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Electrostatic Solitary Waves 1n Relativistic
Degenerate Electron—Positron—Ion Plasma

Ata ur Rahman, Ioannis Kourakis, and Anisa Qamar

Abstract— The linear and nonlinear properties of ion acoustic
excitations propagating in warm dense electron—positron—ion
plasma are investigated. Electrons and positrons are assumed
relativistic and degenerate, following the Fermi-Dirac statistics,
whereas the warm ions are described by a set of classical
fluid equations. A linear dispersion relation is derived in the
linear approximation. Adopting a reductive perturbation method,
the Korteweg-de Vries equation is derived, which admits a
localized wave solution in the form of a small-amplitude weakly
super-acoustic pulse-shaped soliton. The analysis is extended to
account for arbitrary amplitude solitary waves, by deriving a
pseudoenergy-balance like equation, involving a Sagdeev-type
pseudopotential. It is shown that the two approaches agree exactly
in the small-amplitude weakly super-acoustic limit. The range of
allowed values of the pulse soliton speed (Mach number), wherein
solitary waves may exist, is determined. The effects of the key
plasma configuration parameters, namely, the electron relativistic
degeneracy parameter, the ion (thermal)-to-the electron (Fermi)
temperature ratio, and the positron-to-electron density ratio, on
the soliton characteristics and existence domain, are studied in
detail. Our results aim at elucidating the characteristics of ion
acoustic excitations in relativistic degenerate plasmas, e.g., in
dense astrophysical objects, where degenerate electrons and
positrons may occur.

Index Terms—Plasma oscillations, plasma waves.

I. INTRODUCTION

ECENTLY there has been a great deal of interest in eluci-
dating the dynamics of collective processes in degenerate
dense plasmas, commonly found in dense astrophysical objects
(e.g., white and brown dwarfs, neutron stars, and magnetars),
in the core of giant planets (e.g., Jovian planets), which can
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also be produced in the next generation of laser-based matter
compression schemes [1]-[5]. In degenerate plasmas, physical
parameters like density, magnetic field, and temperature vary
over a wide range of values. For example, the degenerate
electron number density may exceed the solid matter density
by many orders of magnitude in white dwarfs, neutron stars,
and in the next generation of inertially compressed materials
in intense laser-solid target interaction experiments [4]. The
magnetic field is estimated to vary from a few kilogauss to a
few gigagauss (or even petagauss) in white dwarfs (neutron
stars, respectively), and temperatures can be as high as in
fusion plasma (~108 K) [5]. Under such conditions, quantum
degeneracy and relativity effects are ubiquitous because the
thermal de Broglie wavelength is of the order of or greater than
the inter-fermion distance. Quantum effects of lighter species
(electrons, positrons, and so on) are more prominent due to
their smaller mass than those of heavier (ion) species, which
may behave classically or quantum mechanically depending
upon the degeneracy parameter n3,, which should be larger
than unity for quantum effects to be significant, where
n denotes the particle number density [5]. At extremely high
densities, the electron Fermi energy Ereo can be much larger
than thermal energy, so that the electron thermal pressure can
be disregarded with respect to the Fermi degeneracy pressure.
The Fermi degeneracy pressure arises due to the combined
effect of Pauli’s exclusion principle and Heisenberg’s uncer-
tainty principle. The degenerate electrons may be nonrelativis-
tic, relativistic, or ultrarelativistic depending upon the ratio
of the Fermi energy to the rest mass energy of electron. For
degenerate electrons, Chandrasekhar [6], [7] has employed an
equation of state (EoS) to estimate the critical mass limit of
white dwarf stars. The role of the relativistic and degenerate
electron pressure and its consequences are thus effectively
modeled, spanning a wide region from the nonrelativistic
(viz., P, nz/ 3) to the ultrarelativistic (viz., P, nﬁ/ 3)
regime(s), where P, is the degenerate electron pressure
and n, is the electron number density. Dense astrophys-
ical objects thus arise as unique cosmic laboratories for
studying the properties of matter at extremely high den-
sities (degenerate state). Naturally, in recent years, many
efforts have been made to understand the properties of linear
and nonlinear electrostatic waves in relativistic degenerate
plasmas [8]-[12].

The dynamics of relativistic degenerate dense
electron—positron—ion (e—p—i) plasma and associated collective
(both linear and nonlinear) is an important area of study.
Small-amplitude electrostatic pulses [10] and shocks [11]
propagating in relativistic ~degenerate e—p-i plasmas
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were recently investigated by means of a multiscale
approach. Sabry et al. [13] studied ion-acoustic freak waves
(freak waves) in ultrarelativistic degenerate e—p—i plasmas,
considering typical parameters relevant to white dwarfs
and corona of magnetars. Kourakis et al. [14] recently
explored the nonlinear dynamics of electrostatic solitary
waves propagating in such plasmas, in the form of localized
modulated wavepackets. They also briefly discussed the
occurrence of rogue waves. More recently, McKerr ef al. [15]
considered a quantum e—p-i plasma and derived a nonlinear
Schrodinger equation in their analysis. They analyzed the
characteristics of different exact solutions of the nonlinear
Schrodinger equation in the form of Peregrine solitons, the
Akhmediev breather and the Kuznetsov—Ma breather, which
are regarded as candidate functions for rogue waves.

Ion-acoustic waves, a fundamental mode in plasma envi-
ronments, have been a subject of extensive research for over
several decades. One of the most interesting nonlinear features
of ion-acoustic waves is the existence of ion-acoustic solitary
waves. There are two main approaches used to investigate
ion-acoustic solitary waves, namely, the reductive perturbation
technique [16] and the pseudopotential (Sagdeev) method for
large-amplitude solitary waves [17]. The former method is
associated with the well-known Korteweg—de Vries (KdV)
equation, a paradigm widely used to model ion-acoustic soli-
tary waves. The KdV method is valid for weak nonlinearity,
so its applicability is limited to small-amplitude excitation.
On the other hand, large-amplitude solitary waves may
be modeled by the nonperturbative (exact) large-amplitude
approach. The pseudopotential approach relies on reducing
the fluid-plasma equations to an energy-integral-like equation,
analogous to a classical particle subject to a potential well.
The behavior of the pseudopotential is thus analyzed to
predict the existence and form of the localized solitons in
different plasma configurations.

