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A semirelativistic fluid model is employed to describe the nonlinear amplitude modulation of low-

frequency (ionic scale) electrostatic waves in an unmagnetized electron-positron-ion plasma.

Electrons and positrons are assumed to be degenerated and inertialess, whereas ions are warm and

classical. A multiscale perturbation method is used to derive a nonlinear Schr€odinger equation for

the envelope amplitude, based on which the occurrence of modulational instability is investigated

in detail. Various types of localized ion acoustic excitations are shown to exist, in the form of either

bright type envelope solitons (envelope pulses) or dark-type envelope solitons (voids, holes). The

plasma configurational parameters (namely, the relativistic degeneracy parameter, the positron con-

centration, and the ionic temperature) are shown to affect the conditions for modulational instabil-

ity significantly, in fact modifying the associated threshold as well as the instability growth rate. In

particular, the relativistic degeneracy parameter leads to an enhancement of the modulational insta-

bility mechanism. Furthermore, the effect of different relevant plasma parameters on the character-

istics (amplitude, width) of these envelope solitary structures is also presented in detail. Finally, the

occurrence of extreme amplitude excitation (rogue waves) is also discussed briefly. Our results aim

at elucidating the formation and dynamics of nonlinear electrostatic excitations in superdense astro-

physical regimes. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4907247]

I. INTRODUCTION

The nonlinear characteristics of electrostatic waves in

quantum (degenerate) plasmas form a subject of increasing in-

terest nowadays. Such plasmas exist in dense astrophysical

environments (e.g., in white and brown dwarf stars, in neutron

stars, etc.), in the cores of some giant planets and, interest-

ingly, also in the laboratory (e.g., in super-intense laser-dense

matter experiments).1–5 In dense astrophysical environments

and in superdense laser-produced plasmas, physical parame-

ters like density, magnetic field, and temperature may vary

over a wide range of values. For example, in white dwarfs, the

electron number density is extremely high4,6 (typically

1030 cm�3 or higher). Quantum and/or relativistic effects

inevitably become relevant in such situations, as the inter-

electron distance becomes comparable to, or less than, the

thermal de Broglie wavelength kB ¼ h=mevTe (where h is

Planck’s constant, me is the electron mass, and vTe is electron

thermal speed). Quantum effects are more prominent for

lighter species (electrons), compared to heavier species (ions),

whose behavior may be quasi-classical, depending on the

degeneracy parameter nk3
B, where n is the plasma number den-

sity (recall that nk3
B � 1 for quantum plasmas to be treated as

such). Moreover, in extremely high densities, the electron

Fermi energy EF can be much higher than the thermal energy

(�kBT). The thermal pressure of electrons can thus be

ignored, compared to the Fermi degeneracy pressure, which

arises due to the Pauli exclusion principle. Under such

extreme conditions, the equation of state for the degeneracy

pressure of electrons also changes from P � n5=3 (non-relativ-

istic case) to P � n4=3 (ultra-relativistic case).1,7 This degener-

ate electron pressure, which depends on the density but not on

the temperature, is what supports dense astrophysical objects

(e.g., white dwarfs) against the tremendous gravitational

forces that would otherwise cause the object to collapse.

Extensive research has been carried out recently to

understand the essential physics and basic features of

relativistic degenerate plasmas. Mamun and Shukla8 stud-

ied small-amplitude solitary waves by assuming ultra-

relativistic degenerate electrons and cold ions, via a

Korteweg-de Vries (KdV) theory. Their work was later

extended to electron-positron-ion (e-p-i) plasmas,9 consist-

ing of ultra-relativistic degenerate electrons and positrons
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and warm, non-degenerate ions. They investigated both

weak- and large-amplitude ion-acoustic solitary waves

(pulses) and discussed their dependence on various plasma

parameters, suggesting a relevance of their work to white

dwarfs and to magnetar coronas. An investigation of

arbitrary-amplitude ion waves with relativistic degenerate

electrons in a wide range of values of the relativity parame-

ter pFe=mec (degree of electron degeneracy) was carried out

for the first time by Akbari-Moghanjoughi.10

Electron positron (e-p) plasmas are believed to exist in

many astrophysical environments (see, e.g., Refs. 11–15), and

are also thought to have played an important role in the begin-

ning and evolution of the universe.16 The dynamics of e-p plas-

mas has also stirred a great deal of interest in recent years, due

to their realization in the laboratory by intense-laser matter

interaction experiments.17–19 In dense astrophysical plasmas

where e-p plasmas are dominant, ions may also be present,20

thus, modifying the response of e-p plasmas. With a positron

lifetime of sufficient duration, the physical system of relevance

is essentially a three-component e-p-i plasma. Quantum effects

of electrons and positrons in superdense e-p-i plasmas cannot

be ignored. It is also interesting to mention here that in relativ-

istic degenerate e-p-i plasmas, the characteristic nonlinear wave

frequency is much higher than that of the pair annihilation

mechanism (i.e., x�1
p;j � sann), therefore it is of practical inter-

est to study waves and nonlinear structures in such a

plasma.21,24 In particular for relativistic degenerate plasmas the

annihilation time sann is sann ¼ 4H2

3njrsc =½1=4 þlnð2dHþ 1Þ� for

H� 1, where rsð¼ 6:65� 10�25 cm2) is the electron

Thomson cross-section, Hð¼ kBTFj=mjc
2Þ is the normalized

thermal energy and d ¼ e�NE � 0:5615 with NEð	 0:5772Þ
the Euler’s constant. By employing ne0 ¼ np0 ¼ n0, the pair

