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The linear and nonlinear properties of small-amplitude electron-acoustic solitary waves are

investigated via the fluid dynamical approach. A three-component plasma is considered,

composed of hot electrons, cold electrons, and ions (considered stationary at the scale of interest).

A dissipative (wave damping) effect is assumed due to electron-neutral collisions. The background

(hot) electrons are characterized by an energetic (excessively superthermal) population and are

thus modeled via a j-type nonthermal distribution. The linear characteristics of electron-acoustic

excitations are discussed, for different values of the plasma parameters (superthermality index j and

cold versus hot electron population concentration b). Large wavelengths (beyond a threshold value)

are shown to be overdamped. The reductive perturbation technique is used to derive a dissipative

Korteweg de-Vries (KdV) equation for small-amplitude electrostatic potential disturbances. These

are expressed by exact solutions in the form of dissipative solitary waves, whose dynamics is

investigated analytically and numerically. Our results should be useful in elucidating the behavior of

space and experimental plasmas characterized by a coexistence of electron populations at different

temperatures, where electron-neutral collisions are of relevance. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4932071]

I. INTRODUCTION

Dissipative nonlinear excitations (solitary waves), or

dissipative solitons, have been studied in plasma physics1–4

and also in nonlinear optics.5–9 Solitons in fibre-optic com-

munications are important, thanks to their stationary profile,

so that they can be treated as a natural bit of information. To

transmit information (e.g., in optical fibre communications),

localized structures (solitons) have to survive for an

extended period of time, even in the presence of dissipation

in the medium. However, dissipative solitons do not possess

a stationary profile, in contrast with solitonic solutions in

energy-conserving systems. Their profile evolves while prop-

agating, that is, they change in amplitude, width, and speed,

and eventually diminish with time. As most of the systems

are lossy by nature, solitons produced in such system contin-

uously lose energy and thus need to be boosted by an exter-

nal source of energy, so as to retain a stable profile. Solitary

waves in plasmas may suffer dissipation/damping due to

collisions between charged particles and neutrals. Dissipative/

damping effects in plasmas may also arise due to the inter-

particle collisions to Landau damping or to kinematic fluid

viscosity, e.g., due to shear stress of the inertial fluid motion.

It was shown in Ref. 10 that the electron and ion elastic colli-

sions with neutrals and dust, in addition to a dust-charging

related mechanism, lead to dissipation. The authors in Ref. 11

have observed that Langmuir waves are damped due to elec-

tron collisions, where elastic Coulomb collisions of electrons

with dust, electron-neutral collisions, dust-electron, and dust

neutral collisions were taken into account.

Space plasma observations12–14 indicate the presence of

excess energetic particles, at superthermal speeds, resulting

in the distributions of thermodynamic equilibrium.14–16

Kappa (j) type particle distribution functions17 efficiently

describe such (nonthermal) effects. In agreement with these

considerations, we consider here a three-component plasma

consisting of ions, hot electrons, and cold electrons.

Importantly, different time scales exist in such plasmas, not

only due to the mass differences between electrons and ions

but also due to the temperature differences between different

electron components. Electron acoustic (EA) excitations are

known to occur in this case,18–21,23,24 where the inertia is

provided by the “cold” electrons and the restoring force is

provided by the “hot” electrons. Earlier studies have been

devoted to different types of localized structures (viz.,

solitons, shocks, vortices, etc.) in such three component

plasmas.18,19,22,30–33

The nonlinear propagation of electron-acoustic waves

(EAWs) has been studied by various authors18–37 via differ-

ent theoretical approaches. Singh and Lakhina26 investigated

large amplitude electron-acoustic structures in the frame-

work of broadband electrostatic noise (BEN) emission

observed in the auroral zone and in the Earth’s magneto-

sphere.38–41 Non-Maxwellian plasma distribution of either

vortex-like25 or Cairns type28 has also been addressed in the

past, to investigate the nonlinear properties of EA solitary

waves. Bright/dark-type envelope modes have also been

studied from first principles in Refs. 27 and 30. In the pres-

ence of collisionality (energy dissipation), the modulational

instability of electrostatic solitary structures has been investi-

gated via a complex Ginzburg-Landau equation formula-

tion,29 and finite amplitude electron-acoustic shock waves34
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have also been shown to occur. Dutta et al.35–37 have studied

small-amplitude EA solitary waves35,37 and electron-

acoustic cyclotron waves36 in the presence of uniform mag-

netic field.

