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An investigation of the propagation of ion acoustic waves in nonthermal plasmas in the presence of trapped
electrons has been undertaken. This has been motivated by space and laboratory plasma observations of plas-
mas containing energetic particles, resulting in long-tailed distributions, in combination with trapped particles,
whereby some of the plasma particles are confined to a finite region of phase space. An unmagnetized colli-
sionless electron-ion plasma is considered, featuring a non-Maxwellian-trapped electron distribution, which is
modelled by a kappa distribution function combined with a Schamel distribution. The effect of particle trap-
ping has been considered, resulting in an expression for the electron density. Reductive perturbation theory has
been used to construct a KdV-like Schamel equation, and examine its behaviour. A solitary wave solution is
presented and its dynamics discussed. The chief modification due to the presence of particle trapping is stronger
nonlinearity, while enhanced superthermality affects the amplitude and width of solitons with a fixed value of
incremental soliton speed adversely.

I. INTRODUCTION

The presence of energetic superthermal particles in
plasmas, resulting in long-tailed distributions, is an in-
trinsic element in many space and laboratory plasma ob-
servations. Many different models have been proposed
to describe this effect on wave dynamics via phenomeno-
logical modification to the electron distribution function.

One approach to non-Maxwellian plasma modelling is
provided by the kappa distribution [1–3], which was in-
troduced by Vasyliunas [1] to fit phenomenologically the
power law-like dependence of electron distribution func-
tions observed in space. The spectral index, kappa (κ),
for which the kappa distribution is named, acts to modify
the effective thermal speed in the distribution function.
At low values of κ, distributions exhibit strong superther-
mality - by this we mean that there is an excess in the
superthermal component of the distribution compared to
that of a Maxwellian. At very large values of kappa, the
distribution function approaches a Maxwellian distribu-
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tion. It is commonly fitted to observational data [2, 4, 5].
Interestingly, it has been argued that the kappa scenario
derives from the Tsallis distribution [6, 7], although this
speculative analogy is rather phenomenological and re-
mains the subject of debate [2, 7]. We shall not pursue
this analogy here as this is beyond our scope.

The Korteweg-de Vries (KdV) equation describes the
one-dimensional, time asymptotic behaviour of weakly
dispersive waves with a small but finite amplitude, and
the theory has been applied to ion acoustic waves in plas-
mas [8, 9]. In this theory, nonlinear steepening of the
wave is balanced by dispersion, and in recent years, sev-
eral studies have analysed ion acoustic waves and the
electrostatic structures that arise as a consequence of
their dynamics in κ-distributed plasmas using the KdV
theory [10, 11].

Another commonly observed phenomenon in both
space and laboratory plasmas is that of particle trapping,
whereby some of the plasma particles are confined to
a finite region of phase space where they bounce back
and forth. These have been studied numerically [12, 13],
and have been observed in both space and laboratory
contexts [14–18]. Cattell et al. [15] noted examples of
solitary waves at the Earth’s magnetopause; Ergun et
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al. [16, 17] and Andersson et al. [18] observed elec-
tron phase-space holes in both the upward and downward
current region of the aurora. In addition, many labora-
tory observations of the free expansion of plasma into
a vacuum have recorded the propagation of holes, soli-
tons, and rarefaction waves [19]. The nonlinear parti-
cle trapping effect was first included in analytical mod-
els of electrostatic structures by Bernstein, Greene and
Kruskal (BGK) [20]. Later Schamel [21, 22] developed
a pseudopotential method for the construction of equi-
librium solutions, and also derived a KdV-like equation,
often called the Schamel equation [23], for weakly non-
linear ion acoustic waves which are modified by the pres-
ence of trapped electrons [22]. The chief effect of the
modification to the KdV equation is stronger nonlinear-
ity. This method has later been applied to the study of
non-Maxwellian dust ion acoustic waves by Pajouh and
Abbasi [24].

In this paper, we seek to consider the effect of particle
trapping in a κ-distributed plasma, deriving an expres-
sion for the electron density. We have used reductive
perturbation theory to construct a Schamel KdV equa-
tion, and examine its dynamics. The Schamel-kappa dis-
tribution allows for the effects of trapped particles in the
low energy part of the distribution, while including the
usual enhanced non-Maxwellian tail, with an excess of
superthermal particles, typical of a kappa distribution.

The paper is structured as follows. In Section II,
we derive an expression for the electron density in a
Schamel-kappa distribution. This is followed in Section
III by an outline of the ion fluid model we have adopted.
Section IV deals with linear ion acoustic wave analy-
sis, and small amplitude nonlinear waves are discussed
in Section V. A solitary wave solution is presented and
its dynamics discussed in Section VI. This is followed
by the presentation of numerical results in Section VII.
We discuss our conclusions in Section VIII.