annihilation condition becomes ðH2=½1=4þ lnð1:123Hþ
1Þ�Þ � 2:6� 10�19n

1=2
0 , which is well satisfied for the typical

mass density range q � 106 g/cm�3 characteristic of relativis-

tic dense plasmas found in astrophysical environments (viz.,

white dwarfs, etc.). Various studies of linear and nonlinear

waves in relativistic degenerate e-p-i plasmas have appeared

in recent years.9,22–26

The study at hand focuses in particular, on modulational

instability (MI), one of the most intriguing mechanisms in

plasma physics, involving the amplitude modulation of a

wavepacket, an evolutionary stage often associated with the

formation of localized pulses. Such pulses are efficiently mod-

eled as envelope solitons (so called due to their envelope struc-

ture, modulating an internal carrier wave), which are exact

solutions of the integrable nonlinear Schr€odinger equation

(NLSE), successfully modeling the balance between nonlinear-

ity and wave group dispersion. In plasmas, the NLSE can be

derived by employing a multiple (space- and time-) scales per-

turbation technique.27,28 MI has been subject of extensive

investigation in recent years, and its occurrence has been

investigated with respect to various wave modes in dispersive

and nonlinear plasmas. In 1977, Watanabe reported the first

experimental observation of the MI of a monochromatic ion

acoustic wave.29 Subsequently, a number of theoretical investi-

gations focused on the effect(s) of finite ion temperature,30,31

modulation obliqueness,33 charged dust,32,33 nonthermal elec-

trons,36 positron concentration,37 among other factors, on the

MI characteristics of electrostatic plasma waves.

Our aim is to investigate the nonlinear dynamics of modu-

lated electrostatic ion acoustic wavepackets in ultrahigh density

(degenerate) quantum plasmas. We consider an unmagnetized

dense plasma composed of inertial non-degenerate warm ions

and inertialess relativistic degenerate electrons and positrons.

We investigate the occurrence of MI as well as the existence of

envelope-type solitary structures associated with ion acoustic

waves. The layout of the article goes as follows. In Sec. II, we

present a semirelativistic fluid model for ion acoustic waves. In

Sec. III, we apply a multiscale perturbation technique, and pro-

ceed by discussing the linear behavior of ion acoustic waves

and subsequently deriving a NLSE-type equation governing the

nonlinear dynamics of ion acoustic waves. In Sec. IV, we derive

a nonlinear dispersion relation for a long-wavelength “random”

perturbation of the modulated amplitude. In Sec. V, we summa-

rize the basic information on relevant envelope soliton solutions

of the NLSE. Breather-type rogue-wave-like solutions are pre-

sented in Sec. VI. Sec. VII is devoted to a parametric investiga-

tion in terms of different relevant parameters, while Sec. VIII is

dedicated to the conclusion of our results.

II. QUANTUM ION-FLUID MODEL

We are interested in modeling electrostatic excitations at

the ionic frequency scale propagating in an unmagnetized e-p-i

plasma. For simplicity, we adopt a one-dimensional geometry.

The ions are assumed to constitute a non-degenerate system of

particles with an individual charge of Zie (where Zi denotes the

ion charge state, and e is the electron charge). Self-induced

electric forces occur, due to variations of an electrostatic poten-

tial /, while the electrons and positrons obey Fermi-Dirac sta-

tistics and are considered a relativistically degenerate

ensemble. Adopting a one-dimensional semiclassical fluid for-

mulation, the evolution equations for the ion density ni, fluid

speed vi and electron/positron pressure Pe=p, in terms of /, read

@ni

@t
þ @

@x
nivið Þ ¼ 0;

@vi

@t
þ vi

@vi

@x
þ Zie

mi

@/
@x
þ 1

mini

@Pi

@x
¼ 0;

ene
@/
@x
� @Pe

@x
¼ 0;

enp
@/
@x
þ @Pp

@x
¼ 0;

@2/
@x2
¼ 4pe ne � Zini � npð Þ:

(1)

Electrons and positrons are treated as a degenerate en-

semble, following the equation(s) of state

Pj ¼
pm4

j c5

3h3
gj 2g2

j � 3
� �

1þ g2
j

� �1
2 þ 3sinh�1 gjð Þ

� �
; (2)

where gj ¼ pFj=mjc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

j � 1
q

and pFj ¼ ð3h3nj=8pÞ
1
3; the

index j will denote either electrons (e) or positrons (p)

throughout this text.
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The third and fourth equations in system (1) above are

readily eliminated by employing the expression: 1
nj

@Pj

@x

¼ mjc
2gj

ð1þg2
j Þ

1
2

@gj

@x and then integrating to find a relation between nj

and / in the form

ne;p ¼
8pm3

e;pc3

3h3

e2/2

m2
e;pc4

6
2e/

me;pc2
1þ g2

e;p0

� �1
2 þ g2

e;p0

" #3
2

: (3)

In (3), gj0 ¼ ð3h3nj0=8pm3
j c3Þ1=3

is the value of the relativity

parameter, gj, at equilibrium.

A. Scaled evolution equations

The model may be rewritten in terms of dimensionless vari-

ables. Number densities have been rescaled by their equilibrium

values. Here, we adopt a natural choice of scales: time and space

are, respectively, scaled by the inverse plasma frequency x�1
pi ¼

ðmi=4pni0Z2
i e2Þ1=2

and by the characteristic length Ci=xpi,

where the ion fluid speed is scaled over Ci ¼ ðEFe0=miÞ1=2
. The

electrostatic potential is scaled by EFe0=Zie.

Applying the above scale transformation, one obtains

@~ni

@~t
þ @

@~x
~ni~við Þ ¼ 0;

@~vi

@~t
þ ~v

@~vi

@~x
þ @

~/
@~x
þ g~ni

@~ni

@~x
¼ 0;

@2 ~/

@~x2
¼ b~ne � ~ni � a~np;

(4)

where all quantities are dimensionless (real numbers).