Electron-neutral collisions are often present in plas-

mas.10,11,42 Inspired by (and extending) the earlier studies of

nonlinear dissipative structures in the presence of collisional-

ity,29,34,43 we have undertaken an investigation of weakly

nonlinear electron-acoustic solitary waves (EASWs) in a col-

lisional three-component plasma comprising two different

electron populations (here referred to as “hot” and “cold”’

electrons). We have investigated the occurrence of dissipa-

tive solitary structures, from first principles, and have studied

their dynamics, in terms of intrinsic plasma (configurational)

parameters.

The manuscript is arranged as follows. The basic for-

malism is presented in Section II. The linear properties of

electron-acoustic excitations are discussed in Section III. An

analytical and numerical investigation is carried out in

Section IV. Finally, a short summary is given in Section V.

II. MODEL EQUATIONS

We consider a three-component unmagnetized plasma,

consisting of inertial cold electrons (charge qc¼ –e and mass

me), j-distributed superthermal hot electrons (charge qh¼ –e
and mass me), and stationary ions (charge qi¼Zie and mass

mi). Quasi-neutrality is assumed to hold at equilibrium

(only), i.e., Zini0¼ nc0þ nh0; here, Zi is the ion charge state

and ns0 is the equilibrium number density of species s (here

s¼ h, c, i refer to the hot electrons, cold electrons, ions,

respectively). We note that the phase speed of electron-

acoustic waves is much smaller than the thermal speed of hot

electrons but much higher than the thermal speed of both

cold electrons and ions (i.e., adopting the ordering vth,c,vth,i

� vph � vth,h). Accordingly, the hot electron inertia can be

neglected, while the ions can be safely assumed to be immo-

bile (simply maintaining the overall neutrality of the

system). A one-dimensional (1d) geometry is adopted.

The dynamics of the cold electron fluid is governed by

the continuity, momentum, and Poisson’s equation(s). The

normalized (dimensionless) form of these equations reads

@n

@t
þ @ nuð Þ

@x
¼ 0; (1)

@u

@t
þ u

@u

@x
¼ @/
@x
� �u ; (2)

@2/
@x2
� b n� 1ð Þ þ a/þ b/2 ; (3)

where the cold electron number density nc, velocity uc, and

electrostatic wave potential U are normalized by the unper-

turbed density nc0, the hot electron thermal speed

C0¼ (kBTh/me)
1=2, and kBTh/e, respectively. Here, kB is the

Boltzmann constant, e is the (absolute) electron charge, and

Th is the characteristic hot electron temperature. Space x and

time t are normalized by the hot electron screening length

kh¼ (kBTh/4pe2nh0)1=2 and the hot electron plasma period

(inverse frequency) x�1
ph ¼ ð4pe2nh0=meÞ�1=2

, respectively.

We have also defined the ratios b¼ nc0/nh0 and �¼ �cn/xph,

where �cn is the cold electron-neutral collision frequency.

The hot electrons are modeled by a j-distribution; the (nor-

malized) hot electron density therefore reads

nh ¼ 1� /

j� 3
2

 !�jþ1=2

; (4)

where nh is normalized to the equilibrium (hot electron) den-

sity nh0. It is obvious that j> 3/2 for a physically meaningful

distribution. Recalling that the hot electrons, which follow j-

distribution, are not affected by the collisional dissipation as

their inertia can be neglected (i.e., hot electrons-neutrals col-

lision is neglected). The expansion coefficients appearing in

Eq. (3) are related to the j index as

a ¼ j� 1=2

j� 3=2
; b ¼ j� 1=2ð Þ jþ 1=2ð Þ

2 j� 3=2ð Þ2
: (5)

As expected, the Maxwellian limit is recovered for

j!1. It is noted that j should take values j� 3 in order to

satisfy the expansion in Eq. (3) (via Eq. (4)) as the higher

order terms are large compared to those of lower order terms

and one cannot neglect them in the range 3/2<j� 3. That

is, for small amplitude solitary waves (studied via reductive

perturbation approach), one should use j� 3 to analyze the

soliton properties.44

III. LINEAR DISPERSION CHARACTERISTICS

We proceed by considering perturbations of the form

ei(kx�xt). Linearizing the dimensionless system of evolution

equations (1)�(3), we obtain a dispersion relation in the form

x xþ i�ð Þ ¼ k2 b
k2 þ a

;

) x ¼ � i�

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 b

k2 þ a
� �

2

4

s
;

(6)

relating the wave frequency x and the wavenumber k.