II. THE SCHAMEL-KAPPA DISTRIBUTION

The kappa electron distribution in one dimension [2]
is given by:

fκe (v) =
N0

(πκθ2)1/2
Γ(κ)

Γ(κ− 1
2 )

(
1 +

v2

κθ2

)−κ
, (1)

where N0 is the species equilibrium number density and
the effective thermal speed is

θ = [(κ− 3/2) /κ]1/2 (2kBT/m)
1/2

,

which requires κ > 3/2 to be physically realistic.
Normalizing such that

∫ +∞
−∞ fκe (v)dv = 1, and us-

ing the energy conservation relation (mev
2
e/2 − eφ =

meV
2/2, where eφ is the increase in potential energy,
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FIG. 1: (Color online). (a) and (b): Plot of the kappa
distribution as given by (1) where (b) zooms in on the

positive tail of the distribution. In both plots, the dashed
(black) line is κ = 1.6, the dotted (blue) line is κ = 3,
the dashed (mauve) line is κ = 6, the solid (green) line

is κ = 20, and the dot-dashed (red) line is the
Maxwellian case as κ→∞.

and V is the velocity of the particles in the initial equilib-
rium state), scaling v by (kBT/m)1/2, and φ by kBT/e,
Eqn. (1) can be written as:

fκe (v, φ) =
1√

2π(κ− 3
2 )

1
2

Γ(κ)

Γ(κ− 1
2 )

(
1 +

v2

2 − φ
κ− 3

2

)−κ
.

(2)

Taking the limit as κ → ∞, we get the Maxwellian dis-
tribution:

fMax
e (v, φ) =

1√
2π

exp[−(v2/2− φ)]. (3)

Figure 1 is a plot of fκe (v) for different values of κ. We
can see that at lower values of κ the centre and tail of the
distribution are higher; as a result there are fewer parti-
cle near the thermal speed compared with a Maxwellian
distribution, if the density is constant.

Schamel [21] introduced the concept of a separatrix
to the distribution which separates free electrons from
trapped ones. The energy of the electrons is defined as
Ee = v(x)2/2 − φ(x), and the energy separatrix occurs
at the point where the energy equals zero, that is, Ees :=
v(x)2/2 − φ(x) = 0. Wherever Ee > 0, electrons are
free, and their distribution is given by Eqn. (3), and when
Ee < 0 electrons are trapped. The distribution for the
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FIG. 2: (Color online). Plot of the Schamel-κ
distribution incorporating trapped electrons as given by
(2) and (5). The solid (blue) line represents β = 1, the
dotted (black) line is β = 0.8, the dot-dashed (mauve)
line is β = 0.5, the dashed (green) line is β = 0, the

solid (brown) line is β = −0.3 and the dotted (red) line
is β = −1. Here we have taken φ = 0.3 and κ = 100.

trapped electrons is then defined as:

fMax
e,t (v, φ) =

1√
2π

exp[−β(v2/2− φ)] for Ee ≤ 0,

(4)

where β is a parameter which determines the efficiency
of electron trapping.

Applying the same argument for the separatrix to the
kappa distribution, where Eqn. (2) applies to free κ-
distributed electrons, that is, when Ee > 0, and for
trapped electrons in a κ-distribution, when Ee < 0, that
is, −
√

2φ < v <
√

2φ, a trapped electron κ distribution
can be written as:

fκe,t(v, φ) =
1√

2π(κ− 3
2 )1/2

Γ(κ)

Γ(κ− 1/2)

×
[
1 + β

(
v2/2− φ
κ− 3

2

)]−κ
for Ee ≤ 0. (5)

Equation (5) recovers Eqn. (4) as κ → ∞, and Eqn. (2)
as β → 1. Figures 2 and 3 show the Schamel-κ distribu-
tion for various values of β when κ = 100 (Fig. 2) and
κ = 2 (Fig. 3). When β = 1, this corresponds to a kappa
distribution which has no trapped electrons. As the value
of β is reduced, the distribution peak is suppressed, and
at β = 0, we have a flat-topped distribution. The value
of β can be negative, and we see that this corresponds
to a dip in the centre of the distribution. As β → −∞,
the centre of the distribution→ 0. To find the electron
density, we need to integrate over all v from−∞ to +∞.
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FIG. 3: (Color online). As in Fig. 2, but using κ = 2.

The following integrals need to be computed:

ne(φ) =

∫ −√2φ

−∞
fκe (v, φ) +

∫ √2φ

−
√
2φ

fκe,t(v, φ)

+

∫ +∞

√
2φ

fκe (v, φ), (6)

where fκe (v, φ) is given by Eqn. (2), and fκe,t(v, φ) is
given by Eqn. (5). The result is:

ne(φ) = (2κ− 3)
κ−3/2

(2κ− 3− 2φ)
−κ

×
[

(2κ− 3)
√

2κ− 3− 2φ− 4

Γ[κ− 3/2]

√
2/π

×
√
φ Γ[κ] 2F1

[
1

2
, κ,

3

2
,

2φ

3− 2κ+ 2φ

] ]
+

2

Γ[κ− 1/2]

√
2/π (2κ− 3)

κ−1/2√
φ

× (2κ− 3− 2βφ)
−κ

Γ[κ]

×2F1

[
1

2
, κ,

3

2
,

2βφ

3− 2κ+ 2βφ

]
. (7)

One can demonstrate numerically that ne(φ) > 0 for all
κ, β, φ. Taylor-expanding the expression for φ about 0
and truncating at 2nd order gives:

ne(φ) '1 +

(
2κ− 1

2κ− 3

)
φ

+
8
√

2/π(β − 1)κΓ[κ]

3(2κ− 3)3/2Γ[κ− 1/2]
φ3/2 +

4κ2 − 1

2(2κ− 3)2
φ2.