Interestingly, positron production during laser—plasma inter-
action techniques appear to be a challenging topic recently,
as ultraintense ultrashort laser pulses are made available via
sophisticated technology [18], [19]. It becomes, therefore,
a tempting task to investigate the effect of positrons on
fundamental electrostatic modes, which is what motivates this
paper that follows.

For the sake of rigor, we also mention here that in rela-
tivistic degenerate electron—positron (e—p) or e—p—i plasmas
the inequality wp’el » < Tamn is assumed to be satisfied, to
neglect pair annihilation effects, where wye, p is the (electron
and positron) plasma frequency and 7y, is the annihila-
tion time (see discussion in [10] and [20]). The process
of e—p annihilation is, therefore, not taken into account in our
model, for simplicity (see Appendix B).

In this paper, we study the linear and nonlinear character-
istics of ion-acoustic excitations in a relativistic degenerate
dense e—p—i plasma, consisting of warm nondegenerate ions
and relativistic degenerate electrons and positrons. At a first
step, we employ a reductive perturbation technique to derive
an evolution equation in the form of a KdV equation for the
electric potential and discuss its exact pulse-shaped solution.
We then extend the quantum fluid model to investigate the

large-amplitude nonlinear ion-acoustic waves, modeled via
an energy balance-like equation involving a Sagdeev-type
pseudopotential function. We establish, from first principles,
the existence domains of ion-acoustic solitons in this rela-
tivistic degenerate plasmas and show how these are influenced
by the electron relativistic degeneracy, the positron
concentration, the ion temperature-to-electron Fermi-
temperature ratio, and the soliton speed (Mach number).

This paper is arranged in the following manner. The
model equations are laid out in Section II. Relying on this
quantum-fluid-model, we first perform a linear analysis to
obtain the dispersion characteristics of ion-acoustic waves,
and then employ a reductive perturbation technique to derive
a KdV equation for small-amplitude ion-acoustic excitations.
Section III is devoted to arbitrary-amplitude ion-acoustic
solitons, modeled using a Sagdeev pseudopotential method.
In Section IV, we investigate the conditions for the existence
of solitary structures. The effect of the plasma parameters
relevant to our model on the characteristics of solitary waves
are discussed in Section V. Finally, our results are summarized
in Section VI

II. QUANTUM ION-FLUID MODEL

We are interested in modeling electrostatic excitations at the
ionic scale propagating in an unmagnetized e—p—i plasma. For
simplicity, we adopt a 1-D geometry. The ions are assumed
to constitute a system of warm particles with an individual
charge of Z;e (Z; denotes the ion charge state, while e is the
electron charge), subject to the influence of the electrostatic
potential ¢, while the electrons and positrons are consid-
ered as a relativistically degenerate ensemble, following the
Fermi—Dirac formalism.

Adopting a 1-D fluid formulation, the evolution equations
for the ion density n;, fluid speed v;, and electron/positron
pressure P/, read

on; 0
_t+g(ni”i) =0 (D
ov; _(31),‘ Zie 0¢ 1 oOP; —0 @)
ot "ox m; 0x  m;n; 0x -
op P,
v _ — 3
Clte ox ox 3
op 0P,
—+ —=0 4
€t ox + ox “)
%¢
2 = Are(ne — Zin; —np) ®)]

where n,, n,, and m; represent the electron density, positron
density, and ion mass, respectively. We shall adopt (for elec-
trons and positrons, respectively, denoted by the subscript
Jj = e, p) the relativistic Chandrasekhar EoS [6], [7]

e’ 2 2% -
P,-:W[nj(znj—@(wnj)z+3smh (;yj)] 6)
where 5, = ppj/mjc = (yjz—l)l/z, while
pri = @m;Ep)Y? = (3h’n;/87)'3 is the Fermi

momentum and y; = (1+ 77?)1/ 2, while sinh~! denotes the

inverse hyperbolic sine function.
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Charge neutrality at equilibrium imposes the condition
neo = Zinjo + npo, where nyo denotes the number density of
the sth species (s = e, p, i henceforth standing for electrons,
positrons, and ions, respectively).

Equations (3) and (4) can be integrated as

1 0P;

nj ox

_ _mjclnj_on;
= T .
(1+72)2 %
The number densities can then be expressed as functions of ¢

8z m3

3
jC €2¢2 N
3h3 m?c4

nj =

and therefore reduce the number of equations to three. In (7),
njo = (3/13”]()/871'7’11 )13 is the value of the relativity
parameter, #;, at equilibrium. In (7), the positive sign is
taken into account for electrons (j = e) and the — sign for
positrons (j = p). The detailed derivation of (7) is provided
in Appendix A.

A. Scaled Evolution Equations

For analytical convenience, we have cast the dynamical
evolution equations in a dimensionless form, by making use of
the following normalization. Space (x) and time (¢) are scaled
by C;/wp; and w;il = (m,-/47rn,-OZi2ez)1/2, respectively, while
the electrostatic potential is scaled by ¢9 = (Ere0/Zie), the
ion fluid speed by C; = (Efe0/m;)'/? and the number density
ng by nso. We have defined the quantities: p = (n0/7.0),
gi = 3T;/Treo, Which, respectively, represent the ratio of
positron density to electron density and the ratio of ion
temperature to electron Fermi temperature. We have defined
the ratios

Ney 1 npo _ p

Zinip l1—p Zinip 1-p
and also Tgey = (h2/2mek3)(3n2neo)2/3, where 7% is the
reduced Planck constant and kp being the Boltzmann constant.
The ratio g; = 37;/Tre0, Which acquires very small values,
accounts for thermal effects.

By employing a Taylor series, we expand (5) up to second
order, and the following normalized system of fluid equations
are obtained:

on; ..
al ~(nlvl) =0 ®)
6_5,- 61), 6(/5 6n, _0 ©)
or 6 0x "ox
0% - -
ﬁ 1)~ c1¢ + 2’ (10)
ox

where the coefficients (containing all the information regarding
the plasma configuration) in the right-hand side are defined as

o = 370 3pEFe0? 0 (11
2(1=p)  2Efpo(1 = p)
and
3pE2
2 Fe0 2
= (293 —1)— TR0 (0,2 ) (]2)
8(1 _ p)( e0 ) 8E%~p0(1 N p)( p0 )
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where Efjo = mczn?0/2 and yjo = (1+ n?o)l/z.
For the remainder of this paper, the scaled variables

will be wused (dropping the tilde where obvious).
Moreover, 77] is defined as 7; = (nj/n0)1/3, in which
ng = (Bzm c3/3h3) ~ 5.9 x 10® cm3. For electrons
ne0 = (neo/no) /3 which is also known as the electron

relativistic degeneracy parameter. The positron relativistic
degeneracy parameter #p0, can be expressed in terms of #o
as, 7p0 = p'/*1eo.