We note the appearance of the collisionality parameter

in (6). The linear wave properties are evidently influenced by

the plasma configurational parameters (e.g., the superther-

mality index j, the cold electron concentration via b, and the

collisional effect via �). The effects of these parameters on

linear wave excitations are explored in Figs. 1 and 2.

In Fig. 1, we have depicted the real part of the wave

frequency x in Eq. (6) against the wavenumber k. The imagi-

nary part, representing the wave damping rate, is independ-

ent of k. The real part of the wave frequency is found to

decrease as � increases (see Fig. 1). As analytically derived

from Eq. (6), the wavenumber has a threshold value (k1 and

k2 in Fig. 1 for �¼ 0.02 and �¼ 0.05, respectively), below

which the wave is overdamped and would not propagate.

This overdamping mechanism operates unless

jkj > a�2

4b� �2

 !1=2

� kod; (7)
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which defines the critical value kod: no oscillation occurs

below kod, thus the frequency and its derivatives become

imaginary. For smaller values of the collision frequency (i.e.,

�� xph), Eq. (7) becomes

jkj > kod ¼
�

2

ffiffiffiffiffiffiffiffi
a=b

p
: (8)

The variation of kod with � for different j and b are

shown in Figs. 2(a) and 2(b), respectively; this behavior will

be discussed in a later section. In the long wavelength

approximation, i.e., for k� a, the real part of Eq. (6) can be

written as

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 b

a
� �

2

4

r
: (9)

The phase speed of small amplitude waves in a collisional

plasma thus reads

vph ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
a
� �2

4k2

r
: (10)

One can easily recover the j-dependent phase speedffiffiffi
b
a

r
¼ j� 3=2

j� 1=2

� �1=2

for collisionless plasmas upon setting �¼ 0 in Eq. (10), in

agreement with Refs. 30 and 32. The phase speed vanishes,

that is, wave propagation is not possible, for k< kod. One

should therefore restrict themselves in the region above kod

in the analysis of propagating structures.

IV. SOLITARY WAVES

In order to investigate the nonlinear propagation of elec-

trostatic solitary structures, we adopt stretched coordinates45

as

n ¼ �1=2ðx� v0tÞ; s ¼ �3=2t ; (11)

where the small parameter � (� � 1) measures the strength

of nonlinearity and v0 is the speed of the solitary wave front

(normalized by the hot electron thermal speed C0); the value

of v0 will later be determined by compatibility requirements.

We also assume a weak damping, by taking �¼ �3=2�0. The

dependent variables n, u, and / are expanded around the

unperturbed states as

n ¼ 1þ �n1 þ �2n2 þ � � � ;
u ¼ �u1 þ �2u2 þ � � � ;
/ ¼ �/1 þ �2/2 þ � � � :

9>=
>; (12)

Substituting Eq. (12) into Eqs. (1)–(3) and combining

the terms in �3=2 from the first two and the term in �1 from

the third equation, one gets

n1 ¼ �
/1

v2
0

; u1 ¼ �
/1

v0

: (13)

Substituting Eq. (13) into Eq. (3), one can obtain the

v0 ¼
ffiffiffiffiffiffiffiffi
b=a

p
; (14)

which suggests that solitary waves will travel at (or rather,

slightly above) the phase speed of (linear) electron-acoustic

waves, which is precisely the acoustic speed defined above.

Considering the next order in � and eliminating the

second-order quantities in combination with (14), we obtain

the equation

@/1

@s
þ A/1

@/1

@n
þ B

@3/1

@n3
þ C/1 ¼ 0; (15)

FIG. 1. The variation of the real part of the wave (angular) frequency x
versus the wavenumber k is depicted, for superthermality index j¼ 3, and

assuming electron concentration (cold-to-hot electron ratio) as b¼ 0.5. The

k region below which the wave is overdamped is highlighted. The solid

curve corresponds to �¼ 0, the dashed curve to �¼ 0.02, and the dotted-

dashed curve to �¼ 0.05.