We have defined the dimensionless parameters: a ¼ np0

jZijni0

and b ¼ ne0

jZijni0
. Overall charge neutrality at equilibrium imposes

a balance relation on the plasma components’ number den-

sities, leading to the constraint: b ¼ aþ 1. This relation can

be used to express the electron equilibrium density (and, subse-

quently, the positron equilibrium Fermi energy) in terms of

that of the positrons, once the value of a is fixed.

We have also defined the ratio g ¼ 3 Ti

TFe0
, measuring

the relative strength between the ion temperature (Ti) and the

electron Fermi temperature (TFe0 ¼ EFe0=kB, where kB is the

Boltzmann constant, in principle a very small number).

Assuming excitations not too far from equilibrium,

Poisson’s equation can be expanded in a Taylor series in the

electrostatic potential, viz.,

@2 ~/

@~x2
þ ~ni � 1 	 c1

~/ þ c2
~/

2 þ c3
~/

3
; (5)

where we have defined the expansion coefficients

c1 ¼
3

2Zi
1þ að Þce0þ acp0

EF;e0

EF;p0

� �
;

c2 ¼
3

8Z2
i

1þ að Þ 2c2
e0� 1

� �
� a 2c2

p0� 1
� � EF;e0

EF;p0

	 
2
" #

;

c3 ¼
1

16Z3
i

�
1þ að Þce0 2c2

e0� 3
� �

;

þacp0 2c2
p0� 3

� � EF;e0

EF;p0

	 
3�
:

(6)

It is appropriate to express the relativistic degeneracy param-

eter for positrons, gp0, in terms of the electron relativistic

degeneracy parameter, ge0. In this case, gp0 ¼ ða=bÞ1=3ge0,

where ge0 ¼ ð3=8pÞ1=3ðh=mecÞn1=3
e0 measures the relativistic

degeneracy effects. The subscript “0” in ce0 (cp0) indicates

that the electron (positron) density is to be evaluated at equi-

librium and EFj0 ¼ mjc
2g2

j0=2. We shall later show that c1 is

related to the shielding length in the plasma considered, and is

in fact present in the first-order (linear) response, whereas c2 and

c3 appear only at higher orders in the expansion, and are associ-

ated with the intrinsic nonlinearity of the physical problem.

For the remainder of this work, the tilde over the dimen-

sionless variables in the system (4) will be dropped.

The above choice of scales, which is common and

physically transparent, for dense plasmas greatly simplifies

the analytical work. However, we should point out, for rigor,

that there is extra dependence on the density hidden from

sight within the scaling and this might arguably affect some

of the plots. Therefore, the plots presented in the following

have been made with respect to different (fixed) scales,

which are not density dependent: for this purpose, we have

introduced two constants, x0 ¼ 8pðm3
ec3=6mih

3Þ1=2
s�1 and

k0 ¼ 8pmeeðc=3h3Þ1=2
cm�1, which will be used later in

the plots.

III. MULTIPLE SCALES PERTURBATION

We consider each of ni; vi and / as a modulated enve-

lope, i.e., the convolution of a fast internal (carrier) wave

with a slowly varying amplitude. It is assumed that the car-

rier depends only on the fast fx; tg � fX0; T0g scale, while

the slowly evolving envelope depends on an infinite set of

slow scales, fX1;X2; :::; T1; T2; :::g, where the different scales

Tr ¼ �rt and Xr ¼ �rx (for r ¼ 1; 2; 3; :::) are introduced, and

�� 1 is a free (real, small) parameter. Near equilibrium, the

variables are expanded as ni 	 1þ �ni1 þ �2ni2 þ 
 
 
 ; vi

	 �vi1 þ �2vi2 þ 
 
 
, and / 	 �/1 þ �2/2 þ 
 
 
, while each

of these contributions uj (say, any of nj, vj, /j) is split into a

sum of Fourier components: uj ¼
Pj

r¼�j u
ðrÞ
j eirðkx�xtÞ. The

number density and fluid speed of each species, and also

the electrostatic potential are real-valued quantities, so

u
ð�rÞ
j ¼ �u

ðrÞ
j (the bar here denoting the complex conjugate).

The stretched variables are treated as independent variables.

With this in mind, the model equations are transformed into

a series of coupled polynomials whose solutions provide

expressions for the state variables in terms of their harmonic

amplitudes.

A. Linear analysis

The compatibility of the system obtained to first-order

in the expansion parameter � leads to the linear dispersion

relation

x2 ¼ k2

c1 þ k2
þ gk2: (7)

The dispersion characteristics of the carrier wave are

depicted in Figures 1 and 2.
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The first order perturbation amplitudes (/1; ni1 and vi1) are

obtained, in terms of the first-order electric potential correction

(amplitude) /ð1Þ1 ¼ w (undetermined, a free variable) as /1 ¼
w eiðkx�xtÞ þ �w e�iðkx�xtÞ and vð1Þi1 ¼ x

k n
ð1Þ
i1 ¼ x

k c1 þ k2Þw
�

.

B. Nonlinear analysis and the nonlinear Schr€odinger
equation

The equations for the first-harmonic components at sec-

ond order are singular, unless the secular terms are annihi-

lated. This leads to the following requirement:

@w
@T1

þ vg
@w
@X1

¼ 0; (8)

where vg ¼ dx=dk ¼ ½c1=ðc1 þ k2Þ2 þ g�k=x. This condi-

tion suggests that the envelope moves at the group velocity,

thus w ¼ wðX1 � vgT1Þ.
In the next (second) order in �, one obtains a set of

expressions for the first-, second-, and zeroth-harmonic com-

ponents, which turn out to be proportional to @w=@X1; w2,

and jwj2, respectively. We retain, in the following, the formal

expression for the electrostatic potential:

/ 	 �w ei kX0�xT0ð Þ

þ �2 1

2
C0

23
jwj2 þ C2

23
w2e2i kX0�xT0ð Þ

	 

þ c:c:; (9)

alongside analogous expressions for the ion density and the

ion fluid speed (for details, see the Appendix).

