in a thermal mode, sustained by

the (parallel component of the) ion pressure.
The above observations will help the reader understand

the behavior of the dispersion branches, as depicted in
the following.

B. Parametric investigation of the linear dispersion
characteristics

It appears imposed to investigate the behavior of our
dispersion relation Eq. (22) for different values of the
spectral parameter (κ), positron concentration (via p)
and magnetic field strength (Ω). These three aspects
are shown in the behavior of the two dispersion branches

versus the parallel wavenumber (component) kx, as de-
picted in Figure 1. It can be seen from Fig. 1a that the
frequencies of both branches decrease with lower value of
κ, i.e. for stronger deviations from the Maxwellian refer-
ence state (and, in fact, this effect is more visible on the
fast mode). Figure 1b depicts the effect of positron con-
centration p on the frequencies based on the dispersion
relation described by Eq. (22). It is evident that in-
creasing the positron concentration tends to decrease the
frequencies of both the fast and slow modes as shown in
figure 1(b). In Figure 1c, we have shown how the disper-
sion curve changes with varying magnetic field strength
(through Ω). The acoustic mode (lower branch) increases
its phase speed as Ω goes higher, for small values of kx,
and eventually attains a constant asymptotic value at
large kx. On the other hand, the cyclotron mode (upper
branch) increases sharply at small value of kx with Ω, and
then the curve converges to a linear behavior for larger
kx. The above observations could also be predicted from
the information in the previous subsection: e.g., cf. (24)
and (25).

In Figure 2 we have investigated the effects of ion pres-
sure anisotropy (via P‖, P⊥) on the dispersion relation.
Figure 2a exhibits how the parallel (ionic) pressure P‖

affect the frequencies in the fast and slow modes in the
case when P‖ is greater than its perpendicular counter-
part P⊥, i.e., P‖ > P⊥. It is clear that for a fixed value of
P⊥, an increase in P‖ leads to an increase in the frequency
of both modes. On the other hand, considering the case
P⊥ > P‖ now, by keeping P‖ fixed and increasing the per-
pendicular pressure P⊥, one observes the opposite trend
in P⊥, as shown in figure 2b: increasing P⊥ results in en-
hancement of the upper mode (frequency), while it slows
down the lower mode; in other words, the effect of P⊥
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FIG. 1: Dispersion relation based on Eq. (22) for ky = 0.3,
σe = 1, with:
(a) (Upper panel) P‖ = 0.02, P⊥ = 0.01, p = 0.2,Ω = 0.3,
and: κe = κp = κ = 3 (blue solid lines), κe = κp = κ = 5
(red dashed lines), κe = κp = κ = 10 (black dot-dashed lines);
(b) (Middle panel) P‖ = 0.01, P⊥ = 0.1,Ω = 0.3, κe = κp =
κ = 3, and: p = 0 (blue solid lines), p = 0.2 (red dashed
lines), p = 0.4 (black dot-dashed lines);
(c) (Lower panel) p = 0.2, κe = κp = κ = 3, P‖ = 0.375,
P⊥ = 0.05, and: Ω = 0.3 (blue solid lines), Ω = 0.5 (red
dashed lines), Ω = 0.8 (black dot-dashed lines).

(> P‖) consists in separating the two modes. These ob-
servations agree, qualitatively speaking, with Eqs. (24)
and (25) above.

Let us highlight some of the important features of Fig-
ure 2a and 2b. In Fig. 2a, one can see that the frequencies
in the fast mode do not change with P‖ for very small kx
and yet increase sharply for larger kx. In the lower mode,
the frequencies vary with P‖ for kx → 0 but attain a con-
stant saturated values at larger kx. Similarly in Figure
2b, we can see that the effect of P⊥ on the lower mode is
dominant in the short wavelength limit (large kx), while
it bears a constant effect on the upper mode for all kx.
The numerical values of P‖ and P⊥ are chosen such that
we do not exceed the limits of Ti⊥ and Ti‖ plotted in
Ref. 26; furthermore, when considering the ion pressure
anisotropy cases (i.e., the relative strength of P‖ 6= P⊥),
we have employed data from Ref. 5.

0.2 0.4 0.6 0.8
kx

0.2

0.4

0.6

0.8

Ω

HaL

0.2 0.4 0.6 0.8
kx

0.1

0.2

0.3

0.4

0.5

0.6

Ω

HbL

FIG. 2: Dispersion relation based on Eq. (22) for ky = 0.3,
σe = 1, p = 0.2, Ω = 0.3 and κe = κp = κ = 3, with:
(a) (Upper panel) P⊥ = 0.05, P‖ = 0.3 (blue solid lines),
P‖ = 0.6 (red dashed lines), P‖ = 0.9 (black dot-dashed lines);
(b) (Middle panel) P‖ = 0.1, P⊥ = 0.3 (blue solid lines),
P⊥ = 0.6 (red dashed lines), P⊥ = 0.9 (black dot-dashed
lines).