FIG. 2. Variation of the wavenumber threshold kod (given by Eq. (7)) versus

the collision frequency �: (a) For different superthermality parameter j,

where cold-to-hot electron population ratio b¼ 0.5 and (b) for different b,

where j¼ 3.
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which describes the evolution of the leading-order electric

potential (disturbance) /1. The nonlinearity, dispersion, and

damping terms appearing in the latter equation, respectively,

read

A ¼ � 3

2

ffiffiffi
a

b

r
� b

a3=2

ffiffiffi
b

p
; B ¼

ffiffiffi
b
p

2a3=2

and C ¼ �0=2: (16)

It is anticipated that the mutual balance between nonli-

nearity and dispersion leads to the formation of coherent

(soliton) structures. It is therefore appropriate to investigate

the dependence of the nonlinearity and dispersion coeffi-

cients, A and B, on the superthermality index (via j), and

also on the cold-to-hot electron number density (via b).

These are depicted in Figs. 3(a) and 3(b), respectively. We

see that, for stronger superthermality (smaller j), the nonlin-

ear coefficient A increases in absolute value, whereas the

dispersive coefficient B decreases, that is, superthermality

(low j) results in a loss of balance between dispersion and

nonlinearity: assuming a soliton-shaped initial condition, a

change in j would result in loss of ability to sustain its shape,

and energy breakdown to smaller structures or/and to ran-

dom oscillations.32,33 On the other hand, smaller values of

cold-to-hot electron number density ratio b result in smaller

nonlinear coefficient A (in absolute value) but larger disper-

sive term B. That is, when a solitary pulse propagating from

a lower b region to a higher b region, the increasing nonli-

nearity A dominates over dispersion, which may lead to

breaking of the initial solitary pulse.

A. Analytical approach

Assuming a weak value of the damping term in Eq. (15),

thus to be treated as a small perturbation, one may consider

as initial condition a known function of n, and study its evo-

lution in time s. A suitable pulse-shaped initial condition is

analytically found to be /1ðn; 0Þ ¼ /0ð0Þ sech2

ffiffiffiffiffiffiffiffiffiffiffi
A /0ð0Þ

12B

q
n.

Following Refs. 43, 46, and 47, the time-dependent expres-

sion thus obtained (omitting details) reads

/1 n; sð Þ ¼ /0 sð Þ sech2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A /0 sð Þ

12B

r
n� A

3

ðs

0

/0 sð Þds

� �
; (17)

where the amplitude, velocity, and width of the pulse43 are

functions of time given, respectively, by

/0 sð Þ ¼ /0 0ð Þexp � 2�0

3
s

� �
; (18)

v0 ¼
A /0 0ð Þ

3
exp � 2�0

3
s

� �
; (19)

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 B

A /0 0ð Þ

s
exp

�0

3
s

� �
: (20)

B. Numerical investigation

Our main interest now is to trace the effect of dissipation

on the dynamics of pulse structures. To do so, we assume a

negligible dissipative effect, by formally considering the

limit �0! 0. Equation (15) is then reduced to Korteweg de-

Vries (KdV) equation, which has a solitary wave solution in

the form:

/1 n; sð Þ ¼ /̂0 sech2 n� U0s
L

� �
; (21)

where /̂0 ¼ 3U0=A is the solitary wave amplitude,

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B=U0

p
is the width, and U0 is the pulse speed (nor-

malized by the hot-electron thermal speed).

The solitary wave solution given in Eq. (21) will be

used as an initial condition to analyze the dissipative effect

on pulse-type electron-acoustic solitary waves. We have

analyzed the propagation of EA solitary structures by a

numerical integration of the KdV equation, employing a

Runge-Kutta 4 method. A time interval of 10� 5 and a spatial

grid size of 0.1 were considered.