(8)

The limit of Eqn. (8) as κ → ∞ is given by Eqn. (9)
below, which agrees with the Schamel expression for the
electron density in a Maxwellian plasma [22]:

ne(φ) ' 1 + φ+
4(β − 1)

3
√
π

φ3/2 + φ2/2 + ... (9)

In addition, the limit of Eqn. (8) as β → 1 gives the
electron distribution in a kappa-distributed plasma, with
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no trapped electrons:

ne(φ) ' 1 +

(
2κ− 1

2κ− 3

)
φ+

4κ2 − 1

2(2κ− 3)2
φ2, (10)

in agreement with Eqn. (14) of Ref. 25.

III. THE FLUID MODEL

We shall now consider ion acoustic waves propagating
in a plasma consisting of cold ions (Ti = 0) and electrons
with a Schamel-kappa distribution. As is usual for ion
acoustic structures, we require that the wave phase speed
lies between the ion and electron thermal speeds, that is,
vti � vph � vte, to avoid Landau damping [26].

The one dimensional system of normalized fluid equa-
tions for the ions, together with Poisson’s equation are:

∂n

∂t
+
∂(nu)

∂x
= 0, (11)

∂u

∂t
+ u

∂u

∂x
= −∂φ

∂x
, (12)

∂2φ

∂x2
= ne − n ' −(n− 1) + pφ+ qφ3/2 + rφ2, (13)

where n and u represent the ion density and velocity re-
spectively, and φ is the electrostatic potential. We as-
sume charge neutrality at equilibrium, that is, ne = Zn0,
where Zn0 is the equilibrium ion charge density. We
have substituted the Taylor-expanded expression for the
electron density ne from Eqn. (8) into the Poisson Equa-
tion (13), with

p =
2κ− 1

2κ− 3
, (14)

q =
8
√

2/π(β − 1) κ Γ(κ)

3(2κ− 3)3/2Γ(κ− 1/2)
(15)

r =
4κ2 − 1

2(2κ− 3)2
(16)

To make the calculations tractable analytically, we
have employed the following normalizations: lengths
are normalized by a characteristic Debye length λD =(
ε0kBTe

n0Ze2

) 1
2

, time by the inverse plasma frequency ωp =(
n0Z

2e2

ε0m

) 1
2

, number density by the equilibrium ion den-

sity n0, electrostatic potential by
(
kBTe

e

)
, and velocities

by a characteristic sound speed cs =
(
ZkBTe

m

) 1
2 .

IV. LINEAR WAVE ANALYSIS

We can linearize the system of fluid equations in the
usual way to obtain the linear dispersion equation:

ω2 =
k2

k2 + p
, (17)

where p is given by Eqn. (14). From Eqn. (17), we note
that p is essentially the effective inverse (square) screen-
ing length, that is, λD = p−1/2. Importantly, this now
depends on κ. This reflects the fact that energetic parti-
cles affect the Debye screening mechanism by modifying
the electron cloud distribution surrounding the ions, as is
well-known for waves in a kappa-distributed plasma [2].
We note that the Schamel trapping parameter β does not
appear in Eqn. (17). This shows the typical behaviour of
this model, viz. that the trapping does not have an effect
on the linear wave. For the sake of completeness, we em-
phasize that it follows immediately from Eqn. (17) that
the normalized phase speed of the linear wave is p−1/2.

V. REDUCTIVE PERTURBATION THEORY

To study weakly nonlinear potential excitations, we
follow the reductive perturbation technique of Schamel
[22], and stretch variables as follows:

ζ = ε1/4(x− V t),
τ = ε3/4t, (18)

where ε is an infinitely small parameter. The independent
variables n, u, φ can also be expanded in a power series
(truncated to second order) of the parameter ε:

n ∼ 1 + εn1 + ε3/2n2,

u ∼ εu1 + ε3/2u2,

φ ∼ εφ1 + ε3/2φ2.

