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1.  Introduction

In recent years, a number of special-relativistic hydrodynamic 
models of charged particle systems have appeared. In this 
respect, many works in the literature have already been prop-
erly criticized [1, 2], the main points namely being: (a) they do 
not take into account relativistic mass increase due to random, 
not bulk motion; (b) the pressure term is frequently written in a 
non-Lorentz-invariant form; (c) the majority of approaches are 
not consistent with the well known relativistic hydrodynamics 
of neutral fluids [3, 4]. The purpose of the present work is to 
perform an analysis of joint relativistic and Fermi-degenerate 
effects on Langmuir waves in one-species plasmas, using the 
accurate relativistic hydrodynamic model presented in [1, 2]. 
The interest in plasmas with relativistic effects arising pre-
cisely due to degeneracy, with Fermi momenta of the order 
of m c, where m is the mass of the charge carriers and c the 
speed of light, is increasing due to the large densities achieved 
nowadays in both laboratory and astrophysical settings [5]. 
Examples are provided by plasmas present in intense laser-
solid interaction experiments, or in compact stars as white 
dwarfs. Hence a proper formulation of these quantum-relativ-
istic plasmas in a simplified fluid framework is necessary, in 
benchmark problems like the propagation of Langmuir waves. 

Fluid-theoretical studies can be taken as a first step towards 
the understanding of the nonlinear features of these systems.

The propagation of relativistic Langmuir waves in plasmas 
is a traditional subject, but has never been explicitly consid-
ered in connection to Fermi degeneracy. Akhiezer and Polovin 
[6] and Dawson [7] considered the wave breaking problem in 
the cold case. Later, Coffey [8], in the non-relativistic case 
and Katsouleas [9] in the relativistic case, addressed the same 
problem including thermal effects by means of a waterbag 
[10] model, which is formally analogous to a one-dimensional 
fully degenerate plasma model. This physical correspond-
ence, however, was not recognized. In this context, one of the 
purposes of the present work is to fill this gap, starting from 
first principles and (in another distinctive approach) adopting 
the three-dimensional Fermi gas equation of state.

Admittedly, our formulation does not take into account 
quantum wave effects manifested in the dispersive, quantum 
Bohm potential term. The justification for this limitation is 
that for dense plasmas [11, 12] one can prove that quantum 
statistical effects are of a higher order relevance than quantum 
diffraction. Other quantum plasma systems, like those in ultra-
small electronic devices depending on quantum wave-like 
effects such as quantum tunneling, would deserve an extended 
fluid treatment, whose rigorous form is unknown at present.
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This work is organized as follows. In section 2, the appro-
priate relativistic hydrodynamic plasma model and equa-
tions  of state for fully degenerate plasma are reviewed. In 
section 3, the analytical model for Langmuir waves is reduced 
to a set of ordinary differential equations, by seeking traveling-
wave type solutions. The corresponding conservation laws are 
identified. Assuming a propagation speed of the order of the 
speed of light, linear and nonlinear solutions are addressed in 
section 4. The conclusions are written in section 5.

2.  Relativistic hydrodynamics and equations of 
state

Our starting point is the relativistic fluid model for one-spe-
cies plasma, as proposed in [1, 2],
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where n and u are respectively the number density and 
velocity field in the laboratory frame, ϕ is the electrostatic 
field, γ = (1 − u2/c2)−1/2 is the relativistic dilation factor where 
c is the speed of light, −e is the electron’s charge, ε0 is the vac-
uum’s permittivity and n0 is an equilibrium ionic background. 
In the momentum equation, P and H denote respectively the 
scalar pressure and a dimensionless enthalpy. These quantities 
should be specified by means of equations of state, ensuring 
the closure of the system, as described below.

The relativistic equations  for charged fluids have been 
presented in several, nonequivalent ways in the literature; 
see e.g. [1, 2] for a critical review. The present form is mani-
festly consistent with the form(s) proposed in [3, 4] for neu-
tral fluids, as obtained via a Lorentz transformation from 
the local proper reference system. The inclusion of the elec-
trostatic field is obtained thanks to the covariant coupling 
with the electromagnetic stress-energy tensor, although here 
magnetic field generation is suppressed, for analytical sim-
plicity. The enthalpy-like quantity H represents a non-trivial 
relativistic mass increase due to thermal motion only and is 
frequently omitted in less rigorous relativistic treatments. On 
the other hand, the γ factor here representing the relativistic 
mass increase due to bulk motion appears in all possible and 
non-equivalent ways in fluid formulations in the literature, as 
remarked in [1, 2]. In addition, notice the manifestly Lorentz-
invariant form of the pressure term in equation (2).