We have first investigated the stability of a stable pulse

propagating in strongly superthermal (j¼ 3) plasma. The

outcome of our simulation is depicted in Fig. 4. In this case,

we have considered the pulse soliton solution (21) for �0¼ 0,

j¼ 3, and b¼ 0.5 as initial condition, while considering the

effect of dissipation in the dynamics, by adopting in the sim-

ulation the values �0¼ 0.02, j¼ 3, and b¼ 0.5. The pulse

amplitude decreases with time during the propagation (see

Fig. 4). In the second simulation in Fig. 5, we have consid-

ered a stable pulse propagating in a moderately superthermal

(j¼ 6) plasma where pulse soliton solution (21) for �0¼ 0,

j¼ 6, and b¼ 0.5 is assumed as initial condition. It is
FIG. 3. Variation of (a) the nonlinear coefficient A and (b) the dispersion

coefficient B with the spectral index j, for different values of b.
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expected like earlier case and also seen in numerical simula-

tion that the soliton amplitude decreases with time, while it

propagates in the dissipative plasma.

We have subsequently considered the same scenario,

but now considering the pulse solution for a quasi-

Maxwellian plasma (j¼ 100), for �0¼ 0, j¼ 100, and

b¼ 0.5, as initial condition, while running the simulation for

the values: j¼ 100, �0¼ 0.02, and b¼ 0.5. The characteris-

tics of the EA pulses are significantly modified, and the am-

plitude (width) is found to decrease (increase), while it

propagates in the dissipative plasma, as shown in Fig. 6. The

pulse in this (quasi-Maxwellian) case has larger amplitude

(see Fig. 6) than its counterpart in superthermal (j¼ 3)

plasma (see Fig. 4).

In Table I, we compare the amplitude values observed

numerically for different time s, in Fig. 4, for strongly

superthermal plasma (j¼ 3), and also in Fig. 6 for quasi-

Maxwellian plasma (j¼ 100), with the theoretically pre-

dicted results obtained via Eq. (18). The parameter values

used are b¼ 0.5, U0¼ 0.5, and �0¼ 0.02. The numerical

results match the theoretical results almost perfectly, as

shown in Table I.

In Fig. 7, we have considered a pulse (i.e., an exact soli-

ton solution) obtained for a lower density cold electron

plasma environment (b¼ 0.5), assumed to enter in a plasma

environment with higher cold-electron density (b¼ 1.5). In

our simulation (results depicted in Fig. 7), we have consid-

ered the exact soliton solution given in Eq. (21) for j¼ 3

and b¼ 0.5 as initial condition, while the KdV equation inte-

grated was considered for j¼ 3 and b¼ 1.5. In the case

depicted in Fig. 7, the initial pulse decomposed into a pair of

daughter pulses: a dominant (thinner, steeper) fast pulse, fol-

lowed by a smaller (and slower) one. This suggests that a

delicate energetic balance was achieved, in that the initial

condition provided the necessary energy for the formation of

a two-pulse configuration, which appear to propagate with

decreasing amplitude as time evolves.

FIG. 4. (a) Evolution of electrostatic solitary structures (given in Eq. (15))

propagating in superthermal plasma (j¼ 3) with cold-to-hot electrons num-

ber density b¼ 0.5. Equation (21) was considered as initial condition for

b¼ 0.5, j¼ 3, where U0¼ 0.5; and (b) showing the propagation in the

space-time plane for same condition as panel (a).

FIG. 5. (a) Evolution of electrostatic solitary structures (given in Eq. (15))

propagating in a moderately superthermal plasma (j¼ 6) with b¼ 0.5.

Equation (21) was considered as initial condition for b¼ 0.5, j¼ 6, where

U0¼ 0.5; and (b) showing the propagation in the space-time plane for same

condition as panel (a).

FIG. 6. (a) Evolution of electrostatic solitary structures (given in Eq. (15))

propagating in quasi-Maxwellian plasma (j¼ 100) with b¼ 0.5. Equation (21)

was considered as initial condition for b¼ 0.5, j¼ 100, where U0¼ 0.5; and

(b) showing the propagation in the space-time plane for same condition as

panel (a).
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We now depict the time dependent amplitude /0 ðsÞ
given in Eq. (18) and width L given in Eq. (20) of the soli-

tons profile in Fig. 8 for the different values of the superther-

mality index j. Other parametric values that we have chosen

are cold-to-hot electrons number density ratio b¼ 0.5 and

U0¼ 0.5. We have observed that a higher excess of electron

superthermality (lower value of j) leads to smaller amplitude

(in absolute value) and narrower pulses than the ones sus-

tained in quasi-Maxwellian plasma. In other words, both

width and amplitude are lower for strongly superthermal

plasma (solid curve) than in Maxwellian plasma (dotted

curve), shown in Fig. 8. We have also found that the ampli-

tude /0 ðsÞ decreases while the pulse width L increases with

time as shown in Fig. 8. This was expected, as taller pulses

are narrower, as indicated by the exact solution above.