C. Limiting Cases

It may be appropriate here, to consider some special
cases. We point out that all known related physical sys-
tems are rigorously recovered as special cases from our
algebraic analysis above, in the appropriate limit.
a. Electron-ion plasma. Our results apply in the e-i

limit (i.e., for p = 0 and δ = 1), where Eq. (13) in Ref. 62
is precisely recovered in the small k limit (in account of
the neutrality hypothesis adopted therein). Our results
thus extend those of Ref. 62 for larger k, beyond the
plasma approximation.
b. Cold-ion model. The cold-ion-electron case con-

sidered in Ref. 23 is recovered here, for p = P‖ = P⊥ = 0
and setting Ω = 0 (for unmagnetized plasma), thus re-

covering the dispersion relation ω2 =
k2

x

k2+µ .

c. Maxwellian-electron isotropic plasma. The case
of Maxwellian-electron-ion plasma with isotropic ion
pressure treated in Ref. 64 is recovered here, upon for-
mally considering p = 0, c1 → 1 (i.e., κe → ∞) and

∇ · P̃i = ∇pi, viz., pi⊥ = pi‖. In this case, we obtain:

ω4−

(
k2

k2 + 1
+ σk2 +Ω2

)
ω2+

(
k2x

k2 + 1
+ σk2x

)
Ω2 = 0,

(27)
where σ here represents the temperature ratio Ti/Te. In
the limit k ≪ 1, one obtains the result of Ref. 64, yet here
extended to larger values of k (since Poisson’s equation
was adopted in our work, instead of the simplistic plasma
approximation [64]).
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d. Parallel propagation. Wave propagation parallel
to the magnetic field may be considered by taking ky −→
0 (thus kx = k), whence Eq. (22) becomes,

ω2(k) =
k2

k2 + µ
+ P‖k

2 . (28)

This is the dispersion relation for parallel propagating
electrostatic waves in a hot magnetized plasma, with su-
perthermal electrons and positrons. It is evident that
neither the magnetic field strength, nor ion pressure
anisotropy, though both formally considered here, affect
the characteristics for parallel propagation, i.e., Ω and
P2 do not appear in the latter relation. The true sound
speed in the parallel direction to the magnetic field is thus
given by considering the phase speed in (28) for small k,
which readily recovers Eq. (23) [or Eq. (34)] above, as
expected.
e. Perpendicular propagation. Considering kx −→ 0

(thus, ky = k) in Eq. (22), leads to

ω2(k) = Ω2 +
k2

k2 + µ
+ P⊥k

2, (29)

for magnetoacoustic waves in anisotropic superthermal
e-p-i plasma. One clearly distinguishes the effect of the
magnetic field, in the second, of the plasma configuration
(via µ), in the second, and of P⊥ in the thermally driven
last term (sole to survive for infinitely large k).

IV. NONLINEAR ANALYSIS

In this section, we shall investigate the nonlinear be-
havior of electrostatic waves in anisotropic magnetized
e-p-i plasma with suprathermal electron and positron dis-
tribution. We adopt the reductive perturbation method
[65], by considering a “stretching” (rescaling) of the in-
dependent variables as:

X = ε1/2 (x− λt) , Y = ε1/2y, τ = ε3/2t, (30)

where ε is a small expansion parameter(0 < ε ≪ 1), and
λ represents the wave phase velocity, to be determined
later. Accordingly, the state variables are expanded as

ni ≃ 1 + εni1 + ε2ni2 + ε3ni3 + · · ·

vix ≃ εvix1 + ε2vix2 + ε3vix3 + · · ·

viy ≃ ε3/2viy1 + ε2viy2 + ε5/2viy3 + · · · (31)

viz ≃ ε3/2viz1 + ε2viz2 + ε5/2viz3 + · · ·

Φ ≃ εΦ1 + ε2Φ2 + ε3Φ3 + · · ·

where the meaning of the various quantities is obvious.
Note that the transverse components (viy, viz) of the
ion fluid speed appear to evolve more slowly (at higher
order in ε) than the parallel velocity component vix; gyro-
motion is thus treated as higher order effect.

Substituting the above scaling ansatz into the evolu-
tion Eqs. (12)- (19) and collecting terms arising in lowest
order

(
∼ ε3/2

)
, we obtain

vix1 = λni1,

∂Xvix1=
1

λ

(
∂XΦ1 + P‖∂Xni1

)
, (32)

viy1 = 0,

viz1 =
1

Ω
(∂Y Φ1 + P⊥∂Y ni1) .