B. Linear Analysis

Linearizing the above system of fluid model equations,
and then Fourier analyzing in terms of the normalized wave
number k and angular wave frequency w, a linear dispersion
relation is obtained in the form

AP (13)
K2 ok 8
A few comments regarding the latter (dispersion)

relation (13) are in order. First, for k <« .,/c1 (ie., in
the long wavelength limit), the ion-acoustic phase speed reads

w 1+ 2
r ~ \¢ 8i

which shows how the phase speed is strongly influenced
by the positron to electron density ratio and the relativistic
degeneracy parameter (via c1) and ion temperature to electron
Fermi temperature ratio (via g;). On the other hand, in
the opposite case, i.e., for a very short wavelength limit,
vph(~w/k) — g, hence the (ion) thermal contributions
become dominant at high wavenumbers. Restoring the
dimensions for a while, one can find from (13) the effective
charge screening length, which is given by

(14)

AR = (15)

= ClT A Fi-
It is straightforward to see that /15;1.) is reduced with the posi-
ron concentration (p) and with the relativity parameter (7.0).

In Fig. 1, we have displayed the dispersion curves of
ion-acoustic mode for various values of intrinsic relevant
plasma parameters, i.e., of the electron relativistic degeneracy
parameter 7,0, the positron to electron density ratio, p, and the
ion temperature to electron Fermi temperature ratio, g;. It is
evident that the angular frequency w decreases with an increase
in the relativity parameter 7.0, and a significant reduction is
observed in w for higher values of p [Fig. 1(b)]. By looking
at Fig. 1(c), it is clear that w increases as g; increases, but
this effect is prominent at higher values of the wave number k.
Consequently, the phase speed decreases as 7.0 or p increases,
while increasing values of g; gives enhanced ion-acoustic
phase speed.

C. KdV Theory for Weak-Amplitude Pulse Excitations

We shall now investigate the small (but finite) amplitude
regime, beyond the linear approximation. A variable transfor-
mation is adopted as [16]

(:e%(x—Vt) and r:e%t (16)
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Fig. 1. Plot of the dispersion relation relating the frequency w to the wave
number k. (a) w versus k for different values of p. Solid curve: p = 0.01;
dashed curve: p = 0.3; and dotted-dashed curve: p = 0.5. Here, g; = 0.01
and 7,0 = 1.19. (b) @ versus k for different 7,9. Solid curve: 7,9 = 0.01;
dashed curve: 7,9 = 1; and dotted-dashed curve: 7,9 = 2, where p = 0.1 and
gi = 0.01. (c) w versus k for different values of g;. Solid curve: g; = 0.005;
dashed curve: g; = 0.01; and dotted-dashed curve: g; = 0.02. Here, p = 0.1
and 7,0 = 1.19.

where € (0 < € « 1) is a small dimensionless parameter
that measures the weakness of the nonlinearity, and V is
the normalized wave phase speed (to be determined later).
We also expand the dependent variables ng, ¢, and u; near
their unperturbed values in power series of € as

ng =1+ens +eng+---
p=0+ep+epo+---
Uj =0+Eui1+62u,‘2+~--

A7)

Substituting (16) and (17) into (9), the lowest orders in
€ (~€el/?) give

1

1
ni1 = Wébl and u; = v (18)

Using (18), along with the lowest order in € of Poisson’s
equation eventually gives

1
V=(gi+—)
c1

The latter equation identifies the soliton speed as the sound
speed (acoustic speed) defined in (14). The above expres-
sion outlines the fact that the ion-acoustic soliton speed is
significantly affected by the electron relativistic degeneracy
parameter (via #.0), the positron to electron density
ratio (via p), and the ion temperature to electron Fermi
temperature ratio (via g;). Now next orders in €, give a
system of equations containing second-order perturbed quan-
tities (n;2, u;2, and ¢;). Solving this system of equations with
the aid of (18) and (19), we finally obtain an evolution equation
for the electric potential disturbance ¢, in the form of
KdV equation

o1 2l R

a7 + Ay o +B o3 =0.
The second term represents the nonlinearity (responsible for
wave steepening), and the third term corresponds to the
dispersion (causing wave broadening), and their associated
coefficients are defined as

D=

19)

(20)

3V2 4 )
A=B——1% _2¢ QD
((V2 - gi)?
and
2 .22
p= V&) (22)
2V

To get the stationary solitary wave solution of (20), we intro-
duce the transformation y = ¢ —Upt = €V {x—(V+ €Up)t},
where Up (normalized by C;) is a constant speed of a soli-
tary structure representing the velocity increment above the
linear phase speed V. By applying the vanishing boundary
conditions: ¢ — 0, dg1/dy — 0, and d*¢1/dy*> — 0 at
|x| — oo, we obtain

1 (dé1\*> Uo 2 A3

A\T5) =359 - 54

2 \dy 2B 6B
which can be further solved to obtain the solitary wave solution
of the form [21], as

—U

where ¢, and A are, respectively, the maximum amplitude
and width of the localized pulse. The parameters ¢, and A
are defined as

1
3Uy 4B\?2
bm = e and A = (_Uo)

(23)

(24)

(25)

satisfying the relation ¢,, A> = 12B/A. Note that the ampli-
tude (width) of the solitons increases (decreases, respectively)
with Up, suggesting that faster solitons will be taller and
narrower, whereas slower ones will be shorter and wider.
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III. SAGDEEV PSEUDOPOTENTIAL METHOD

The analysis carried out in the previous section dealt with
small-amplitude weakly super-acoustic electrostatic solitary
waves. In this section, we relax those constraints by consider-
ing arbitrary amplitude nonlinear ion-acoustic excitations.