Substituting in Eqns. (11 - 13) and extracting the lowest
order terms in ε, one obtains compatibility conditions:

−V ∂n1
∂ζ

+
∂u1
∂ζ

= 0, (19)

−V ∂u1
∂ζ

+
∂φ1
∂ζ

= 0, (20)

n1 − pφ1 = 0. (21)

Combining these, we find:

n1 = p1/2u1 = pφ1, (22)
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FIG. 4: (Color online). Plot of the the phase speed V vs.
κ.

where

p =
1

V 2
=

2κ− 1

2κ− 3
. (23)

V is the phase speed, and as seen in Fig. 4, it is depen-
dent on the κ parameter, whereby increased superther-
mality (lower values of κ) has the effect of reducing the
phase speed. The second order terms in ε yield:

−V ∂n2
∂ζ

+
1

V 2

∂φ1
∂τ

+
∂u2
∂ζ

= 0, (24)

−V ∂u2
∂ζ

+
1

V

∂φ1
∂τ

+
∂φ2
∂ζ

= 0, (25)

∂2φ1
∂x2

+ n2 −
1

V 2
φ2 − qφ3/21 = 0. (26)

These compatibility conditions are combined and result
in a KdV-like Schamel equation [22]:

∂φ1
∂τ

+Aφ
1/2
1

∂φ1
∂ζ

+B
∂3φ1
∂ζ3

= 0, (27)

where

A = −3

4
V 3q = − 3q

4p3/2
, B =

V 3

2
=

1

2p3/2
.

Using the expressions for p and q from Eqns. (14) and
(15), we note that the coefficients A and B can be ex-
pressed explicitly as:

A =
(1− β)
√
π
√
κ− 1

2

Γ(κ+ 1)

Γ(κ+ 1
2 )
, (28)

B =
1

2
(

1 + 1
κ− 3

2

)3/2 . (29)

A is the coefficient of nonlinearity, which determines
the steepness of the wave, while B is the coefficient of
dispersion, responsible for wave broadening in Fourier
space. Here, we see that the wave steepening is depen-
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FIG. 5: (Color online). Plot of the coefficient A vs. κ.
The dot-dashed (red) line represents β = 0.8, the solid
(green) line is β = 0.5, the dotted (blue) line is β = 0,

and the dashed (mauve) line is β = −1.

dent both on the extent of superthermality of the electron
distribution (represented by the κ parameter) and also
on the density of the trapped electron distribution (repre-
sented by β), while wave width is dependent on κ alone.
We note that A ∝ (1 − β), and thus the term decreases
linearly with β, vanishing at β = 1.

Limiting Case 1 - No superthermality If we assume
there is no superthermality, that is, κ → ∞, A →
(1 − β)/

√
π, and B → 1/2. This is in agreement with

Ref. 22, Eqn. (14) therein, which defines a KdV-like
evolutionary equation for trapped and free electrons in
the context of a Maxwellian distribution.

Limiting Case 2 - No trapped electrons If we assume
that there are no trapped electrons in the distribution,
then β → 1. We can see that this means the coefficient
q → 0, so consequently A → 0, and we no longer have
a Schamel KdV equation. In this case, returning to our
fluid model (Eqns. (11) to (13)), the reductive pertur-
bation method must be repeated with different stretch-
ing parameters, hence not yielding the φ3/2 term, but
resulting in the standard KdV equation as obtained, for
instance by Baluku et al. [25].

Figures 5 and 6 show the variation ofA andB with su-
perthermality. A is only weakly dependent on the κ pa-
rameter, increasing slightly at very low values of κ (high
degree of superthermality). On the other hand, the dis-
persion coefficient B is strongly affected by superther-
mality. Increasing superthermality causes B to decrease
significantly.

VI. SOLITON SOLUTION

Following Schamel [22], we seek a stationary solitary
wave solution of Eqn. (27), and introduce ξ = ζ − u0τ ,
where u0 is the wave speed (in the reference frame)
normalized by the ion acoustic sound speed cs in an
electron-ion plasma with Maxwellian electrons. We use
the hyperbolic tangent method [27] as detailed in Ap-
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FIG. 6: (Color online). Plot of the coefficient B vs. κ.

pendix A, and by imposing the following boundary con-
ditions: φ1 → 0, dφ1

dξ → 0, and d2φ1

dξ2 → 0 as
ξ → ±∞, we find that the steady state can be expressed
as

φ1 = φm sech4 (ξ/∆) , (30)

where

φm = (15u0/8A)2, (31)

∆ =
√

16B/u0 (32)

are the height and width of the solitary waves, respec-
tively, moving with speed u0. From Eqn. (31), we note
that solitons can only have positive polarity, as is normal
for ion acoustic solitons in a two-species plasma. In the
limit as κ → ∞, this is in agreement with Eqn. (20) of
Ref. 28. For a given value of φm, we note that:

u0 =
8A

15
φ1/2m , ∆ =

√
30B

Aφ
1/2
m

, (33)

which coincides with Schamel [22], c.f. Eqns. (28) and
(29) therein [29].