To lowest order (∼ ε), Poisson’s equation leads to

ni1 = µΦ1. (33)

Combining the latter expressions, one may determine the
(lowest-orded) pulse propagation speed λ,

λ =

(
1

µ
+ P‖

)1/2

, (34)

which thus comes out to be precisely the sound speed,
as extracted from our linear analysis earlier; cf. Eq.
(23). Note that the value of the (true) sound speed
depends on superthermality (through c1, d1 involving κ)
and on the positron concentration through p, along with
the ion pressure P‖. (Importantly, the phase veloc-
ity of the ion acoustic wave λ is independent of the
perpendicular pressure component (P⊥).) In the limit
κe,p → ∞, and assuming cold ions, the above expres-
sion gives λ → 1, which represents the normalized sound
speed in Maxwellian conditions.
In Figure (3) we have shown how the phase velocity λ

varies with superthermality under the effect of positron
concentration and parallel ion pressure P‖. One can see
that, for lower values of κ (strong superthermality) the
phase velocity is reduced, while as κ → ∞, the phase
velocity asymptotically approaches a constant value, viz.
λ →

√
P‖, suggesting a pressure-driven “thermal” wave.

We observe that increasing the value of p (positron con-
tent) suppresses the phase velocity curves, while on the
other hand, increasing P‖ leads to an increase in λ. These
results are in agreement with the discussion accompany-
ing our lines analysis above; cf. Figs. 1-2.
Collecting the next higher-order

(
∼ ε5/2

)
contribution

from the ion continuity equation, we obtain

−λ∂Xni2 + ∂Y viy2 + ∂Xvix2 = −∂τni1 − ∂X (ni1vix1) .
(35)

Similarly, the next higher-order contributions from the
(three components of the) ion momentum equation are,
respectively:

−λ∂Xvix2 + ∂XΦ2 + P‖∂Xni2 = −∂τvix1 − vix1∂Xvix1

− P‖nix1∂Xnix1, (36)

viy2 =
λ

Ω
∂Xviz1 and viz2 = −

λ

Ω
∂XviY 1. (37)
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FIG. 3: Plot of the phase velocity λ against κ for σe = 1 and:
(a) (top curves) p = 0, P‖ = 0 (blue solid line), P‖ = 0.1 (red
dashed line), P‖ = 0.15 (green dot-dashed line);
(b) (bottom curves) P‖ = 0, p = 0.2 (blue solid line), p = 0.3
(red dashed line), p = 0.4 (green dot-dashed line).

In order
(
∼ ε2

)
, Poisson’s equation yields

µΦ2 − ni2 = ∂2
XΦ1 + ∂2

Y Φ1 − νΦ2
1. (38)

Eliminating the second-order perturbed quantities and
making use of the first order results, we obtain a nonlin-
ear partial derivative equation (PDE) in the form of the
Zakharov-Kuznetsov (ZK) equation,

∂Φ1

∂τ
+AΦ1

∂Φ1

∂X
+

∂

∂X

(
B
∂2Φ1

∂2X
+ C

∂2Φ1

∂2Y

)
= 0 . (39)

The real coefficients A (accounting for nonlinearity), B
and C (dispersion) are given by:

A = B
[
µ2
(
3 + 4µP‖

)
− 2ν

]
,

B =
1

2

1

µ3/2
√

1 + µP‖

, (40)

C = B

[
1 +

(
1 + µP‖

)
(1 + µP⊥)

Ω2

]
.

We point out that A and B do not depend on the per-
pendicular ion pressure component (P⊥), as expected,
since quasi-parallel solitary wave propagation was essen-
tially considered (recall the scaling ansatz (30) adopted
above).
We add, for rigor, that in all of the limiting cases dis-

cussed earlier, our results match with previous works.
For example, in the absence of positrons (p = 0), Eq.
(40) agrees with Eq. (31) in Ref. 62. In the cold-ion
limit, we exactly recover the expressions in Ref. 23. In
the Maxwellian limit (for both electrons and positrons),
viz. κe,p −→ ∞ (i.e., c1 = 2c2 = d1 = 2d2 = 1), we find

A = B[(1 + 2p)2{4(1 + 2p)P‖ + 3)} − 1],

B =
1

2

[
(1 + 2p)−3/2

√
1 + P‖(1 + 2p)

]
,

C = B

[
1 +

{1 + P‖(1 + 2p)}{1 + P⊥(1 + 2p)}

Ω2

]
, (41)

The electron-ion case is obtained from the latter expres-
sions upon setting p = 0 (no positrons), as

A = B(4P‖ + 2),

B =
1

2

[
1√

1 + P‖

]
, (42)

C = B

[
1 +

(1 + P‖)(1 + P⊥)

Ω2

]
.

At this stage, one may readily recover the textbook limit
expression for A,B and C [66], for P‖ = P⊥ = 0, i.e.

A = 1, B =
1

2
, C =

1

2

(
1 +

1

Ω2

)
. (43)

V. SOLITARY WAVE SOLUTION

A standard qualitative approach to modeling a lo-
calized electrostatic excitation consists in considering a
pulse-shaped solitary wave solution of the ZK equation
(39), in analogy with the (one-dimensional) Korteweg-de
Vries (KdV) picture [66]. This may be obtained by using
the hyperbolic tangent (tanh) method [67]. According to
this method, one considers the variable transformation
ξ = χ (lxX + lyY − u0τ), where χ denotes the inverse of
the soliton width and u0 represents the pulse velocity in-
crement above the sound speed. Here, lx and ly are the
directional cosines of the wave vector k along the X and
Y directions, respectively, satisfying l2x+ l2y = 1.