In anticipation of stationary-profile excitations, we shall
assume that all the fluid variables in the evolution equations
depend on the single variable y = x — Mt, where y is a
new (moving) space variable normalized by C;/wp;, while
M will be referred to as the Mach number, viz., the soliton
speed, scaled by C; (analogous to the sound speed in classical
plasmas). Incorporating the transformation into the above
system of fluid equations leads to

dni d

—M—+ —nu;)=0 (26)
dy —dy
du; du; d¢ on;
-M— i— + — ini— =20 27
dy +uld}(+d)f+glnla){ 27)
d2
d—;; = pn, —anp, — n; (28)

Integrating (26) and (27), and imposing the appropriate bound-
ary conditions for localized waves (n; — 1, u; — 0, and
¢ — 0 as y - £o0), we find

1
ui =M (1 - —) (29)
n;
and
gint — (M? + gi — 2¢)n? + M*> = 0. (30)
Equation (30) is quadratic in ";2 and can be solved as
w2 — (M + g —2¢) £ /(M + gi —2¢)* — 4M?g; 31)
F= .

2gi
To find a solution of (31) for n;, we follow the idea of [22],
by assuming a solution in the form

nz-:%(ﬁiﬁ)

where p and ¢ are real quantities, to be determined. Squar-
ing the above expression and comparing the resulting terms
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(which ensures the reality of n;). We note that, upon setting
gi — 0, the cold-ion limit is recovered

(33)

The number density of electrons and positrons in terms of
electrostatic potential can be expressed as [see (7)]

3
_ 2
ne = g [ + 6 (241 4+ 12+ ¢) |
3
-1 - 2 2 2
np=p 171603[1737130 —¢(2 L+ ping, —¢)]2- (35)
Substituting (32)—(35) into (28), multiplying the resulting
equation by d¢/d y, integrating once, and imposing the appro-

priate boundary conditions for localized solutions, namely,
¢ — 0,dp/dy — 0 at y — +oo, one obtains the integral

equation as
1 (dp\>
- V(gp)=0
S (52) +ve

mimicking a pseudomechanical energy balance equation,
where V(¢) is the Sagdeev-type pseudopotential [17].

Here, P(p) = 7730 + o + 2(1 + 7730)1/2 and
0(p) = 77?,0 + ¢ —2(1 + 1712)0)1/2). Equation (36) can be
regarded as an energy integral of particle of unit mass, with
pseudospeed d¢/dy, pseudotime y, pseudoposition ¢, and
pseudopotential V (¢). Obviously, the motion is restricted to
the negative V(¢) region. In deriving (37), as shown at the
bottom of this page, the boundary conditions ¢, d¢/dy — 0
as y — £oo have been used.

(34)

(36)

A. Small Amplitude Weakly Super-Acoustic
Limit of the Sagdeev Equation

In this section, we shall establish the equivalence between
the KdV theory (valid near the sound speed) and the Sagdeev
theory. By setting M =~ V + Up (where Uy < V) and
Taylor expanding the Sagdeev potential up to third order in ¢
(assuming ¢ <« 1), so that (37) takes the following approxi-
mate form:

with (31), we find, eventually V(g) ~ ag® + b’ (33)
1 1 1 h
mi= = [+ =2 [ = o) * —2¢] ).
Va&i VU
a=—-7 (39)
(32) (v2 - gi)2
We note that one of the roots in (31) has been excluded, as it apd
failed to satisfy the explicit boundary condition (requirement), 1T 3v2
namely, that n; = 1 at ¢ = 0. Here, we have assumed that: bh=_— |:V7+g,3 — 262:| . (40)
DM > g and 2) ¢ = (M~ 8)/2 = $mn 6L (v2—g)
3 3
Vig) = 648 {[(M — v&)* —26]" — [(M + V&D? —26]° — (M — V&)* + (M + /&)*)
—1 1
+ (801 = pado) = 3n0(reo + p51p0) = 2P@)1% B + 1) = P@) (6 +26° = 370 + 66%1.0)
2
+2020(re0 + P7p0) = 20@) P 10(=3¢ + 7p0) + Q(B) (¢ +2¢° + 3750 — 64 y0)
1 . —
—31n(p37.0 — 7p0) + 3(sinh ™' (e0) — In[¢p + yeo + P()]) + 3In[p — 70 + Q(¢)]}~ (37)
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Equation (36) thus becomes

L(doN oy
2 (d)() +a¢p”+ b’ =0.
Clearly, the coefficients of ¢> and ¢ in the above expression
are the same as in (23), noting thata = Uy/2B and b = A/6B.

We conclude that the small amplitude expansion of the
Sagdeev energy balance equation gives exactly the same result
as predicted by the KdV theory, for pulses moving at a weakly
supersonic velocity.

(41)

IV. ION-ACOUSTIC SOLITARY WAVES:
EXISTENCE CONDITIONS

Stationary-profile excitations can now be obtained from
(36) and (37), via numerical integration. It is instructive
to discuss the conditions under which (36) leads to soliton
solutions by analyzing the Sagdeev potential (37). It is clear
from (37) that V(¢) and dV (¢)/d¢ = 0 at ¢ = 0. Solitary
wave solutions of (36) exist if: 1) d?>V (¢)/d¢* < 0 at ¢ =0,
so that the fixed point at the origin is unstable; 2) there exists
a nonzero ¢, at which V(¢,,) = 0; and 3) V(¢) < 0 when ¢
lies between 0 and ¢,,. It is of interest to determine the lower
and upper limits of the Mach number M for which solitons
exist. Applying 1), we obtain

1

2

1
(1—p)n; 1 2
D —tgi| = Ste) =@

1
370 ()’eo-l-p§ Vpo)

which is the lower limit for M, corresponding exactly to the
true normalized ion-acoustic phase speed as given by (19).
Hence, M is the real sound speed [in agreement with (14)]
and the solitons will be supersonic (super acoustic) as
expected. Our results are quite interesting in regard that it fit
with literature regarding the physical interpretation of KdV
which meant to be weakly super acoustic. In the absence
of positrons and for cold-ion limit (i.e., by setting g; = 0
and p = 0), we recover the earlier result of [12, eq. (14)].
Moreover, by taking p = 1, we have a pure e—p plasma, in
which case ion acoustic waves cannot be supported. It can be
easily seen from (42) that the lower Mach number limit M
increases with g; and decreases for higher values of 7.9 and p,
showing that the sound speed is reduced, in comparison with
electron—ion plasma.