Figure 7 shows how the solitary wave solution varies
with superthermality. We see that both the height and
width of the wave are affected by changes in κ via the
coefficients A and B. As superthermality increases (that
is, the value of κ is decreased), the waves become smaller
in amplitude and narrower. It should be emphasized that
u0 is the incremental soliton speed (i.e. in the wave
frame), and the total soliton speed (i.e. in the laboratory
frame) is found by adding u0 and the κ-dependent phase
speed V (detailed in Eqn. (23)). The true Mach num-
ber is then the total soliton speed divided by the phase
speed. This is shown explicitly in Table I. In evalu-
ating the information in Fig. (7) we need to be clear
about what exactly has been kept constant. We stress
that in the present calculations, we have assumed a con-
stant incremental soliton speed u0. Our results show
qualitative agreement with those of Saini et al. [30], who
used the Sagdeev pseudopotential technique to study ar-

-20 -10 0 10 20
Ξ

0.05

0.10

0.15

Φ1

FIG. 7: (Color online). Plot of the solitary wave solution
for different values of κ, based on (30). The dot-dashed
(red) line is κ = 1.6, the dotted (blue) line is κ = 2, the
dashed (mauve) line is κ = 4, the solid (green) line is
κ = 7, and the dashed (black) line is κ = 30. Here we

have taken β = 0.5 and u0 = 0.06.

bitrary amplitude ion acoustic solitons in a two-species
plasma with κ-distributed electrons. On the other hand,
we see from the penultimate column of Table I, that fixed
u0 leads to the true Mach number increasing with en-
hanced superthermality. Other scenarios considered in
the literature, often based on the Sagdeev technique, in-
clude, for instance, keeping either the true Mach num-
ber [25] or the total soliton speed (u0 +V ) constant [31].
One may easily consider either of the above scenarios
within the present Schamel-kappa formalism in which
case one finds qualitative effects of increasing superther-
mality that are equivalent to those reported in the litera-
ture on solitons in plasmas in which the hot electrons are
kappa-distributed.

TABLE I: Total soliton speed

Total True
soliton Mach
speed no.

κ u0 V u0/V (u0 + V ) (1 + u0/V ) φm

1.6 0.06 0.3015 0.1990 0.3615 1.1990 0.0937
2 0.06 0.5774 0.1039 0.6374 1.1039 0.1054
4 0.06 0.8451 0.0710 0.9052 1.0710 0.1308
7 0.06 0.9199 0.0652 0.9799 1.0652 0.1425
30 0.06 0.9829 0.0610 1.0429 1.0610 0.1551
∞ 0.06 1.0000 0.0600 1.0600 1.06 0.1590

For example, the true Mach number is defined as

MT =
u0 + V

V
,

where u0 is the incremental soliton speed and V is the
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FIG. 8: Amplitude variation with kappa for 3 fixed
Mach numbers (MT = 1.1, 1.15, 1.2) at β = 0.7.
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FIG. 9: Amplitude variation with kappa for 3 fixed
Mach numbers (MT = 1.1, 1.15, 1.2) at β = −0.3.

phase speed given by (23). Rearranging, we find that

u0 = V (MT − 1).

Figures 8 and 9 show how the amplitude varies with κ
when the true Mach number is held constant for the cases
where β = 0.7 and β = −0.3, respectively. We note
that the two figures are very similar, except that the soli-
ton amplitudes are reduced by a factor of about 20 when
switching from a weakly-trapped situation in the former
to β = −0.3 in Fig. 9. Figures 10 and 11 show the
amplitude variation with Mach number (MT ) when κ is
kept constant, for the same values of β. In agreement
with Baluku et al, [25], figure 3 therein, we note that φm
increases with higher Mach numbers and reduces with
increased superthermality. Again, we see a reduction in
amplitude of about 20 between Figures 10 and 11.

Next we consider how the solitary wave varies with
different proportions of electron trapping, while keeping
u0 fixed. From (31) and (28), we see that the amplitude
of the wave is proportional to 1/(1− β) and thus partic-
ularly sensitive to changes in the β parameter as β → 1,
while being only weakly dependent on κ. Figure 12 pro-
vides visual confirmation of this, analagously to what has
been seen in Figs. 8 to 11.

In Fig. 13, the solitary wave solution is plotted for dif-
ferent values of the β parameter. As β is decreased (that

Κ = 1.6

Κ = 20

Κ = 7

1.05 1.10 1.15 1.20 1.25 1.30
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FIG. 10: Amplitude variation with Mach number for
κ = 1.6, 7, 20 at β = 0.7.
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FIG. 11: Amplitude variation with Mach number for
κ = 1.6, 7, 20 at β = −0.3.

is, a smaller proportion of the electrons are trapped), the
amplitude of the solitary wave is decreased and the width
is unaffected. Our model does not allow for the situation
where β = 1, as A → 0 as β → 1. For the purposes of
comparison, we include a plot (Fig. 14) of the solitary
wave solution for a standard KdV kappa superimposed
on the Schamel KdV for the same value of κ. Interest-
ingly, we note that the amplitude of a solitary wave with
higher values of β, that is, above β = 0.54, is larger

-1.0 -0.5 0.5
Β

0.1

0.2

0.3

0.4

Φm

FIG. 12: (Color online). Plot of the solitary wave
amplitude variation with β for different values of κ,

based on (31). The dot-dashed (red) line is κ = 1.6, the
dotted (blue) line is κ = 2, the dashed (mauve) line is
κ = 4, the solid (green) line is κ = 7, and the dashed

(black) line is κ = 30. Here we have taken u0 = 0.06.
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0.8

Φ1

FIG. 13: (Color online). Plot of the solitary wave
solution for different values of β, based on (30). The

dot-dashed (red) line is β = 0.8, the dotted (blue) line is
β = 0.7, the dashed (mauve) line is β = 0.5, the solid

(green) line is β = 0 and the dashed (black) line is
β = −0.5. Here we have taken κ = 3 and u0 = 0.06.