Considering vanishing asymptotic values at infinity,
one obtains the analytical solution:

Φ1 = Φmsech2(ξ). (44)

Details on the algebraic procedure can be found in Ap-
pendix A of Ref. 23, thus including these here is deemed
unnecessary. Note that the KdV soliton solution [66] is
readily obtained upon setting ly = 0 in Eq.(44).
It is clear from the above solution that the maximum

value of the amplitude Φm = 3u0

lxA
is determined by the

nonlinearity coefficient A, while the width of the solitary

wave structure W = χ−1 =

√
4lx(Bl2x+Cl2y)

u0

depends on

the dispersive coefficients B and C.
It is important to mention here, that the perturba-

tion method adopted here assumes a finite obliqueness
in the wave propagation direction with respect to the
magnetic field (expressed via an angle θ = tan−1(ly/lx));
nonetheless, the model breaks down for purely transverse
propagation (lx = 0) [68].
The electric field disturbance E =−∇Φ1 reads

E =

(
EX

EY

)
= 2Φmχsech2(ξ) tanh(ξ)

(
lx̂
lŷ

)
. (45)

Interestingly, only positive potential pulses are
predicted though the above analysis: to see this,
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note that the polarity of the pulse in Eq.(44) is
prescribed by the sign of the nonlinearity coeffi-
cient A in Eq.(41), which is here positive. It must
be pointed out, for rigor, that the predictions
resulting from the perturbative small-amplitude
approach adopted here is not conclusive in what
regards the pulse polarity. In fact, in general,
space plasma observation reveal solitons (pulses)
of either positive or negative polarity. This actu-
ally depends on the physics of the plasma, that
is, actually on the plasma configuration (con-
stituents, concentration, inertial versus e.g. sta-
tionary species, and so on). This polarity co-
existence is neatly predicted by (large-amplitude)
the Sagdeev pseudopotential theory [69–72]. On
the other hand, small-amplitude methods (reduc-
tive perturbation techniques) account for weakly
superacoustic pulses only, and actually predict
only one or the other (plus/minus) polarity, thus
failing to describe the polarity reversal in a given
plasma configuration. However straightforward
to show in 1D, the Sagdeev-type analysis in a
2D/3D geometry is rather tedious and involves
physical constraints (e.g. adopting the neutrality
hypothesis, for the sake of analytical tractability;
refer to the discussion in [73]. We have chosen to
proceed with the above analysis in the following,
leaving a detailed large-amplitude analysis for a
future work.

VI. PARAMETRIC INVESTIGATION

We recall that the nonlinearity coefficient A depends
on superthermality (through κ), on the positron concen-
tration (via p) and on the parallel ion pressure P‖. On
the other hand, the dispersive coefficients B and C are
functions of kappa, of the parallel ion pressure compo-
nents (P‖, P⊥), and also depend on the positron con-
tent through p. Furthermore, C (only) depends on the
magnetic field strength through Ω. We have seen above
that the value of these coefficients affects the structural
characteristics of the pulse. It is thus appropriate to in-
vestigate how the value of these coefficients varies with
respect to these parameters.

A. Effect of superthermal particles

In this section we have plotted coefficient A, B and C
against the superthermality parameter (assuming κe =
κp = κ for simplicity), focusing successively on the ef-
fect(s) of positron concentration, parallel ion pressure
and magnetic field.
In Figure 4, we have depicted the effect of superther-

mality on the coefficients A, B and C, for different values
of positron concentration. It is observed that stronger su-
perthermality (lower value of κ) leads to higher A, but to
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FIG. 4: The coefficients A, B and C are depicted against κ

(= κe = κp, assumed for simplicity), focusing on the positron
concentration effect. Here, P‖ = 0.3, σe = 1, Ω = 0.3. (a)
Nonlinearity coefficient A versus κ, for p = 0 (blue solid line),
p = 0.2 (green dashed line), and p = 0.4 (red dot-dashed
line); (b) Parallel dispersion coefficient B versus κ, for p = 0
(blue solid line), p = 0.2 (green dashed line), and p = 0.4 (red
dot-dashed line); (c) Parallel dispersion coefficient C against
κ, for p = 0 (blue solid line), p = 0.2 (green dashed line), and
p = 0.4 (red dot-dashed line).

lower B and C values. For large κ, all coefficients tend
to constant values, as predicted in the previous Section
(discussion about the Maxwellian limit).

A variation in positron content bears the reverse effect
on the (value of the) coefficients. It is clear from Figure 4,
that by increasing the value of p, the nonlinear coefficient
A tends to increase, while the dispersive coefficients B
and C is suppressed.

In Figure 5 we have plotted the coefficients A and B
against κ, but this time focusing on the effect of the par-
allel pressure P‖. We observe that, for all values of kappa
(κ), increasing P‖ leads to an increase in the nonlinearity
coefficient A, but to a decrease in the dispersive coeffi-
cient B (and, consequently, C).