Proceeding to third order in �, annihilation of the secular

terms associated with the first harmonics arising in the alge-

bra, require w to obey an equation in the form

i
@w
@s
þ P

@2w

@n2
þ Qjwj2w ¼ 0; (10)

where we have defined the “slow” coordinates n ¼ X1

�vgT1 ¼ �ðx� vgtÞ and s ¼ T2 ¼ �2t.
Due to its structure, the latter partial differential equa-

tion is referred to in the literature as the nonlinear

Schr€odinger equation.33 The dispersive coefficient, P, is

related to the gradient of the group velocity, viz., P ¼ 1
2

dvg

dx .

The nonlinearity coefficient, Q, is given by a lengthy expres-

sion, provided in the Appendix.

The dispersion (P) and nonlinearity (Q) coefficients and

their product (PQ) are depicted in Figure 3 below, as func-

tions of the carrier wavenumber, for varying values of the

relativistic degeneracy parameter ge0. We note that P < 0 <
Q near k ’ 0 (i.e., in the long wavelength limit), thus ensur-

ing modulational stability for large wavelengths, as dis-

cussed in Sec. IV.

Both coefficients P and Q are functions of the carrier

wavenumber k. Let us focus on the large carrier wavelength

(small wavenumber) region. A long-wavelength expansion

(k � 1) yields the following approximate expressions:

P 	 � 3k

2c
3=2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c1g
p ; Q 	 Q0

k
;

where

Q0 ¼
1

c
3=2
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ gc1

p
c2

c1

� 3c1

2
� 2gc2

1

	 


� c2c1

3
� c3

1

6
3þ 4gc1ð Þ

� �
: (11)

FIG. 1. The (angular) wave frequency x (in units of x0 ¼ 8pðm3
ec3=6mih

3Þ1=2
) is plotted against k (in units of k0 ¼ 8pmeeðc=3h3Þ1=2

). In (a), ge0 ¼ 10g ¼ 0:1
and the solid/dashed/dotted-dashed curves represent a ¼ 0:01=0:1=0:5. In (b), ge0 ¼ 10g ¼ 0:1 and the solid/dashed/dotted-dashed curves represent

a ¼ 1=9=15. In (c), a ¼ 50g ¼ 0:5 and the solid/dashed/dotted-dashed curves represent ge0 ¼ 0:1=1=2. In (d), ge0 ¼ a ¼ 0:5 and the solid/dashed/dotted-

dashed curves represent g ¼ 0:02=0:01=0:001.
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The NLSE (10) is the main outcome of the analysis at

this stage. The evolution of the wave’s amplitude depends on

the coefficients P and Q,33 whose analytical behavior may

now be investigated in terms of the physical parameters

involved in the problem.

IV. MODULATIONAL INSTABILITY ANALYSIS

Let us here present a brief review for the envelope stability

analysis, as described by the NLSE above. We start by defining

a monochromatic (Stokes’) wave solution38,39 w0 ¼ WeiQjwj2s.
We proceed by linearizing around the harmonic solution, viz.,

W ¼ W0 þ eW1; and then taking the perturbation W1 to be of

the form W1 ¼ W10 eiðk̂n�x̂sÞ þ c:c:, where c.c. denotes the

complex conjugate, k̂ and x̂ are the perturbed wave

number and the frequency, respectively. Upon substituting into

Eq. (10), we obtain the nonlinear dispersion relation

x̂2 ¼ P2k̂
2

k̂
2 � 2

Q

P
jW10j2

	 

; (12)

relating the (amplitude perturbation) frequency x̂ and wave-

number k̂ (to be distinguished from the carrier frequency x
and wavenumber k).

From the latter relation, we find that the wave is stable

for all values of k̂ that lead to a negative value for Q/P
(recall that Q and P have different signs for small k),

however it becomes unstable for wavenumber k̂ values

that correspond to a positive Q/P, viz., k̂ <
ffiffiffiffiffiffiffiffiffiffiffiffi
2Q=P

p
jW10j

(assuming that Q and P have the same sign). This is essen-

tially the well known Benjamin-Feir instability mechanism

in hydrodynamics.38

V. ENVELOPE EXCITATION MODES

The NLSE (10) possesses different types of solutions, in

the form of localized envelope structures (bright or dark),

depending on the sign of the product PQ. The different enve-

lope soliton solutions of the NLSE can be found in literature

see, e.g., Refs. 34, 35, and 39–41—thus only the main infor-

mation will be provided in the following text.

In order to obtain stationary-profile localized excitations of

the modulated (electrostatic potential) envelope, one may intro-

duce the ansatz39 wðn; sÞ ¼ Wðn; sÞ exp½iDðn; sÞ�; where W
and D are real variables to be determined by substituting into

the NLSE (10). Different types of solutions are thus obtained.