The reality of n;, given by (32), implies that ¢ < ¢, =
(M — \/5)2 /2 assuming positive pulses. In combination with
2) and 3) above, this imposes the condition V (¢,,) > 0, which
leads to the following equation for the upper limit in M:

M >

30 393750 Ye0 + PYpo
82y (1—p)  8n%(1—p) 40 —p)
MooR(=27p0 +3T%)  R[12y,04 (2 + (=670 + T)T)T]
1673,(1 — p) 6412 (1 — p)

_ S(ZVeO +3T) . S(—12Veo + 2T + 6)’e0T2 + T3)

167.0(1 — p) 6472 (1 — p)
+3(Sinh_1[77e0] —In[y.0 + (5/2) + (T/2)))

8’730(1 -p)
(=In[70 — 7pol + In[—=y 0 + (R/2) 4+ (T/2)])

_ —0 (43)
813 (1 — p)

(b)

Fig. 2. Minimum and maximum Mach numbers [M| M] are depicted
versus p (positron content), for different values of (a) ion temperature ratio
gi and (b) electron relativistic degeneracy parameter 7,(. The lower curves in
the respective style(s) (solid, dashed, and dotted-dashed) represent the lower
limit M7, while the upper curves in the corresponding style give the upper
limit My. Solitons may exist for values of the Mach number in the region
between the lower and upper curves of the same color/style. (a) Solid curves:
gi = 0.005; dashed curves: g; = 0.01; and dotted-dashed curves: g; = 0.03.
Here, 7,0 = 2. (b) Solid curves: 7,9 = 1; dashed curves: 7,0 = 2; and
dotted-dashed curves: 7,9 = 3, where g; = 0.03.

where & = 1/33M2 — M¥2g!* + g), S = @2+
40T + THV2, R = (4ny+ (—4yp0 + T) + T)'/%, and
T = (M — /gi)?. Solving (43) numerically gives the upper
limit M> for solitons to exist. We note here for comparison
that in the limiting case, where g; — 0 and p — 0, the above
constraint (43) reduces to the one already derived in [12].

Ton-acoustic potential excitations occur for values of M in
the region M1 < M < M>. Both these constraints vary with
the intrinsic parameters relevant to our model, namely, 7.0, p,
and g;. Therefore, it is essential to study their dependence
on these physical parameters. We have taken Z; = 1 for
simplicity in the following. The results have been displayed
in Figs. 2 and 3.

In Fig. 2, we have shown the range of allowed
Mach numbers for ion acoustic solitary waves with p, for
various values of 7.0 and g;. The lower curves correspond
to the lower limit M; found by evaluation of the analytically
derived relation (42), while the upper curves give the upper
limit M», obtained via numerical solution of (43). Interestingly,
we see that the soliton existence region shrinks, as the curves
approach each other slightly for higher values of g; [Fig. 2(a)].
Further, we also note that increasing values of p makes the ion
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Fig. 3. Variation of (a) V(¢) versus ¢, (b) ion-acoustic solitary wave profiles
¢ versus y, and (c) electric field E versus y, for different values of the
positron concentration p. The solid curves correspond to p = 0.05; dashed
curves to p = 0.1; and dotted-dashed curves to p = 0.15. Other parameters
are g; = 0.03, M = 0.8, and 7,0 = 2.

acoustic solitary pulses slower, i.e., the allowed Mach number
domain [M7, M>] acquires lower values for higher values
of p. Significant dependence of the soliton existence domain
[M1, M3] on 7,0 is shown in Fig. 2(b) for various values of 7,0,
while keeping values of p and g; fixed. We thus observe that
both M| and M>, i.e., the entire soliton existence domain,
shift(s) higher upon increasing values of #.0(= 1,2, 3). This
is in agreement with earlier result found in [12].

V. ION-ACOUSTIC SOLITARY WAVES:
FORM AND CHARACTERISTICS

We shall now discuss the configurational characteristics
of solitary waves (amplitude and width), relying on the
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Fig. 4. Variation of (a) V(¢) versus ¢ and (b) associated solitary wave
profiles ¢ versus y, for different values of the ion temperature ratio g;.
Solid curve: g; = 0.005; dashed curve: g; = 0.02; and dotted-dashed
curve: g; = 0.03. Here, p = 0.1, M = 0.8, and 7,9 = 2.

Sagdeev pseudopotential approach outlined above. We have
numerically solved (36) in combination with (37) for different
parameter values relevant to our model, to examine their effect
on the form and characteristics of ion-acoustic solitary waves.
The results are displayed in Figs. 3—7. The plots provided
here are based on parameter values characteristic of relativistic
degenerate plasmas found in dense astrophysical objects, such
as in white dwarfs etc., where the typical interior densities are
p ~ 10° g/em™3 [1], [4].

A. Positron Content Effect

To examine the effect of p on the soliton characteris-
tics, we depict the variation of V(¢), of the solitary wave
(solution) profile and of the associated ambipolar electric
field structure E (obtained numerically) with p (for fixed
values of 7.0, gi, and M). We observe that the solitary wave
amplitude increases monotonically for increasing values of
p(=0.05,0.1,0.2) [Fig. 3(a)]. It is also seen that the depth of
the Sagdeev potential increases with increasing values of p.
Recalling that the depth of Sagdeev potential is related to
the maximum value of ng/ (x) through (36), we deduce that
a deeper potential well refers to (steeper) narrower solitary
waves. The amplitude (width) of the associated solitary pro-
files [Fig. 3(b)] is found to increase (decrease) with increasing
values of p. A similar variation of the bipolar electric field
structures is shown in Fig. 3(c) for higher values of p.
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Fig. 5.  Variation of (a) V(¢) versus ¢ and (b) corresponding solitary
wave profiles ¢ versus y, for different values of the Mach number M.
Solid curve: M = 0.7; dashed curve: M = 0.75; and dotted-dashed
curve: M = 0.8. Here, p = 0.1, g; = 0.03, and 7,9 = 2.

B. Ion Thermal Effect

In Fig. 4, we show the variation of the pseudopotential V (¢)
and of the corresponding solitary wave structures ¢(y) for
different values of g;, while keeping #.0 and p fixed. It is seen
clearly from Fig. 4 that increasing the value of g; leads to a
reduction of the depth of Sagdeev potential and, importantly,
also of the amplitude of the associated ion-acoustic solitary
wave. We see that including the finite ion temperature effect
(in the warm ion model) gives rise to dispersive effects, which
tend to suppress the effects due to nonlinearity, resulting in
smaller amplitudes of ion-acoustic solitary waves.