From Eq. (40) it is clear that coefficients A and B
are independent of the ion perpendicular pressure P⊥.
The perpendicular dispersion coefficient C, on the other
hand, has a strong dependence on P⊥ and on the mag-
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FIG. 5: Plot of A and B versus κ, focusing on the effect of
P‖. We have assumed σe = 1. (a) A versus κ, for P‖ = 0.3
(blue solid line), P‖ = 0.4 ( green dashed line), P‖ = 0.7 (red
dot-dashed line). (b) B versus κ, for P‖ = 0.3 (blue solid
line), P‖ = 0.4 (green dashed line), P‖ = 0.7 (red dot-dashed
line).
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FIG. 6: Coefficient C versus κ for P‖ = 0.3, P⊥ = 0.1, σe = 1
and p = 0.2.
(a) C versus κ, based on Eq. (40), for values of Ω < 1. The
dashed (orange), solid (green) and dot-dashed (red) curves
correspond to values of Ω = 0.1, 0.3 and 0.4 respectively.
(b) C versus κ, based on Eq. (40), for values of Ω ≥ 1. The
dashed (orange), solid (green) and dot-dashed (red) curves
correspond to values of Ω = 1, 5 and 7 respectively.
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FIG. 7: Coefficients A and B versus P‖, for different values
of p. We have considered the values: κe = κp = κ = 3 and
σe = 1. (a) A versus P‖ for p = 0 (blue solid line), p = 0.1
(green dashed line) and p = 0.2 (red dot-dashed line); (b) B

versus P‖, for p = 0 (blue solid line), p = 0.1 (green dashed
line) and p = 0.2 (red dot-dashed line).

netic field through the frequency ratio Ω. In figure 6a
we have shown how the coefficient C is influenced by
the magnetic field in the presence of superthermal elec-
trons and positrons, in the case of a weak magnetic field
(Ω < 1), while the analogous plots for a strong magnetic
field (Ω ≥ 1) are provided in Figure 6b.

Anisotropy effect. The coefficients of the ZK equation
are explicitly dependent on the parallel and perpendicu-
lar components of the ion pressure, P‖ and P⊥. In the
following, we shall study the behavior of coefficients A
and B against P‖, and of C against P‖ and P⊥.

In Figure 7, we have depicted the dependence of A
and B versus the ion parallel pressure P‖, focusing on
the effect of (varying) the positron concentration. Both
coefficients A and B are strongly dependent on P‖; it is
seen that a higher positron content in the plasma makes
A larger, but B smaller: positrons thus favor nonlinear-
ity, against dispersion.

In Figure 8, we have plotted the coefficients A and
B against P‖, this time focusing on the superthermality
effect. Stronger superthermality (lower κ values) reduces
A but increases B.

The dispersive coefficient C depends on both P‖ and
P⊥. In Figure 9, we have shown the effect of ion pressure
anisotropy on coefficient C both in superthermal plasma
as well as in Maxwellian plasma. The dependence of C
on P⊥ turns out to be stronger than on P‖, as evident in
Figure (9). On the other hand, C is significantly reduced
as result of superthermality.
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FIG. 8: Coefficients A and B versus P‖, for different values of
the superthermality index κ, taking p = 0.1 and σe = 1. (a)
A versus P‖ for κe = κp = κ = 3 (blue solid line), κe = κp =
κ = 5 (green dashed line), κe = κp = κ = 7 (red dot-dashed
line); (b) B versus P‖ for κe = κp = κ = 3 (blue solid line),
κe = κp = κ = 5 (green dashed line), κe = κp = κ = 7 (red
dot-dashed line).
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FIG. 9: Effect of P‖ and P⊥ on the coefficient C, for p = 0,
Ω = 0.3 and σe = 1. The bottom two (brown) curves are
plotted with κe = κp = κ = 3, while the upper two (red)
curves are plotted for a Maxwellian distribution function. In
both top and bottom curve pairs, the values of P‖ = 0.1
(dashed lines) and P⊥ = 0.1 (solid lines) were considered.

VII. PULSE STABILITY ANALYSIS

In this section, we investigate the stability of the soli-
ton pulse solution (44), following the method proposed
by Allen and Rowlands (AR) in Ref. 74.

We have had to performed two distinct preliminary
tasks, before proceeding with the AR method, properly
speaking. First, using an appropriate scaling, we have
reduced our ZK equation (39) to its “canonical” form;
cf. Eq. (1.1) of Ref. 74. Details are given in the Ap-
pendix. It is obvious that this amounts to significant
algebraic simplification, yet somewhat against physical

transparency, in that important parameters (like Ω, for
instance) are thus “hidden” in the variables, rather than
the coefficients. Importantly, the space asymmetry which
is induced by pressure anisotropy and by the magnetic
field (direction) is also “obscured” by a variable trans-
formation, in this way. We have therefore had to reverse
back to the original variables, to ensure the consistency
of our solitary wave solution (44) with Eq. (1.2) of Ref.
74, which is the solution of their (canonical) ZK equation;
again, details are given in the Appendix.
Applying an appropriate transformation (see Ap-