When both P and Q have the same sign (i.e., for

large wavenumbers—see Figure 3) the carrier wave is modu-

lationally unstable; it may either collapse, due to random

external perturbations, or evolve into a series of bright enve-

lope modulated wavepackets, i.e., localized envelope pulses

confining the fast carrier wave; for a graphical representation

of envelope solitons see, e.g., in Ref. 33. The exact expres-

sion for bright-type pulses (occurring only for positive Q=P),

as derived rigorously in Ref. 39 (also see Ref. 41), reads

jWj ¼ Wmsech
n� Vs

L

	 

and

D ¼ 1

2P
Vn� 1

2
V2 þ X

	 

s

� �
; (13)

where Wm is a constant and represents the nonlinear

maximum amplitude, and the soliton width is given by

L ¼ ð2P=QÞ1=2=Wm. V is the soliton propagation speed and

X is its frequency at rest. Although the bright envelope soli-

ton phase profile remains constant as it propagates, its phase

FIG. 2. The group velocity vg (in units of x0=k0) is plotted against k (in units of k0). In (a), ge0 ¼ 10g ¼ 0:1 and the solid/dashed/dotted-dashed curves repre-

sent a ¼ 0:01=0:1=0:5. In (b), ge0 ¼ 10g ¼ 0:1 and the solid/dashed/dotted-dashed curves represent a ¼ 1=9=15. In (c), a ¼ 50g ¼ 0:5 and the solid/dashed/

dotted-dashed curves represent ge0 ¼ 0:1=1=2. In (d), ge0 ¼ a ¼ 0:5 and the solid/dashed/dotted-dashed curves represent g ¼ 0:02=0:01=0:001.
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is characterized by a slow space and time dependence, allow-

ing for a slight deformation of the wave packet internal

structure during propagation.

On the other hand, when Q and P have opposite signs

(i.e., in the region represented by small wavenumber val-

ues—see Figure 3), the wave is modulationally stable and

the wavepacket may take the form of a dark (black or grey)

envelope wavepacket, i.e., a propagating localized “hole”

soliton (see, e.g., Ref. 33). The exact expression for “black”

envelopes reads,39,41

jWj ¼ Wmtanh
n� Vs

L1

	 

and

D ¼ 1

2P
Vn� 1

2
V2 � 2PQW2

m

	 

s

� �
: (14)

The dark soliton width L1 depends on the maximum ampli-

tude Wm via L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jP=Qj

p
=Wm.

For more details about the main characteristics of these

envelope solitons, the interested reader is referred to Ref. 42

(also see Ref. 33 for a discussion).

VI. BREATHER TYPE SOLUTIONS OF THE NLSE (10)
AS MODELS FOR ROGUE WAVES

Rogue waves—also known as freak waves, extreme

waves, monster waves, or WANDTs (“waves that appear from

nowhere and disappear without a trace”)—represent one of the

most fascinating natural phenomena frequently observed in

mid-ocean and coastal waters.43 A rogue wave is a short-lived,

extreme-amplitude phenomenon which appears in the ocean in

an apparently random manner, bearing an amplitude much

higher than twice the average wave turbulence level around it.

FIG. 3. (a) The dispersion coefficient P (in units of x0=k2
0) is plotted against

the wavenumber k (in units of k0). (b) The nonlinearity coefficient Q (in

units of 4x0=m2
ec4) is plotted against the wavenumber k. (c) The product PQ

(in units of 4x2
0=m2

ec4k2
0) plotted against the wavenumber k. In all plots, the

solid black curves are for ge0 ¼ 0:5, dashed red curves for ge0 ¼ 1, and

dotted-dashed blue curves for ge0 ¼ 2. We have taken a ¼ 0:5 and g¼ 0.01. FIG. 4. Plots of (a) Peregrine soliton; (b) Akhmediev breather; (c) the

Kuznetsov-Ma breather. We have considered here the values: a ¼ 0:5; ge0

¼ 0:01 and g¼ 0.01.
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It was recognized at an early stage that linear theories

fail to provide explanation for the formation of rogue

waves,44,45 hence researchers resorted to nonlinear theo-

ries45,46 to explain rogue wave formation. The fundamental

approach now widely used relies on equations in the form of

the NLSE (10), and is based on the working assumption that

modulational instability (MI) serves as an initial process in

the formation of rogue waves. This hypothesis is also sup-

ported by numerical results.47

It has been recognized at an early stage that breather-

type solutions of the NLSE may be good candidates for mod-

eling of rogue waves.48 Following their observation in non-

linear optics,49–51 the first experimental observation of

electrostatic rogue waves in plasmas was reported by

Bailung.52 A number of theoretical studies have since then

focused on rogue waves in plasmas, e.g., in the contexts of

Langmuir waves,53 surface plasma waves,54 dusty plasmas,55

Alfv�en waves,56 electromagnetic beam-plasma interac-

tions,58 and more recently in dense (quantum) plasmas.57,59

In the following text, we shall summarize the current

state of the art, as regards the basic analytical rogue wave-

like solutions of the NLSE (10), briefly discussing their rele-

vance in our physical model.

The Peregrine soliton60 is now recognized as the funda-

mental candidate for rogue wave like behavior in physical

systems modeled by the NLSE Eq. (10). Its relevance in non-

linear optics50 and more recently in plasmas52 has been

established experimentally.

The Peregrine solution reads58–60

w ¼ exp iQt 1� 4 1þ 2iQtð Þ

1þ 2Q

P
x2 þ 4Q2t2

2
4

3
5: (15)

This solution has the form of a single-peaked structure that

decays to a plane wave asymptotic background at either large

x or t, but exhibits non-trivial behavior over a small region in

(x, t), see Figure 4(a). For purposes of parametric analysis,

all the pertinent physical information is contained within the

coefficients P and Q in (15) which are functions of relevant

plasma parameters; cf. (10) earlier.

The Akhmediev breather is given by48,58,59

w¼ exp iQt

�
cosh Qsin 2uð Þt�2iuð Þ� cos uð Þcos 2sin uð Þ

ffiffiffiffiffiffi
Q

2P

r
x

 !

cosh Qsin 2uð Þtð Þ� cos uð Þcos 2sin uð Þ
ffiffiffiffiffiffi
Q

2P

r
x

 ! :

(16)

This waveform, which is periodic in space, but highly local-

ized in time, cf. Figure 4(b), was recently detected in optical

fibers.51 The Peregrine solution is recovered in the limit of

infinite spatial period.