C. Pulse Speed Effect

To express the effect of the soliton speed (Mach number M)
on the localized solutions (solitary waves), we have depicted
the pseudopotential V (¢) and the associated solutions ¢ ()
for various values of M chosen within the range Me [M1, M>],
in Fig. 5. It is seen that, with increasing values of M,
ion-acoustic solitons with higher amplitude and reduced width
are obtained. This result qualitatively agrees with the KdV
picture, suggesting that faster solitons will be taller and
steeper.

D. Relativistic Degeneracy Effect

Fig. 6 manifests the fact that the shape of soliton
changes with #.0. It is shown that increasing the values of
ne0(=1.75, 1.90, 2.05) leads to deeper pseudopotential curves,

0.001 F .

0.000

~0.001 -7
~0.002
V(¢) ~0.003
-0.004
~0.005

—0.006

Fig. 6.  Variation of (a) V(¢) versus ¢ and (b) associated solitary wave
profiles ¢ versus y, for various values of the electron relativistic degeneracy
parameter #7,09. Solid curve: 5,9 = 1.75; dashed curve: 7,0 = 1.90; and
dotted-dashed curve: #,9 = 2.05. Here, p = 0.1, g; = 0.03, and M = 0.8.

and also to a decrease in the amplitude of the resulting solitary
waves, as shown in Fig. 6(b).

E. Maximum Electrostatic Potential Pulse Amplitude

It is interesting to mention that in the Sagdeev approach
employed above, the soliton amplitude [viz., root of V(¢)]
is determined as the root of the pseudopotential function,
i.e., by numerically solving V (¢,,) = 0. Fig. 7 shows how the
soliton amplitude ¢, varies with p, g;, M, and #,9. It is seen
that ¢,, decreases with 7,9 suggesting that assuming higher
values of the relativistic degeneracy parameter suppresses
the pulse strength. The dependence on ion thermal effects
(via the temperature ratio g;) is qualitatively similar, though
less dramatic.

Interestingly, the soliton amplitude (maximum value) is an
increasing function of (the positron content) p, suggesting
that positrons enhance and stabilize localized electrostatic
disturbances.

Finally, as expected from similar works on classical plas-
mas, the maximum value of the electrostatic potential is also an
increasing function of the propagation speed M. This reflects
our earlier results appearing in Figs. 3-6, leading to the
conclusion that the soliton amplitude gets amplified with
higher values of p and M, and diminishes with increased
values of g; and #,0.

The above results on the characteristics of ion-acoustic
solitary waves are graphically summarized in Fig. 7.
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Fig. 7. Soliton amplitude ¢, (determined as the root of V(¢y)) is
plotted against various parameters, satisfying the results shown in Figs. 3-6.
(a) Variation of ¢, versus the Mach number M for different values of p.
Dotted-dashed curve: p = 0.05; dashed curve: p = 0.1; and solid curve:
p = 0.2, where other parameters are 7,0 = 2 and g; = 0.03. (a) Variation
of ¢, versus the Mach number M for different values of g;. Solid curve:
gi = 0.005; dashed curve: g; = 0.01; and dotted-dashed curve: g; = 0.02,
where 7,0 = 2 and p = 0.1. (c) Variation of ¢, versus M for different values
of 7,0. Solid curve: 7,0 = 1.75; dashed curve: 7,9 = 1.90; and dotted-dashed
curve: 7,0 = 2.05. Here, g; = 0.03 and p =0.1.

The numerical outcome for the electrostatic potential forms
(pulses), to be numerically obtained by solving the pseudobal-
ance equation, as explained above, for the relevant parameter
values, are here omitted for brevity.

VI. CONCLUSION

To conclude, we have investigated the linear and nonlinear
ion-acoustic waves in an unmagnetized collisionless degen-
erate e—p—i plasma, composed of relativistically degenerate
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electrons and positrons, whereas the ions are warm and
nondegenerate, whose inertia is retained.

At a first step, a linear analysis has shown that the dispersion
properties of ion-acoustic waves are strongly influenced by the
relevant parameters, namely, the positron content (p), the ionic
thermal effect (via g;), and the electron relativity parameter
(via 7.0).

Adopting the reductive perturbation method, we have
derived a KdV-type partial differential equation, and then
solved it to obtain an exact analytical expression for small
amplitude weakly super-acoustic solitary waves. We have
pursued our analysis by extending it to account for large (arbi-
trary) amplitude ion-acoustic solitary waves, and have derived
an pseudomechanical energy-balance equation governing the
dynamics of localized pulses.

Only positive electrostatic potential excitations (solitary
waves) were found to exist. The existence domain, wherein
the solitary waves may occur, was determined and analyzed
numerically. It was found that the existence region shrinks
with increasing positron concentration (value of p) and, inde-
pendently, ion temperature (via g;). On the other hand, higher
values of 7,9 lead to a broader allowable soliton existence
domain, hence allowing for faster ion acoustic solitary waves.
It is interesting to mention that extremely high values of
neo (in the strongly relativistic case) allows only supersonic
solitary waves.

We have relied in our investigation on a model which has
been adopted in a variety of earlier works, combining the
relativistic Chandrasekhar [6] pressure term into a classical
fluid description. We may add, for rigor, that this model
is valid for moderately relativistic regimes (as it basically
relies on a classical 1-D fluid model), yet is here adopted
for its simplicity. A more elaborate fully relativistic model for
electrostatic waves is being developed, and will be reported
soon [23].

This paper is of relevance to white dwarf stars [1], where
a series of established theories have predicted the existence
of acoustic-type modes [24], [25], in which ions provide the
inertia and mainly the electron degeneracy pressure provides
the restoring force. Although the existence of such modes was
predicted very early [26], these have not been observed so
far [25]. The lack of observations does not imply the absence
of acoustic modes, but may be associated with plasma motion
below the detection limit [24]. The possibility of the formation
of finite amplitude acoustic waves is also suggested in the
case of extreme events, such as supernova explosions [4], [24].
Abundant theoretical investigations of relevance to this context
have been proposed [8]-[15], [20].