pendix A), our ZK equation reduces to

∂Φ̂

∂T ′ + Φ̂
∂Φ̂

∂X ′ +
∂

∂X ′

(
∂2Φ̂

∂2X ′ +
∂2Φ̂

∂2Y ′

)
= 0, (46)

which is exactly the same as Eq. (1.1) of Ref. 74, upon

a trivial change in notation (formally setting Φ̂ = n
therein).
Since a transformation exactly reduces our ZK equa-

tion to the form discussed in Ref. 74, we shall content
ourselves to highlighting the main points of the stability
investigation [74], without reproducing the derivations.
The reader is referred to the original Ref. 74 for a de-
tailed account of the algebra.
Following Allen and Rowlands, we have applied the

following solution to Eq. (46)

Φ̂ = Φ0 + ǫΦ(x) eikyeγt, (47)

where Φ0 is the exact solution of Eq. (46), k is the wave
vector (transverse direction), and γ is the measure of the
growth rate of the instability (which occurs for Reγ 6= 0.)
The function Φ(x) is determined by adopting a multiscale
perturbation method, relying on an expansion in k (de-
tails can be found in Ref. 74).
In the limit of small k (≪ 1), the growth rate for in-

stability is proportional to the real part of γ (i.e., Reγ),
can be written as:

Γ = kγ1 + k2γ2 + ......, (48)

where γ1 gives the instability up to first order, γ2 gives
the instability in second order, and so on. A lengthy
calculation leads to

γ1 =
8

3

[(
8

5
cos2 θ − 1

)1/2

+ i sin θ

]
, (49)

where θ is the angle between the transverse component of
the perturbation and the direction of the magnetic field.
For instability to occur in first order, one must impose
8
5 cos

2 θ− 1 < 0, thus θ > 37.8◦. The growth rate is then

given by Γ ≃ kγ1 +O(k2).
If the configuration is stable up to first order (∼ k),

i.e. assuming a small-angle perturbation (θ < 37.8◦),
one may still have instability in the second order (∼ k2);
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the growth rate then reads: Γ ≃ k2γ2 +O(k3) [74], with
γ2 given as:

γ2 = −
4

9

(
8

5
cos2 θ − 1

)
sec θ +

4(5 + 4 cos2 θ)i tan θ

45( 85 cos
2 θ − 1)1/2

.

(50)
One can summarize the instability analysis of AR [74]

for small k, in the following manner:
i) If θ < θcr ≃ 37.8◦, then the growth rate of the

instability Γ is given by

Γ = Γ1 = k Re(γ1) +O(k2) ≃ k
8

3

(
8

5
cos2 θ − 1

)1/2

.

(51)
ii) If θ > θcr ≃ 37.8◦, then the growth rate is expressed

as,

Γ = Γ2 = k2Re(γ2) +O(k3) ≃ k2
4

9
(1−

8

5
cos2 θ) sec θ.

(52)
In order to obtain a working expression for the insta-

bility growth rate in terms of our physical model, we have
to determine a transformation leading from eq. (46) back
to our original ZK equation (39), namely relying on the

scales Φ0 = B
L2

‖
A
, T0 =

L3

‖

B , L‖ and L⊥ = L‖

(
C
B

)1/2
, for

Φ, time, x and y respectively. Using the above scaling,
we have set (based on our model)

k → kL⊥, γ1 → γ1T0 γ2 → γ2T0, (53)

to cast equations (51) and (52) into the form

Γ = Γ1 ≃ k
(BC)1/2

L2
‖

8

3

(
8

5
cos2 θ − 1

)1/2

(54)

and

Γ = Γ2 ≃ k2
C

L‖

4

9

(
1−

8

5
cos2 θ

)
sec θ (55)

respectively. In the above algebraic steps, B and C are
as defined earlier, and L‖ ∈ ℜ is left arbitrary in the
algebra (in fact, is typically corresponds to the Debye
length, qualitatively speaking).
We have numerically studied the dependence of the

growth rate of the instability on our plasma parameters,
namely κ, p, P‖ and P⊥. In Figure 10, we have depicted
the growth rate Γ1 versus θ, based on Eq. (54), focusing
on the effect of the electron and positron superthermality
(index) κ, on the positron content (through the density
ratio p) and on the ion pressure anisotropy (through P‖

and P⊥). It is clear from Figure 10 that the growth Γ1

goes to zero as θ → θcr = 37.8◦. However, for smaller
values of θ (0 ≤ θ < 37.8◦), increasing superthermality
(i.e., reducing the value of κ) shrinks down the growth
rate: deviation from the Maxwellian distribution seems
to suppress the instability therefore; see Fig. 10b. An
increase in the positron population (higher p) bears the

same effect, namely it suppresses the instability; see Fig.
10c. One can see in Figure 10c that the ion parallel
pressure P‖ bears a negligible effect on the growth rate
(Γ1). On the other hand, increasing P⊥ enhances the
growth rate.
In an analogous manner, in Figure 11 we have plotted

the second order instability growth rate Γ2 versus θ based
on Eq. (55). One can see that the growth rate (Γ2)
increases sharply beyond θ > 37.8◦, yet the quantitative
effect of our plasma parameters κ, p, P‖ and P⊥ appears
to be small saturates at large θ.