In the present treatment, changes are allowed along one 
spatial direction x, in a rectangular geometry with a full 3D 
velocity field = ^u x t xu ( , ) . Other, potentially interesting 
situations, would consider propagation of waves in truly 
one-degree-of-freedom systems, as can happen e.g. in the 
surroundings of neutron stars atmospheres, where the exist-
ence of super-strong magnetic fields effectively limit the 

dynamics to one dimension [13, 14]. Our choice is dictated 
by the interest in the analysis of quasi-1D wave structures 
propagating in otherwise isotropic media, such as in dense 
plasmas where relativistic and degeneracy effects come 
together. This scenario is likely to appear in the next gen-
eration of dense laser-plasma interaction experiments, or 
in astrophysical objects like white dwarfs. In this case, on 
physical grounds it is reasonable to assume energy spreading 
among the available degrees of freedom, so that a 3D equa-
tion of state is obeyed.

We note that, unlike non-degenerate plasmas, the equa-
tions  of state for degenerate plasmas have a form which is 
strongly dependent on the number of available degrees of 
freedom. A more complete treatment, considering also 1D and 
2D systems, will be reported elsewhere.

The equations  of state for a fully degenerate electron 
gas are known since long, see Chandrasekhar [15] and also 
Oppenheimer and Volkoff [16]. Unlike these celebrated works 
devoted to the question of stellar structure, here we focus on 
the electrostatic and not the gravitational aspects. For com-
pleteness, we briefly review the derivation of the relevant 
equations  of state, assuming in equilibrium a completely 
degenerate Fermi-Dirac distribution f = f (r, p) in phase space,
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where ℏ is the scaled Planck’s constant and pF is the Fermi 
momentum. By means of ∫ fdp  =  n0 one derive pF  =  (3π2 
n0)1/3ℏ. The factor 2 in equation (4) is due to the electron spin.

For the scalar pressure, consider the average momentum 
flux

� ∫= ·P f v p p
1

3
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where v = p/(mγ), γ = [1 + p2/(m2 c2)]1/2. The result is
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is the relativistic parameter [17]. Regarding the enthalpy-like 
function H, it is defined in equilibrium as
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is the equilibrium mass-energy density.
The above results have been found for a strict equilib-

rium. Assuming these relations to be valid in a local quasi-
equilibrium, we replace n0 → n and derive the Chandrasekhar 
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equations  of state, to be inserted in the hydrodynamic 
equations,
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In passing, note that P and ρ satisfy Taub’s inequality [18]. 
Having at hand a closed system for the evolution of n, u and 
ϕ, in the following we shall investigate the behavior of a par-
ticular class of possible solutions, namely traveling-waves.

3. Traveling-wave solutions and conservation laws

Assuming all fields to be dependent only on the travelling 
coordinate

� = −X x Vt , (13)

where V is the propagation speed, it is straightforward to see 
that the continuity, momentum and Poisson equations  can 
be integrated once, thus yielding the first integrals J, I and K 
given respectively by
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These conservation laws have a general applicability, as long 
as the thermodynamic relation
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where E0 is the electric field at the reference point X = X0. This 
corresponds to a fluid element at rest and with the equilibrium 
density, possibly under the action of a non-zero acceleration 
due to a launched electric field. In this way and for a conve-
nient gauge choice for the scalar potential, one may evaluate
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We assume V ≠ 0 in the present context, to avoid trivial solu-
tions. Without loss of generality, it is supposed that V > 0.

To proceed, a number of possibilities can be considered. 
Since in our case the scalar pressure is a complicated expres-
sion of the density, it is appropriate to express the conservation 
equations in terms of n. Furthermore, significant simplification 
appear in the physically interesting case of very large value of 
the propagation speed V ≈ c, so that the simple relations
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are approximately valid. In this way, the K conservation law 
after a few algebraic steps takes the form
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with the pseudo-potential
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In this expression, H and ζ are functions of n̄ according to 
equation (12) and
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is a measure of the electrostatic energy perturbation amplitude.