The Kuznetsov-Ma breather58,59,61 is given by the

expression

w ¼ exp iQt�
cosh Qsinh 2uð Þt� 2iuð Þ � cosh uð Þcosh 2sinh uð Þ

ffiffiffiffiffiffi
Q

2P

r
x

 !

cos Qsinh 2uð Þtð Þ � cosh uð Þcosh 2sinh uð Þ
ffiffiffiffiffiffi
Q

2P

r
x

 ! : (17)

This waveform is localized in space, but periodic in time; cf.

Figure 4(c). Interestingly, one can recover the Peregrine so-

lution in the limit of infinite temporal period.48

We close Sec. VI by referring the interested reader to

Refs. 58 and 59, where the various types of rogue-wave

breather solutions of the NLSE (10) are briefly reviewed. It is

clear upon inspection of the latter expressions that the various

plasma parameters affect the characteristics of these solutions

via the coefficients P and Q. However, we have here limited

ourselves to providing the above solutions, along with the rep-

resentative, Figure 4, for the reader’s information. A more

detailed investigation of the parametric dependence of these

solutions (along the lines of Refs. 58 and 59) was, for reasons

of brevity in presentation, left for future work.

VII. PARAMETRIC INVESTIGATION

It is instructive to mention here that all plots provided

here are based on a set of parameter values representative of

relativistic degenerate plasmas found in dense astrophysical

objects such as in white dwarfs, etc., where the typical inte-

rior densities are q � 106 g/cm�3.4,6

We shall now investigate the effect of various relevant

system parameters (carrier wavenumber k; positron-to-ion

density ratio a; electron relativistic degeneracy parameter

ge0; ion-temperature to electron Fermi temperature ratio g)

on the angular frequency x, group velocity, vg, the disper-

sion coefficient, P, the nonlinear coefficient, Q, the modula-

tional stability profile and on the dynamics of the localized

excitations. Two different regions of interest will be consid-

ered, as regards the parameter a (positron concentration).

First, for very small a (�1) (few or no positrons), the pro-

posed model represents electron-ion (e-i) plasma at the first

stages of positron production. On the other hand, for values

near unity (a ’ 1—no ions present), we recover an e-p

plasma. Both regimes are considered in the parametric analy-

sis provided below.

Before starting the parametric analysis, we note that

even though the scaling introduced in the present model is

convenient and physically transparent, it invalidates
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comparison among different plots for various parameter val-

ues, since some of these parameters can influence the scales.

The functional dependence of the scales on the density is

clearly identified through the dimensionless parameters a
and ge0. For the sake of clarity, we present the majority of

the plots according to a scale which does not depend on these

two parameters (see Figures 1–3 and 5–7), as explained in

the end of Sec. II above.

Figure 4 is for illustration only. The scales used in

the plots correspond to the fully dimensional representa-

tion, but scaled by certain constants which do not affect

the figures in a qualitative manner. It should also be

noted that when g (/Ti=g2
e0) is changed, we assume

here that ge0 is held constant and Ti varies accordingly.

Conversely, when ge0 varies for constant g, we assume

that Ti changes to maintain the constant value of g. This

was a matter of choice, for ease of representation and

physical interpretation.

In Figures 1(a) and 1(b), we see that the frequency x (in

units of x0 ¼ 8pðm3
ec3=6mih

3Þ1=2
) increases as the wavenum-

ber k (in units of k0 ¼ 8pmeeðc=3h3Þ1=2
) increases, as expected

for an acoustic mode. On the other hand, x (for given k, say)

decreases as a acquires larger values. In Figure 1(c), we see

that x increases for higher values of ge0. Recall that ge0 meas-

ures the relativistic character of the light constituents, hence

small values of ge0 correspond to a “weakly-relativistic” re-

gime, while higher values of ge0, on the other hand, suggest a

strongly relativistic behavior. Furthermore, Figure 1(d) shows

that x increases as g increases, an effect which is evident at

higher values of k (shorter wavelength). Similar qualitative con-

clusions are drawn for the behavior of the group velocity vg,

depicted in Figure 2.

In order to investigate the envelope stability profile, let us

recall that a key quantity is the ratio Q/P: its sign (positive/neg-

ative) corresponds to parameter regions of instability/stability,

respectively), and determines the nature of envelope solitons to

occur (bright/dark, respectively). The rogue wave-like breather

solutions also occur in the “bright” region (Q=P > 0).

We have studied the analytical behavior of the ratio Q/P
(in units of 8k2

0=m2
ec4) versus the wavenumber k (in units of

k0), for different relevant plasma parameter values. In a gen-

eral manner, Q=P < 0 for small k, suggesting stability for

long wavelengths, as physically expected. For wavenumber

values above a certain threshold, defined as the critical value

kc (i.e., essentially a root of either P or Q, since both are con-

tinuous analytical functions of k), Q/P becomes positive,

suggesting that instability sets in above kc.

The variation of Q/P with the wavenumber k for different

values of the parameter ge0 is shown in Figure 5. The critical

wavenumber kc has a value ’ 1:3 for ge0 ¼ 0:5, reaching

higher values for higher ge0 (viz., kc ’ 1:9 for ge0 ¼ 1; kc

’ 3:1 for ge0 ¼ 2). Dark envelope solitons therefore exist for

values below the threshold kc, while bright envelope solitons

will occur above that value. In the modulationally stable

region k < kc (see Figure 5(a)), the ratio jQ=Pj increases (in

absolute value) with increasing ge0 for fixed value of k, sug-

gesting wider (spatially extended) dark envelope-type soli-

tons. In the modulationally unstable region (k > kc), the

inverse behavior is observed, i.e., the ratio Q/P is reduced as

ge0 increases, for given value of k, hence implying narrower

bright-type envelope solitons for stronger relativistic regimes.