VIII. CONCLUSIONS

In this article, we have investigated the propagation
characteristics of ion acoustic excitations in magnetized
plasma characterized by inertialess suprathermal elec-
trons and positrons, and warm anisotropic ions. Both
linear (waves) and nonlinear (pulses) structures were con-
sidered. The anisotropy in terms of the ion pressure
tensor asymmetry is modeled through CGL theory [2].
In the linear regime, we have obtained two dispersion
curves, corresponding to magnetized ion acoustic and ion
cyclotron modes in e-p-i plasma. The linear analysis can
be summarized as:
– Increasing the superthermality parameter (κ) of elec-

tron and positron causes both electrostatic modes (i.e.,
ion acoustic and ion cyclotron) to propagate at higher
phase velocity.
– By increasing the positron population through p =

np0

ni0
, the frequency of both modes decreases i.e., increas-

ing positrons in the system make waves slower.
– Increasing the magnetic field strength through Ω =

Ωi

ωpi
, the phase velocities also increases.

- For fixed perpendicular pressure component P⊥, in-
creasing the parallel pressure element P‖ enhances the
phase velocity in both modes. On the other hand, fix-
ing P‖ and increasing P⊥ increases the frequency of the
upper mode, while the acoustic mode is slowed down.
In the nonlinear regime, we have considered localized

perturbations in a two-dimensional geometry. We have
employed a reductive perturbation method to derive a
Zakharov-Kuznetsov (ZK-)type equation, which admits a
pulse-shaped solitary wave solution, whose form is rem-
iniscent of a KdV soliton. It is found that only com-
pressive solitary structures are supported. The results of
a parametric analysis of the solitary wave solution thus
obtained can be summarized as:
- The solitary wave (pulse) speed depends on the su-

perthermality parameter (κ), and on the parallel pressure
P‖, but is independent of the perpendicular pressure P⊥.
- The coefficient of nonlinearity (A) and the coefficient

of parallel dispersion B (relative to the magnetic field)
depend parametrically on the parallel pressure P‖, on the
positron content p and on superthermality (κe,p), and is
thus independent of the perpendicular pressure. Hence
the perpendicular pressure component P⊥ has no effect
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FIG. 10: The first-order instability growth rate (Γ1) has been
computed, here shown versus θ, based on Eq. (54) for ky =
0.05, L‖ = 0.2, σ = 1 and Ω = 0.3. The values here considered
are:
(a) P‖ = 0.3, P⊥ = 0.1, p = 0.2 and κe = κp = κ = 3 (blue
solid curve); κe = κp = κ = 5 (red dashed curve); κe = κp =
κ = 7 (orange dot-dashed curve).
(b) P‖ = 0.3, P⊥ = 0.1, κe = κp = κ = 3 and p = 0.2 (blue
solid curve); p = 0.3 (red dashed curve); p = 0.4 (orange dot-
dashed).
(c) p = 0.2, κe = κp = κ = 3, P⊥ = 0.1 and P‖ = 0.3, (blue
solid curve); P‖ = 0.5 (red dashed curve); P‖ = 0.9 (orange
dot-dashed).
(d) p = 0.2, κe = κp = κ = 3, P‖ = 0.1 and P⊥ = 0.3, (blue
solid curve); P⊥ = 0.4 (red dashed curve); P⊥ = 0.5 (orange
dot-dashed).
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FIG. 11: The second-order instability growth rate (Γ2) has
been computed, here shown versus θ, based on Eq. (55) for
ky = 0.05, L‖ = 0.2, σ = 1,Ω = 0.3. The parameter values
adopted are:
(a) P‖ = 0.3, P⊥ = 0.1, p = 0.2 and κe = κp = κ = 3 (blue
solid curve); κe = κp = κ = 5 (red dashed curve); κe = κp =
κ = 7 (orange dot-dashed curve).
(b) P‖ = 0.3, P⊥ = 0.1, κe = κp = κ = 3 and p = 0.2 (blue
solid curve); p = 0.3 (red dashed curve); p = 0.4 (orange dot-
dashed).
(c) p = 0.2, κe = κp = κ = 3, P⊥ = 0.1 and P‖ = 0.3, (blue
solid curve); P‖ = 0.5 (red dashed curve); P‖ = 0.9 (orange
dot-dashed).
(d) Γ2 versus θ for p = 0.2, κe = κp = κ = 3, P‖ = 0.1 and
P⊥ = 0.3, (blue solid curve); P⊥ = 0.4 (red dashed curve);
P⊥ = 0.5 (orange dot-dashed).
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on the amplitude of solitary waves. On the other hand,
the coefficient of perpendicular dispersion (C) does de-
pend on P⊥ and on the magnetic field strength (through
Ω). We have noticed that coefficient C is more sensitive
to P⊥ rather than the parallel pressure P‖, hence the
width of the solitary waves (W ) is more sensitive to the
perpendicular pressure.
- The amplitude of the solitary waves remains essen-

tially unaffected by varying the magnetic field strength,
however the width of the soliton decreases with increas-
ing the magnetic field strength and the width approaches
to a constant profile for very large magnetic field (Ω > 1).