Β=0.8

Β=0

Β=0.5

Β=0.6

Β=0.7

Β= -0.5

-20 -10 10 20
Ξ

0.2

0.4

0.6

0.8

Φ1

FIG. 14: (Color online). Plot of the solitary wave
solution for standard KdV equation (see Appendix B)
with κ = 3, shown as solid (black) line, superimposed
on the Schamel KdV solitary wave for different values

of β, shown in dotted (red) lines based on (30).

than that of a solitary wave in the standard kappa KdV
description. Appendix B lays out the standard κ KdV
solution alongside the κ Schamel solution.

The magnitude of the solitary wave’s electric field can
easily be found by taking the negative gradient of the
solution, Esol = −∂φ1/∂ξ. This gives:

Esol =
4φm
∆

sech4 (ξ/∆) tanh (ξ/∆) , (34)

where φm = (15u0/8A)2 and ∆ =
√

16B/u0 as be-
fore. Figures 15 and 16 show how the electric field varies
with superthermality and the proportion of trapped elec-
trons present. With increased superthermality we see the
field becomes less localized with lower amplitude. As
the proportion of trapped electrons is decreased (lower
value of β), the magnitude of the electric field decreases.

-15 -10 -5 5 10 15
Ξ

-0.06

-0.04

-0.02

0.02

0.04

0.06

Esol

FIG. 15: (Color online). Plot of the solitary wave
electric field magnitude for different values of κ, based
on (34). The dot-dashed (red) line is κ = 1.6, the dotted
(blue) line is κ = 2, the dashed (mauve) line is κ = 4,
the solid (green) line is κ = 7, and the dashed (black)

line is κ = 30. Here we have taken β = 0.5 and
u0 = 0.06.

-10 -5 5 10
Ξ

-0.10

-0.05

0.05

0.10

Esol

FIG. 16: (Color online). Plot of the solitary wave
electric field magnitude for different values of β, based
on (34). The dot-dashed (red) line is β = 0.8, the dotted

(blue) line is β = 0.7, the dashed (mauve) line is
β = 0.5, the solid (green) line is β = 0 and the dashed

(black) line is β = −0.5. Here we have taken κ = 3 and
u0 = 0.06.

VII. NUMERICAL RESULTS

We now trace the effects of the energy variation due
to excess superthermality (via the κ parameter), and par-
ticle trapping (via β) on ion acoustic solitary waves, by
numerically analysing ion acoustic solitary waves cross-
ing an interface between two plasmas with different val-
ues of either κ or β. When a pulse representing an ex-
act solution as given by Eqn. (27) passes to a plasma
environment with different parameters, it must adapt by
changing shape, becoming unstable, or changing speed.

The analytical results shown in Figs. 7 and 13 illus-
trate that higher superthermality (lower κ value) leads to
narrower solitons with smaller amplitudes, and a lower
proportion of trapped electrons (lower β value) leads
to smaller amplitude solitons whose width remains un-
changed, so we might expect the same trends to be dis-
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played in the numerical results. Here we have analysed
the propagation of ion acoustic solitary structures by a
numerical integration of Eqn. (27) employing a Runge
Kutta method with a time interval of 4 × 10−4, and grid
spatial size of 0.06. We retain as an intrinsic element in
our code the dependence of the coefficients on the su-
perthermality parameter κ and on the trapped electron
population index β, as in our analytical model.

As a possible scenario in the dynamics, we choose to
investigate the response of a stable pulse propagating in
a weakly superthermal plasma, when it encounters a re-
gion with a strong deviation of hot electrons from ther-
mal equilibrium or, alternatively, a region with a lower
proportion of trapped electrons. To this end, we consider
the soliton solution with κ = 30 and β = 0.7 as an initial
condition. This same pulse is used as an initial condition
in three simulations. In the first simulation, we integrate
the Schamel KdV-like equation, (27), for the exact solu-
tion of κ = 30 and β = 0.7, with an incremental speed
u0 = 0.12, which confirms the stability of the pulse, as
shown in subplot (a) of Figs. 17, 18 and 19.