4.  Linear and nonlinear oscillations

Given a non-zero input δ, the pseudo-potential in equa-
tion (25) admits linear oscillations around a minimum ¯ = ¯*n n  
such that ¯ ¯* = ¯ ¯* >U n n U n n(d / d ) ( ) 0 , (d / d ) ( ) 02 2 . Expanding 
around the equilibrium using ¯ = ¯* + ¯n n n1 gives
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where, as can be found up to first order in δ,

�
δ ζ ζ

ζ
¯* = +

+ +
+

n
H

1
2 (18 29 10 )

(3 2 )
,0

2
0
4

0 0
2 2 (28)

⎛
⎝
⎜

⎞
⎠
⎟=

¯
¯*k

U

n
n

d

d
( )2

2

2

Plasma Phys. Control. Fusion 57 (2015) 044006



F Haas and I Kourakis﻿

4

� ζ
δ ζ ζ ζ ζ

ζ
=

+
+

+ + + +
+

H

H

3

3 2

8 (243 789 923 456 80 )

(3 2 )
,0

0
2

0
2

0
4

0
6

0
8

0
2

0
2 4

(29)

�
δ

ζ
¯* = −

+
U n

H
( )

9

(3 2 )
.0

2

0
2 2 (30)

For negligible relativistic parameter ζ0 and perturbation 
amplitude δ one has k2  =  1. After restoring physical coor-
dinates this recovers the usual Langmuir oscillations at the 
plasma skin depth scale c/ωp. On the other hand, larger 
degeneracy effects and a larger ζ0 gives a smaller k, as shown 
in figure 1 for parameters representative of dense laser-solid 
plasma interaction experiments and white dwarfs. Finally, 
nonlinear oscillations can be predicted from the form of the 
pseudo-potential, which is depicted in figure 2, for a number 
density typical of white dwarfs and for different values of δ 
(the parameter associated with the electrostatic energy pertur-
bation). Notice that from equation (23) one needs ¯ <U n( ) 0 
to have a dynamical behavior. In view of the special class of 
initial conditions in equation (18), this requires δ > 0, so that 
the fluid element at the reference point is acted by a launched 
electric field.

For initial conditions in the numerical simulations, we set 
X0 = 0 and take into account the fact that
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as follows from the initial condition in equation (18) and after 
managing the conservation laws. Perturbation from equi-
librium needs δ  ≠ 0, which is also consistent with a deeper 
minimum of the pseudo-potential, as can be inferred from 
equation  (30). Moreover, using the conservation laws it can 
be shown that

� ⎜ ⎟
⎛
⎝

⎞
⎠ = −d

X

H

n
n

d ¯ ¯

1

2
( ¯ 1) ,

2

2
2 (32)

with initial conditions ¯ = ¯ ¯n n X(0) 1, (d / d ) (0) given by the 
relation (31). Typically one get oscillations like shown in 
figure 3, where the dimensionless density n̄ oscillates between 
the turning points where ¯ =V n( ) 0. Wave breaking is not 
observed, due to the propagation speed V ≈ c.

5.  Conclusions

In this work, a consistent special-relativistic fluid treatment 
of Langmuir waves in dense plasmas is carried out. The pre-
sented model takes into account the relativistic mass increase 
due to thermal, degeneracy pressure effects, which is an often 
neglected feature. This common over-simplification tend to 
be dangerous when the Fermi momentum pF becomes of the 
order of m c, as happens in dense astrophysical objects, for 
instance. Moreover, our model equations have the pressure in 
terms of a Lorentz-covariant derivative expression, in accor-
dance with rigorous relativistic hydrodynamic theories [1–4]. 
Some properties of linear and nonlinear traveling wave solu-
tions have been explored, with emphasis on the role of the 
relativistic parameter ζ0. A more detailed account is reserved 
to future work, with a thorough examination of the role of 
dimensionality, different initial conditions and propagation 
speed. In addition it will be relevant to estimate the wave 
breaking amplitude for degenerate plasmas as well as the role 
of phase mixing, in the more realistic case of non exact trav-
eling wave form solutions [19].

Figure 1.  Illustrative plots of the wave number k from 
equation (29), for δ = 0.1 and 0 ⩽ ζ0 ⩽ 1.2. For reference, for 
n0 = 1032 m−3 (current intense laser plasma experiments) one has 
ζ0 = 0.05, while for n0 = 1036 m−3 (white dwarfs) one has ζ0 = 1.20.

Figure 2.  Pseudo-potential ¯U n( ) from equation (25) for ζ0 = 1.20 
(white dwarfs) and either δ = 0 (upper) or δ = 0.1 (lower).

Figure 3.  Oscillations of the dimensionless density n̄ from 
equation (32) with ¯ =n (0) 1, ζ0 = 1.195 (white dwarfs) and δ = 0.1, 
which gives ¯ ¯ =n X(d / d ) (0) 0.36, consistent with equation (31). For 
these parameters one find the turning points ¯ =n 0.67, ¯ =n 1.48, so 
that ¯ =U n( ) 0 in equation (25).
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