We have also carried out a stability analysis of the soli-
tary wave solution, following the method by Allen and
Rowlands [74]. The following facts arise from the analy-
sis:
- The first order instability growth rate (Γ1) decreases

with θ (i.e., the angle between the transverse component
of the perturbation and the direction of the magnetic
field) in the range (0 ≤ θ < 37.8◦). An increase in the
perpendicular ion pressure P⊥ leads to an increase in
the growth rate Γ1. On the other hand, if one increases
the positron population (through p) the growth rate (Γ1)
becomes smaller, while the parallel ion pressure P‖ has
practically no effects on Γ1. Finally, by increasing the de-
viation from the Maxwellian (higher superthermality, i.e.
for smaller κ), one finds that the instability is suppressed.
- We have also investigated the parametric effect of rel-

evant parameters on the second order instability growth
rate Γ2: the growth rate increases sharply beyond θ >
37.8◦, while the effect of the plasma parameters saturates
at large θ.
Our work is motivated by a series of magnetosheath ob-

servations made by instruments onboard two spacecraft,
namely AMPET/CCF and AMPET/IRM, as described
in Denton et al [5], and partly by the work of Seough et
al [26]. Pressure anisotropy also has an essential role in
the turbulent intracluster medium (ICM) as discussed by
Nakwacki et al [61]. They showed that in a low density
collisionless medium, such as ICM the thermal pressure
become anisotropic with respect to the magnetic field ori-
entation and lead to the evolution of the turbulent gas.
The favorable condition for ion pressure anisotropy in
such plasma environments is that the ion gyrofrequency
is much larger than the ion-ion collision frequency. Our
results may provide a good qualitative description of the
observations of solitary waves in various space and astro-
physical environments possessing strong magnetic fields,
particularly to the magnetosphere and near earth’s mag-
netosheath [4, 5, 61], where non-thermal electrons with
ion pressure anisotropy can exist.
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APPENDIX A: ANALYTICAL
TRANSFORMATION OF EQ. (39) TO EQ. (46)

Our ZK equation (39), as derived for two dimensional
electrostatic perturbations in the plasma, is given by:

∂Φ1

∂τ
+AΦ1

∂Φ1

∂X
+

∂

∂X

(
B
∂2Φ1

∂2X
+ C

∂2Φ1

∂2Y

)
= 0. (A1)

Let us introduce a scaling normalization (normalization):

Φ1 → Φ0Φ
′, τ → T0T

′

, X → L‖X
′

, Y → L⊥Y
′

,
(A2)

where the primed variables are dimensionless, and all
other quantities are scaling quantities to be determined.
By using the above transformation, Eq. (A1) is trans-
formed into a similar equation, in structure (in terms of
the primed quantities), yet with

A → A′ =
AΦ0T0

L‖
, B → B′ =

BT0

L3
‖

, C → C ′ =
CT0

L‖L
2
⊥

.

The requirement A′ = B′ = C ′ = 1 (in view of casting
the ZK equation in its canonical form) imposes:

Φ0 =
B

L2
‖A

, T0 =
L3
‖

B
, L⊥ = L‖

(
C

B

)1/2

,

where L‖ ∈ ℜ is left arbitrary, formally, at this stage
(physically, it is thought of as of the order of the ion De-

bye length λDi =
(
kBTe/4πni0e

2
)1/2

in our case, though
this need not be taken into account in the forthcoming
algebra). The above manipulations allow us to cast Eq.
(A1) above into the form of (46).
Upon formally setting Φ′ → n, one obtains:

∂n

∂T ′ + n
∂n

∂X ′ +∇2

(
∂n

∂X ′

)
= 0,

which is precisely Eq. (1.1) of Ref. [74].

APPENDIX B: ANALYTICAL
TRANSFORMATION OF EQ. (44) TO EQ. (1.2)

OF REF. [69]

Our starting point is relation (44):

Φ1 =

(
3u0

lxA

)
sech2(χ (lxX + lyY − u0τ)).
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Considering

Φ1 → Φ0Φ̂, τ → T0T
′

, X → L‖X
′

, Y → L⊥Y
′

,

and adopting the scaling in (A2) above, the above expres-
sion is transformed into (1.2) in Ref. [74]. Substituting

with u0 → 4η2Blx
L2

‖

and restricting the propagation to only

along the magnetic field, viz., lx = 1 and ly = 0 one ob-
tains

Φ0 = 12η2sech2
[
ηX − 4η3t

]
,

which is precisely the sought after expression.
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