It appears imposed and timely to add that a number
of sophisticated experiments have recently been -carried
out to demonstrate the possibility for positron production
during the interaction of ultrahigh intensity ultrashort laser
pulses with solid targets (laser—matter interaction), which
gives rise to high-density plasma entering the quantum
regime [19], [27]-[29]. Although admittedly at a somewhat
speculative stage, we anticipate that our results will be
relevant with electrostatic oscillations observed during those
experiments.
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Our investigation can be generalized by including the
ambient magnetic field, in which we have the possibility to
study the magnetosonic solitons [30] in degenerate plasmas.

APPENDIX A
DERIVATION OF (7)

We consider the electron momentum equation (3)
0. (A1)

We have
1 6P,
Ne 0X

1 dP, dn, 0ne
ne dne dn, 0x

meczne 0Ne
1
(1+n2)2 %
0 2
a(mec J1+ 773)
Integrating (A1), we obtain
* 0 1 * 0P,
/ —¢dz = —/ dz
—oo 02 ene J_oo 02
2
MmecC 1 1
=" [(1+02)7 = (1+0%)7)

Rearranging, and solving for 7,

(A2)

1

2 2
ed 1

o= | i)t

e

(A3)

and then, recalling the definition of #,, hence solving for n,
(adopting the positive sign to preserve the positive of n, > 0),
(A3) gives

2eq

mec?

Ne = 33 +
The same method is employed to express the positron number
density in terms of the electrostatic potential ¢, upon a trivial
sign change: the first term in (A1) is preceded by a minus sign,
due to the positron (positive) charge. Algebraically speaking,
this is formally tantamount to setting ¢ — —¢ everywhere
in this appendix. Therefore, the final expression for positrons
reads

3
8rmic3 [ e?p? IRV
= 3 [mzc4 (1+}7e0)2+;760:| . (A
e

2e¢ :

1
(1+120)T + 12| - (A9)

m%,c4 Mec?

Equations (A4) and (AS) combined lead to (7) in the text.

APPENDIX B
PAIR ANNIHILATION

Electrons and positrons tend to annihilate mutually, via
various annihilation mechanisms. Pair annihilation results in
gamma-ray photon production [1]

et e =y 49, (B1)

To study the collective behavior of a plasma containing
electrons and positrons via a fluid description, it is necessary
to satisfy certain criteria for annihilation processes to be

neglected. As a matter of fact, e—p pair annihilation becomes
unimportant when the following inequality is satisfied:

w;,lj < Tann (B2)

where w;lj is the inverse of the plasma frequency and
Tann 1S the annihilation time. The annihilation time 7anp
in the relativistic regime can be expressed by the following
relation [1]-[3]:

4 1 02
3njorc\ 1 +1n(260 + 1)

for ® > 1 (B3)

Tann =

where o, (= 6.65 x 1072 cm?) is the electron Thompson cross
section and O(= kpTfr;j/m; cz) is the normalized thermal
energy. Furthermore, § = e~ =£ = 0.5615 with Z¢ (~ 0.5772)
the Euler’s constant. Combining (B2) and (B3), while using
neo = npo = no, the pair annihilation condition becomes

@2
I +In(1.1230 + 1)

It is important to mention that (B4) is well satisfied for the
typical mass density range p ~ 10° g/cm™3, which is char-
acteristic of relativistic dense plasmas found in astrophysical
environments (viz., white dwarfs). This clearly shows that
e—p pair annihilation can be ignored and thus the study of ion
acoustic waves can be carried out safely in a dense plasma
configuration, as studied in this paper.

1
>26x107"n2. (B4

ACKNOWLEDGMENT

A. ur Rahman would like to thank M. Mc Kerr, Queen’s
University Belfast, Belfast, U.K., for his support and
assistance.

REFERENCES

[1] D. Koester and G. Chanmugam, “Physics of white dwarf stars,”
Rep. Prog. Phys., vol. 53, no. 7, pp. 837-915, 1990.

[2] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and
Neutron Stars: The Physics of Compact Objects. New York, NY, USA:
Wiley, 1983.

[3] G. Chabrier, F. Douchin, and A. Y. Potekhin, “Dense astrophysical
plasmas,” J. Phys., Condens. Matter, vol. 14, no. 40, pp. 9133-9139,
2002.

[4] V. E. Fortov, “Extreme states of matter on earth and in space,”
Phys.-Uspekhi, vol. 52, no. 6, pp. 615-647, 2009.

[5] P. K. Shukla and B. Eliasson, “Colloquium: Nonlinear collective interac-
tions in quantum plasmas with degenerate electron fluids,” Rev. Modern
Phys., vol. 83, no. 3, pp. 885-906, Sep. 2011.

[6] S. Chandrasekhar, Philosophical Magazine, vol. 11. 1931, p. 592.

[7] S. Chandrasekhar, An Introduction to the Study of Stellar Structure.
Chicago, IL, USA: Univ. Chicago Press, 1939.

[8] A. A. Mamun and P. K. Shukla, “Solitary waves in an ultrarelativistic
degenerate dense plasma,” Phys. Plasmas, vol. 17, no. 10, p. 104504,
2010.

[91 W. Masood and B. Eliasson, “Electrostatic solitary waves in a quan-
tum plasma with relativistically degenerate electrons,” Phys. Plasmas,
vol. 18, no. 3, p. 034503, 2011.

[10] A.-U. Rahman, S. Ali, A. Mushtag, and A. Qamar, “Nonlinear ion
acoustic excitations in relativistic degenerate, astrophysical electron—
positron—ion plasmas,” J. Plasma Phys., vol. 79, no. 5, pp. 817-823,
2013.

[11] A.-U. Rahman, S. Ali, A. M. Mirza, and A. Qamar, “Planar and non-
planar ion acoustic shock waves in relativistic degenerate astrophysical
electron-positron-ion plasmas,” Phys. Plasmas, vol. 20, no. 4, p. 042305,
2013.



984

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]
[29]

(30]

[31]

M. Akbari-Moghanjoughi, “Propagation of arbitrary-amplitude ion
waves in relativistically degenerate electron-ion plasmas,” Astrophys.
Space Sci., vol. 332, no. 1, pp. 187-192, 2011.