The dependence of the ratio Q/P on k for various values

of the positron concentration a has been depicted in two

cases of interest: (i) for low values of a and in (ii) for values

FIG. 5. The ratio Q/P (in units of 4k2
0=m2

ec4) is plotted against k (in units of k0). In (a), a ¼ 0:5, g¼ 0.01; and the solid/dashed/dotted-dashed curves represent

ge0 ¼ 0:5=1=2. In (b), ge0 ¼ 1, g¼ 0.01; and the solid/dashed/dotted-dashed curves represent low values of a ¼ 0:025=0:1=0:5. In (c), ge0 ¼ 1, g¼ 0.01; and

the solid/dashed/dotted-dashed curves represent higher values of a ¼ 9=12=15. In (d), ge0 ¼ 1 and a ¼ 0:5 and the solid/dashed/dotted-dashed curves represent

g ¼ 0:05=0:01=0:001.
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of a near unity. We note that in both cases (i) and (ii) an

increase in a (i.e., keeping ge0 and g fixed) results in higher

Q/P in the stable region (characterized by k < kc, or

Q=P < 0) as well as in the unstable region (k > kc, or

Q=P > 0, as shown in Figures 5(b) and 5(c).

We have plotted the ratio Q/P versus k, for different val-

ues of the ion temperature to the electron Fermi temperature

ratio g. It appears from Figure 5(d) that increasing the ther-

mal effects of ions (as manifested through higher g values)

leads to a vertical shift of the curve downwards (i.e., to

higher jQ=Pj, in the negative region). A similar qualitative

behavior is observed in the positive region, i.e., the ratio

Q=P increases as g increases.

The dependence of the critical wavenumber (threshold)

kc (in units of k0) on the relevant parameters is depicted in

Figure 6. From these figures, we see that there are two criti-

cal values of kc, namely, kc1 and kc2, where the instability

sets in. The critical wavenumber kc1 corresponds to Q¼ 0

while kc2 to P¼ 0. In other words, these values correspond,

respectively, to the ratio Q/P equal to zero or going to infin-

ity. For wavenumbers lying in between the two critical val-

ues, kc1 < kc < kc2, the wave is unstable, while it is stable

otherwise. The variation of kc as a function of ge0 is shown

in Figure 6(a). It is obvious that the unstable region is nar-

rower for lower values of ge0, while higher values of ge0

favors an increase in the modulationally unstable region.

Figure 6(b) depicts the effect of the positron concentration a
on the critical wavenumber kc. Here it is seen that the curve

of kc appears to move downwards, i.e., the unstable region

diminishes with increasing values of a. The same qualitative

behavior of kc is observed for increasing values of g (see

FIG. 6. The critical wavenumbers, kc1 and kc2 (both in units of k0, are plotted

in: (a) against ge0 with a ¼ 0:5 and g¼ 0.01; (b) against a ¼ 0:5 with

ge0 ¼ g ¼ 0:01; (c) against g with a ¼ ge0 ¼ 0:5.

FIG. 7. The growth rate (in units of x0) is plotted against the perturbation

wavenumber K (� k̂ , in units of k0). The value of the original dimensionless

k is k¼ 2.2 in all cases. Note that the solid black curve is plotted for the

same physical parameters in all the three panels for comparison; for a ¼ 0:5
and ge0 ¼ 5g ¼ 0:05. In (a), with a ¼ 0:5 and g¼ 0.01, the red dashed curve

is for ge0 ¼ 0:1 and the dotted-dashed blue curve is for ge0 ¼ 0:2. In (b),

with ge0 ¼ 5g ¼ 0:05, the red dashed curve is for a ¼ 0:475 and the dotted-

dashed blue curve is for a ¼ 0:45. In (c), with a ¼ 0:5 and ge0 ¼ 0:05, the

red dashed curve is for g¼ 0.0105 and the dotted-dashed blue curve is for

g¼ 0.011, respectively.
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Figure 6(c) as was noticed in Figure 6(b)), i.e., increasing

values of g results in the mitigation of unstable region.

Two comments are in order, regarding the instability

threshold(s) depicted in Fig. 6. First, the upper curve in all

subpanels of Fig. 6 is irrelevant in the cold-ion model, i.e., in

the case g¼ 0, it disappears (or, say, moves to infinity).

Second, it is known that Landau damping (rather, its quan-

tum analogue here62,63) occurs for wavenumber values in the

vicinity of one (in reduced units), a fact which apparently

invalidates quantitative results obtained for higher k, i.e., for

short wavelengths. Indeed, beyond k ’ 1, the fluid descrip-

tion may be inappropriate, as resonant particles are expected

to interact and exchange energy with the wave,62,63 a fact

overlooked in the fluid description. The graphical analysis

presented herewith is nonetheless provided for an extended

parameter region, yet on an indicative (and qualitative) only

basis, and should be read with some caution, if quantitative

predictions are aimed at.

To obtain more information regarding the nature of

modulational instability, we have displayed the growth rate

(in units of x0) as a function of K (in units of k0) for varying

the relevant plasma parameters. The effect of a on the MI

growth rate is depicted in Figure 7(a) (choosing a representa-

tive wavenumber in the unstable region). It is clear that the

MI growth rate is significantly affected by a. In fact, the MI

growth rate appears to be reduced with increasing a; the

instability is somehow attenuated by the positron concentra-

tion. Moreover, we also note that increasing values of ge0

and g leads to increase the MI growth rate, suggesting that

the instability is enhanced by higher values of ge0 and g (see

Figures 7(b)–7(c)).