Subsequently, we consider a lower value of κ, as
shown in subplot (b) of the same figures, simulating
the physical condition where a soliton propagating in a
quasi-Maxwellian plasma enters a region with signifi-
cantly higher proportions of superthermal electrons (κ =
2). We notice that the original pulse becomes taller and
narrower, with an increased speed of approximately 0.19,
while additionally two smaller solitary waves develop
over time, travelling at a slower speed. A similar result
in the context of electron acoustic waves was obtained
by Sultana and Kourakis [32]. We speculate that the in-
crease in the proportion of superthermal electrons causes
the energy stored in the initial pulse to be distributed into
energetically smaller pulses, while maintaining the deli-
cate balance between nonlinearity and dispersion neces-
sary for soliton stability.

In subplot (c) of Figs. 17, 18 and 19, we consider a
lower value of the β parameter for the target plasma to
see the effect of a wave propagating from one plasma
environment into a region containing a lower proportion
of trapped electrons. We can see that the original pulse
becomes taller and narrower, with an increased speed of
approximately 0.26 and a single weak extra solitary wave
develops over time, travelling at a lower speed. Again
it appears that the energy in the initial pulse has been
redistributed and is sufficient to now form two pulses,
each of lower energy than the original, even though, as
in Fig. 17b, the amplitude of the leading pulse is larger
than that of the original wave.

We note that in both (b) and (c) the original pulse be-
comes narrower and taller. At first sight that is counter-
intuitive as we have seen above that pulses have smaller
amplitudes in regions of increased excess superthermal-
ity or lower proportion of trapped electrons. However,
the latter finding arose in a situation in which the incre-

−4 −2 0 2 4 6 8 10 12

ξ

φ
1

 

 

τ = 0

τ = 5,000

τ = 10,000

(a) Exact solution of initial condition with κ = 30, β = 0.7

−6 −4 −2 0 2 4 6 8 10 12 14 16

ξ

φ
1

 

 

τ = 0

τ = 5,000

τ = 10,000

(b) Initial condition encounters κ = 2, β = 0.7 plasma

−5 0 5 10 15 20

ξ

φ
1

 

 

τ = 0

τ = 5,000

τ = 10,000

(c) Initial condition encounters κ = 30, β = 0.4 plasma

FIG. 17: (Color online). Evolution of electrostatic
solitary structures based on Eqn. (27) and its solution,

Eqn.(30). The exact solution of Eqn. (27) is considered
as an initial condition in each subplot with κ = 30,
β = 0.7, u = 0.12. This is propagating in (a) a

quasi-Maxwellian plasma with high β parameter
(κ = 30, β = 0.7 ); (b) a strongly nonthermal plasma

with high β value (κ = 2, β = 0.7), and (c) a
quasi-Maxwellian plasma with lower β value indicating

a lower proportion of electron trapping (κ = 30,
β = 0.4).

mental speed u0 was constant. From Fig. 17 we have
seen that the incremental speed changes dramatically at
the interface between the two regions. In fact, u0 has
increased by about 50% in the low-kappa region in (b)
and by 120% in the low β case in (c). Substituting these
measured values for u0 into (28 - 29) and (31 - 32) one
finds predicted values of amplitudes and widths of the
leading solitons that are consistent with those measured
in the figure. It appears that energy conservation at the
interface provides a constraint that leads to the value of
u0 increasing as observed, and to the spawning of one or
more additional weak, slow solitons to mop up the bal-
ance of the energy arriving at the interface.
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(a) Exact solution of initial condition with κ = 30, β = 0.7

(b) Initial condition encounters κ = 2, β = 0.7 plasma

(c) Initial condition encounters κ = 30, β = 0.4 plasma

FIG. 18: (Color online). 3D plots showing the
propagation of electrostatic solitary structures based on
Eqns. (27) and (30) for similar conditions as in Fig. 17.

VIII. CONCLUSION

We have investigated solitary ion acoustic wave propa-
gation in the presence of electron trapping and superther-
mality. A physically meaningful Schamel-like distribu-
tion has been developed. This Schamel-kappa distri-
bution allows for the effects of trapped particles in the
low energy part of the distribution, while including the
usual enhanced non-Maxwellian tail, with an excess of
superthermal particles, that is typical of a kappa distribu-
tion.

Using reductive perturbation theory, we have derived
a Schamel equation, and its corresponding solitary wave
solution.

At higher levels of superthermality the solitary wave
amplitude decreases and wave structures become nar-
rower. The corresponding electric field becomes more
localized with much sharper peaks in conditions of high
superthermality.

With higher proportions of free electrons, that is, a
reduction in the value of the β parameter, the solitary

(a) Exact solution of initial condition with κ = 30, β = 0.7

(b) Initial condition encounters κ = 2, β = 0.7 plasma

(c) Initial condition encounters κ = 30, β = 0.4 plasma

FIG. 19: (Color online). Propagation of electrostatic
solitary structures based on Eqns. (27) and (30) in the

space-time plan for similar conditions as in Figs. 17 and
18.

wave amplitude decreases, becoming almost negligible
for negative values of β; however, the width of the wave
remains unchanged. The corresponding electric field am-
plitude also decreases as the proportion of trapped elec-
trons decreases, whilst its spatial width is unchanged. We
note that the amplitude of the wave is dependent on and
particularly sensitive to changes in the β parameter.