Interestingly, the characteristic soliton “decay” time is

independent from j and only depends on the viscosity value

�, as predicted analytically, and also confirmed numerically

(see Fig. 9), where we have considered the numerical evolu-

tion of the analytical solution in the extreme cases j¼ 3 and

j¼ 100; the amplitude decay rate seems to be practically

identical in these case.

V. CONCLUSIONS

To summarize, we have considered the propagation of

high frequency electrostatic excitations in a multi compo-

nent, unmagnetized, collisional plasma whose constituents

are superthermal hot electrons, inertial cold electrons, and

stationary ions. We have mainly focused on the damping

effect on the EA solitary waves whose phase speed lies

between the hot electrons thermal speed and ion sound

speed.

Our analysis suggests a dependence of the dispersion

characteristics on the spectral index j, on the cold-to-hot

electron density ratio b and, finally, on the phenomenologi-

cal damping rate �. Since pulses are weakly superacoustic,

TABLE I. Comparison between theoretical and numerical values of ampli-

tude (absolute value) for different time s.

Superthermality index j Time s Theoretical value Numerical value

0.25 0.44 0.45

3 20 0.34 0.34

30 0.29 0.30

50 0.22 0.23

0.25 0.60 0.59

100 20 0.46 0.46

30 0.40 0.40

50 0.31 0.31

FIG. 7. (a) Evolution of electrostatic solitary structures (given in Eq. (15))

propagating in a superthermal plasma (j¼ 3) with b¼ 1.5. Equation (21)

was considered as initial condition for b¼ 0.5, where U0¼ 0.5; and (b)

showing the propagation in the space-time plane for same condition as panel

(a).

FIG. 8. We have depicted the variation of the time-dependent pulse charac-

teristics, namely, (a) the pulse amplitude /0ðsÞ versus time s (given in Eq.

(18)), (b) the pulse width L versus time s (given in Eq. (20)), for different

superthermality index j, and (c) the pulse speed v0, from Eq. (19). The

remaining parameters are b¼ 0.5, U0¼ 0.5, and �0¼ 0.02.
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when modeled via a KdV-type description, this fact affects

the soliton propagation speed (which is j dependent); to low-

est order, the latter reads v0¼ [(j� 3/2)/(j� 1/2)]1=2.

Our numerical analysis reveals that, when a pulse-

shaped initial condition propagates in a dissipative plasma,

the amplitude decreases in time, as expected, under the

effect of dissipation. This is true either for strongly super-

thermal or for quasi-Maxwellian plasmas (and any state in

between). However, it is found that the characteristic decay

time is independent from j, and only depends on the dissi-

pative term �, as confirmed both analytically and numeri-

cally. We have also observed the spontaneous formation of

multi-soliton configurations under certain conditions, when

an initial solitary pulse is considered to propagate between

different plasma environments (i.e., when passing from a

low-b to a high-b region; recall that this implies that there

are more cold electrons in the new region, since b¼ nc0/

nh0). This situation may be the outcome of a delicate

energy balance, as a particular plasma configuration (i.e., a

given combination of b and j values) supports soliton solu-

tions of specific energy. Therefore, when a solitary pulse

propagates from one plasma environment to another, it may

lose energy, in order to adapt its form to a new environ-

ment; the energy remainder may then suffice to form a

smaller pulse.

The (time dependent, in our case) pulse speed (and am-

plitude, since taller soliton solutions are faster) is higher in

superthermal plasmas than in quasi-Maxwellian plasmas.

Our investigation may be useful in understanding some

important features of electron-acoustic perturbations that

may propagate in laboratory as well Space plasmas, where

different electron populations may coexist.
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