VIII. CONCLUSION

We have investigated from first principles the amplitude

modulation of electrostatic wavepackets propagating in a

completely degenerate dense plasma, which is composed of

non-degenerate warm ions and relativistically degenerate

electrons and positrons. A relativistic equation of state

was employed for the electrons and positrons, while the

ions were assumed to be an inertial species. By adopting a

multiscale perturbation technique, a nonlinear Schrodinger

equation was derived for the slow dynamics of the electro-

static wave envelope. Exact expressions for the dispersion

(P) and nonlinearity (Q) coefficients were derived and

their parametric dependence on the relevant parameters,

namely, accounting for relativistic, positron and ion-

pressure effects (via ge0, a and g, respectively) was

investigated.

We have shown that increasing values of ge0 would lead

to an increase in kc. On the other hand, increasing the value

of a and g results in diminishing kc, suggesting that modula-

tional instability sets in for lower k.

The instability growth rate was found to decrease for

higher values of a, concluding that increasing the positron

concentration may somehow control the occurrence of MI.

However, it was noticed that increasing the value of ge0 and

g enhances the instability growth rate.

Furthermore, it was shown that increasing values of ge0

results in narrower bright-type envelope solitons (under con-

stant amplitude), while, on the other hand, higher values of a
and g give wider bright-type envelope excitations.

It may be added, for the sake of rigor, that we have

adopted a semirelativistic fluid model, combining a classical

algebraic operator structure with the Chandrasekhar pressure

term1 (in fact derived in a spherical geometry). It is thus

understood that our model is valid for mildly relativistic

regimes and for (1D linear) wave propagation in a 3D plasma

geometry. A more elaborate model for strictly speaking 1D

systems is in fact currently being elaborated,64 and will be

the subject of future work.

From a methodological point of view, our study

relied on a straightforward application of the multiscale

formalism introduced by Taniuti and coworkers [see Refs.

27 and 28]. This is a well established methodology in the

multiscale description of spatially extended dynamical

systems, which provides different options for different

wavenumber k values (regions). It may be appropriate to

compare our approach with (and distinguish it from) an

alternative analytical approach, adopted, e.g., in Ref. 65,

which essentially provides a long wavelength approxima-

tion of the relevant algebraic expressions. We note in par-

ticular, that the procedure adopted in the latter reference

leads to coefficients P and Q (in our notation above) of

opposite sign (PQ< 0), hence only dark-type envelope

solitons (and no, e.g., freak wave solutions nor bright en-

velope solitons)58–60 in that limit.

It may be added for the sake of rigor that the positron

production during laser-plasma interaction techniques appear

to be a challenging topic recently, as ultraintense ultrashort

laser pulses are made available via sophisticated technology,

which gives rise to high density plasma entering the quantum

regime.19,66–68 Although admittedly at a somewhat specula-

tive stage, we anticipate that our theoretical results will be

relevant with fundamental electrostatic oscillations observed

during those experiments.
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APPENDIX: HARMONIC AMPLITUDE CONTRIBUTIONS

The solution in first order (��1) reads

n 	 � ni1 eiðkX0�xT0Þ

þ �2 1

2
C0

21
jwj2 þ C2

21
w2e2i kX0�xT0ð Þ

	 

þ c:c:;
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u 	 � n1 eiðkX0�xT0Þ

þ �2 1

2
C0

22
jwj2 þ C2

22
w2e2i kX0�xT0ð Þ

	 

þ c:c:

together with (9) for the electrostatic potential. Here we have

omitted the first-harmonic contribution of the second order

(��2) equations (physically amounting to a small addition to

the dominant first harmonic). The lengthy expressions for

the coefficients Cl
2j

(for l¼ 0, 1, 2 and j¼ 1, 2, 3) are pro-

vided in the Appendix.

The coefficients C0
2l (for l¼ 1, 2, 3) are associated with

the second-order, zeroth-harmonic components of the ion-

density, speed and potential, respectively,

C0
21
¼

c1 c1 þ k2ð Þ2 2vgx
k
þ gþ x2

k2

	 

� 2c2

c1v2
g � 1� c1g

;

C0
22
¼ vgC0

21
� 2 c1 þ k2
� �2 x

k
;

C0
23
¼ 1

c1

C0
21
� 2c2

c1

:

(A1)

The coefficients for the first-harmonic amplitudes at second

order in � are listed below

/ 1ð Þ
2 ¼ C1

23

@w
@X1

¼ 0;

n 1ð Þ
2 ¼ C1

21

@w
@X1

¼ �2ik
@w
@X1

;

v 1ð Þ
2 ¼ C1

22

@w
@X1

¼ �ix
@w
@X1

:

(A2)

The coefficients C2
2l (for l¼ 1, 2, 3) are associated with the

second-order, second-harmonic components

C2
21
¼ c1 þ 4k2
� �

C2
23
þ c2;

C2
22
¼ x

k
C2

21
� c1 þ k2
� �2 x

k
;

C2
23
¼

c1 þ k2ð Þ2

2
3x2 þ gk2
� �

� c2 x2 � gk2
� �

3k2 x2 � gk2ð Þ :

(A3)

In terms of the various coefficients appearing in the lat-

ter expression have been defined above, the nonlinearity

coefficient Q in Eq. (10) is given by

Q ¼
x2 � gk2
� �

2c2 C0
23
þ C2

23

� �
þ 3c3

h i
2x c1 þ k2ð Þ

�k C0
22
þ C2

22

� �
�

x2 þ gk2
� �

C0
21
þ C2

21

� �
2x

: (A4)
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