Using numerical simulation, we find that the com-
puted solution confirms the stability of the pulse. We
also find that where a soliton propagating in a quasi-
Maxwellian plasma enters a region of high superthermal-
ity, solitary waves change shape, becoming taller, nar-
rower and faster, and give rise over time to two weak ex-
tra solitary pulses travelling at a lower speed. Also, when
a soliton propagating in a quasi-Maxwellian plasma en-
counters a plasma with a higher proportion of free elec-
trons, it changes shape, becoming narrower and faster
and increasing in amplitude, and again over time, a sin-
gle weak extra solitary wave forms, which travels at a
lower speed.
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Appendix A: Solitary wave solution of Eqn. (27)

The general solution of Eqn. (27) using the hyper-
bolic tangent (tanh) method [27], is detailed below. Let
φ1(ζ, τ) = φ1(ξ), where ξ = α(ζ − u0τ). So Eqn. (27)
becomes:

−αu0
∂φ1
∂ξ

+Aαφ
1/2
1

∂φ1
∂ξ

+Bα3 ∂
3φ1
∂ξ3

= 0. (A1)

Let φ1/21 = ψ. Dividing across by α, integrating w.r.t. ξ,
and assuming a soliton solution in which ψ, ∂ψ∂ξ ,

∂2ψ
∂ξ2 →

0 as ξ → ±∞ we get

−u0ψ2 +
2

3
Aψ3 + 2Bα2

[(
∂ψ

∂ξ

)2

+ ψ
∂2ψ

∂ξ2

]
= 0.

(A2)

Using the transformation y = tanh(χ), noting ∂
∂χ =

(1− y2) ddy , and postulating a solution ψ such that: ψ =∑
n any

n = a0 + a1y+ a2y
2 + ..., Eqn. (A2) becomes:

− u0

(∑
n

any
n

)2

+
2

3
A

(∑
n

any
n

)3

+ 2Bα2

[(
(1− y2)

d

dy

∑
n

any
n

)2

+ (1− y2)
d

dy
(1− y2)

d

dy

∑
n

any
n

]
= 0. (A3)

Truncating at n = 2, a system of algebraic equations is
found in orders of y, allowing us to solve for a0, a1, a2,
and α. We find (choosing a non-trivial solution for a2

and a positive solution for α):

a2 = −30Bα2

A
, (A4)

a1 = 0, (A5)

a0 =
1

A

[
5u0
8

+ 20Bα2

]
, (A6)

α =
( u0

16B

) 1
2

. (A7)

So ψ = a0 + a1y + a2y
2 is given by:

ψ =
15u0
8A

sech2

[√
u0

16B
(ζ − u0τ)

]
. (A8)

But our soliton solution φ1 = ψ2 so finally:

φ1 =

(
15u0
8A

)2

sech4

[√
u0

16B
(ζ − u0τ)

]
. (A9)

Appendix B: The standard KdV solitary wave solution
compared with the Schamel for a κ distribution

The Schamel KdV Equation is given by Equation (27)
above, rewritten below:

∂φ1
∂τ

+Aφ
1/2
1

∂φ1
∂ζ

+B
∂3φ1
∂ζ3

= 0, (B1)

where

ζ = ε1/4
(
x− 1
√
p
t

)
, τ = ε1/4t,

A = − 3q

4p3/2
, B =

1

2p3/2
,

p =
κ− 1/2

κ− 3/2
, q =

8
√

2/π(β − 1)κΓ[κ]

3(2κ− 3)3/2Γ[κ− 1/2]
.

The solution for φ is φ ' εφ1, where:

φ1 = φm sech4

(
ζ − u0τ

∆

)
, (B2)

φm =

(
15u0
8A

)2

, ∆ =

√
16B

u0
. (B3)

The electric field Esol = −∂φ1

∂ζ , which is:

Esol =
4φm
∆

sech4

(
ζ − u0τ

∆

)
tanh

(
ζ − u0τ

∆

)
.

(B4)
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The standard KdV Equation is:

∂φ̃1
∂T

+ Ãφ1
∂φ̃1
∂Z

+ B̃
∂3φ̃1
∂Z3

= 0, (B5)

where

Z = ε1/2
(
x− 1
√
p
t

)
, T = ε3/2t,

Ã = −3

2

√
p− r

p3/2
, B̃ =

1

2p3/2
,

p =
κ− 1/2

κ− 3/2
, r =

κ2 − 1/4

2(κ− 3/2)2
.

The solution for φ̃ is φ̃ ' εφ̃1, where:

φ̃1 = φ̃m sech2

(
Z − u0T

∆̃

)
, (B6)

φ̃m =
3u0

Ã
, (B7)

∆̃ =

√
4B̃

u0
. (B8)

The electric field Ẽsol = −∂φ̃1

∂Z , which is:

2φ̃m

∆̃
sech2

(
Z − u0T

∆̃

)
tanh

(
Z − u0T

∆̃

)
. (B9)
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