R. Sabry, W. M. Moslem, and P. K. Shukla, “Freak waves in white
dwarfs and magnetars,” Phys. Plasmas, vol. 19, no. 12, p. 122903, 2012.
I. Kourakis, M. McKerr, and A.-U. Rahman, “Semiclassical relativistic
fluid theory for electrostatic envelope modes in dense electron—positron—
ion plasmas: Modulational instability and rogue waves,” J. Plasma Phys.,
vol. 79, no. 6, pp. 1089-1094, 2013.

M. McKerr, 1. Kourakis, and F. Haas, “Freak waves and elec-
trostatic wavepacket modulation in a quantum electron—positron—ion
plasma,” Plasma Phys. Controlled Fusion, vol. 56, no. 3, p. 035007,
2014.

H. Washimi and T. Tanuiti, “Propagation of ion-acoustic solitary
waves of small amplitude,” Phys. Rev. Lett., vol. 17, pp. 996-998,
Nov. 1966.

R. Z. Sagdeev, “Cooperative phenomena and shock waves in
collisionless plasmas,” in Reviews of Plasma Physics, vol. 4,
M. A. Leontovich, Ed. New York, NY, USA: Consultants Bureau, 1966,
p. 23.

H. Chen et al., “Relativistic positron creation using ultrain-
tense short pulse lasers,” Phys. Plasmas, vol. 16, p. 122702,
Mar. 2009.

G. Sarri et al., “Table-top laser-based source of femtosecond, collimated,
ultrarelativistic positron beams,” Phys. Rev. Lett., vol. 110, p. 255002,
Jun. 2013.

W. F. El-Taibany and A. A. Mamun, “Nonlinear electromagnetic pertur-
bations in a degenerate ultrarelativistic electron-positron plasma,” Phys.
Rev. E, vol. 85, p. 026406, Feb. 2012.

T. Dauxois and M. Peyrard, Physics of Solitons. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

S. S. Ghosh, K. K. Ghosh, and A. N. S. Iyengar, “Large mach number
ion acoustic rarefactive solitary waves for a two electron temperature
warm ion plasma,” Phys. Plasmas, vol. 3, no. 11, pp. 3939-3946,
1996.

F. Haas and I. Kourakis, “Relativistic hydrodynamic equations for fully
degenerate plasma,” in Proc. Int. Congr. Plasma Phys. (ICPP), Lisbon,
Portugal, Sep. 2014, pp. 1-9.

B. Eliasson and P. K. Shukla, “The formation of electrostatic shocks in
quantum plasmas with relativistically degenerate electrons,” Europhys.
Lett., vol. 97, no. 1, pp. 15001-15005, 2012.

R. Silvotti et al., “Search for p-mode oscillations in DA white
dwarfs with VLT-ULTRACAM,” Astron. Astrophys., vol. 525, Jan. 2011,
Art. ID A64.

J. P. Ostriker, “Recent developments in the theory of degenerate dwarfs,”
Annu. Rev. Astron. Astrophys., vol. 9, pp. 353-366, Sep. 1971.

G. Sarri et al., “Laser-driven generation of collimated ultra-relativistic
positron beams,” Plasma Phys. Controlled Fusion, vol. 55, no. 12,
p. 124017, 2013.

G. Sarri et al., “Generation of neutral and high-density electron-positron
pair plasmas in the laboratory,” Nature Commun., to be published.

G. Sarri et al., “Laser-driven generation of electron-positron beams:
A review,” J. Plasma Phys., to be published.

M. Marklund, B. Eliasson, and P. K. Shukla, “Magnetosonic solitons in a
fermionic quantum plasma,” Phys. Rev. E, vol. 76, pp. 067401-067404,
Dec. 2007.

R. Svensson, “Electron-positron pair equilibria in relativistic plasmas,”
Astrophys. J. vol. 258, pp. 335-348, Jul. 1982.

IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. 43, NO. 4, APRIL 2015

Ata ur Rahman was born in Nowshera, Pakistan,
in 1985. He received the M.Sc. degree in physics
and the Ph.D. degree in plasma physics from the
Department of Physics, University of Peshawar,
Peshawar, Pakistan, in 2007 and 2014, respectively.

He is currently an Assistant Professor of Physics
with the Department of Physics, Islamia College
Peshawar, Peshawar. His current research interests
include nonlinear dynamics, solitary waves/shocks
with emphasis on applications to dense astrophys-
ical regimes, and superintense laser-dense matter
experiments.

Mr. Rahman is a Lifetime Member of the Pakistan Physical Society.

TIoannis Kourakis was born in Crete, Greece.
He received the B.Sc. degree in physics from
the University of Crete, Heraklion, Greece, the
D.E.A. (French M.Sc. equivalent) degree in molecu-
lar spectroscopy and material science from the Uni-
versity of Burgundy, Dijon, France, the the D.E.A.
(Belgian M.Phil. equivalent) degree in science, and
the Ph.D. degree in Theoretical Physics, both from
the Free University of Brussels, Brussels, Belgium.

He currently holds an academic position with
the Centre for Plasma Physics, Queen’s University
Belfast, Belfast, U.K. He has earlier carried out research and teaching
work with the University of Burgundy, the Free University of Brussels,
Gent University, Ghent, Belgium, and Ruhr University, Bochum, Germany.
He has authored approximately 200 papers in refereed journals and conference
proceedings, which have attracted more than 2000 citations. His current
research interests include nonlinear physics, with emphasis on laser-plasma
interactions, dusty (complex) plasmas, space plasmas, quantum plasmas, and
materials science.

Dr. Kourakis is a member of the American Physical Society, the
U.K. Institute of Physics, the American Geophysical Union, and the Hellenic
Astronomical Society (Greece).

Anisa Qamar was born in Mardan, Pakistan,
in 1968. She received the M.Sc. degree in physics
from the Department of Physics, University of
Peshawar, Peshawar, Pakistan, in 1992, and the
Ph.D. degree in plasma physics from Quaid-i-Azam
University, Islamabad, Pakistan, in 2004.

She is currently an Associate Professor of Physics
with the Department of Physics, University of
Peshawar. She has made significant contributions
to the field of dusty plasmas She has authored
over 30 research articles in international journals.
Her current research interests include the nonlinear dynamics and coherent
nonlinear structures (solitons, shocks, double layers, etc.) in classical as well
as in degenerate dense plasmas.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


