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Abstract In this work, the general framework in which
fits our investigation is that of modeling the dynamics of
dust grains therein dusty plasma (complex plasma) in the
presence of electromagnetic fields. The generalized discrete
complex Ginzburg-Landau equation (DCGLE) is thus ob-
tained to model discrete dynamical structure in dusty plasma
with Epstein friction. In the collisionless limit, the equa-
tion reduces to the modified discrete nonlinear Schrödinger
equation (MDNLSE). The modulational instability phe-
nomenon is studied and we present the criterion of instabil-
ity in both cases and it is shown that high values of damping
extend the instability region. Equations thus obtained high-
light the presence of soliton-like excitation in dusty plasma.
We studied the generation of soliton in a dusty plasma tak-
ing in account the effects of interaction between dust grains
and theirs neighbours. Numerical simulations are carried out
to show the validity of analytical approach.
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1 Introduction

In the recent decades, the study of wave propagation in
dusty plasmas has seen spectacular growing interest among
plasma physicists, not just because of the omnipresent of
dust in our universe, but also because of its special role
in explaining some collective processes (coherent struc-
tures) in laboratory plasmas, astrophysical and space en-
vironment (space plasmas) in Shukla and Mamun (2002);
Saini et al. (2014); Siminos et al. (2014). A dusty (complex)
plasma is a multicomponent system consisting of electrons,
ions, charged mesoscopic particles (dust grains) and neutral
atoms or molecules (Rahman et al. 2015; Shukla and Elias-
son 2009; Morfill and Ivlev 2009; Meyer-Vernet et al. 2015).
Interest in this ‘unusual’ state of matter stems from the
ubiquity with which it is found in the laboratory, in space,
and in astrophysics, such as cometary tails, planetary rings,
solar and planetary nebulae, the lower ionosphere (meso-
sphere), atmospheric lighting and industrial plasma process-
ing and nanomaterials fabrication devices (Merlino 2006;
Amorim et al. 2015). Most of the theoretical works on
wave propagation in plasma are focused on ion acoustic
wave (IAW) mode (Alinejad et al. 2014; Jain et al. 2015;
Hossen et al. 2015) and electron-acoustic wave (Rafat et al.
2015), but the more on the new acoustic-like oscillatory
modes as well as dust acoustic (DA) waves and dust ion
acoustic (DIA) waves (Duan et al. 2003; Rao and Yu 1990;
Shukla and Silin 1992; Sultana et al. 2014).

The DA wave is a low-frequency, longitudinal wave char-
acterized by propagating dust density compressions and rar-
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efactions (Rao and Yu 1990). It is a sound wave propagat-
ing through the charged dust fluid, involving oscillations of
the heavy dust grains. The interactions between the charged
dust grains are mediated by the collective electric fields in
the plasma. The existence of the DA wave was suggested
almost some years ago by Padma Shukla at the First Capri
Workshop on Dusty Plasmas in 1989. The detailed analy-
sis of this dust wave was worked out by Rao, Shukla and
Yu a few months later (Rao and Yu 1990). Shukla’s con-
tribution was in treating the dust as a separate fluid com-
ponent which could support electrostatic waves of such a
low frequency that the inertia of both the electrons and ions
could be ignored (Boltzmann response). An intriguing as-
pect of the DA wave is that, due to light scattering from
the grains, the waves could be seen propagating through the
dust suspension with the naked eye (Barkan et al. 1995).
The modulated wave packets and envelope solitary structure
of DA wave in dusty or complex plasmas have been stud-
ied by Kourakis and Shukla (2004a, 2004b) and recently
the effect of excess superthermal electrons on the modula-
tional instability and envelope soliton modes were studied
by Sultana and Kourakis (2011). The amplitude modula-
tion of longitudinal (Kourakis and Shukla 2004e; Amin et
al. 1998a, 1998b), transverse (vertical, off-plane) (Kourakis
and Shukla 2004c) dust lattice waves and weakly nonlinear-
ity (Bains et al. 2013) was recently considered. The aims
of this work is to gain more insight in the generation of
localized structures in a complex plasma considering the
case with Epstein friction and the case of collisionless dust
charged plasmas in the presence of variable electromagnetic
field. The modulational instability (MI) criteria of dust lat-
tice wave (DLW) and the transverse magnetized dust lattice
oscillations is then investigated.

A link is made on the methodology, in a quite exhaustive
manner, in close relation with previous works of Kourakis
and Shukla (2004b), and always by regarding the particular
features of DP crystals.

It is well known that as nonlinear-type system, our
model (the modified discrete complex Ginzburg-Landau
(MDCGL) equation) can present an instability that leads
to the self-induced modulation of a plane wave of entry
with the continuously generation of the patterns. The MI
in DNLS-like lattices was first predicted in the first Bril-
louin zone (Christodoulides and Joseph 1988) and exper-
imental observation of discrete MI has been reported for
the first time by Meier et al. (2004). The study of MI is
essential as it stands as a precursor phenomenon to the
formation of discrete soliton (Braun and Kivshar 1998;
Henning and Tsironis 1999). The MI appears in the same
parameter region where solitons are observed (Rajib et al.
2015). Nowadays, the study of MI in discrete models such
as the DNLS equation attracts the attention of the scientific
community. Longitudinal excitations of localized small am-
plitude were also considered in Shukla and Mamun (2003),

Kourakis and Shukla (2004d), and Melandso (1996) with a
quasicontinuum description of the dust lattice. Small ampli-
tude is found to be described by a Korteweg-de Vries equa-
tion for the density and Boussinesq equation for the longitu-
dinal displacement of grains. In addition, experiments (Liu
et al. 2003) highlights the fact that the high discreteness of
dust crystals should play an important role in mechanisms
such MI (response to an external excitation).

The present study is devoted to look for the best condi-
tions under which different patterns wave emerges in our
dusty plasma during the propagation of the plane wave,
given a certain wave number in the system. The plan of this
paper is as follows. In Sect. 2, we present the model of dusty
plasmas. The semi-discrete approach is used and lead to the
MDCGLE in the damping case and in the collisionless case,
to MDNLSE (Ablowitz 1975). Next, the conditions under
which the wave become stable/unstable for a small pertur-
bation of amplitude are derived in both cases. In Sect. 3,
we use the fourth-oder Runge–Kutta method to study nu-
merically the generation of soliton-like object through our
system.

2 Model and linear stability analysis

we consider a layer of identical charged dust grains of lattice
constant r0. The Hamiltonian of such a chain is of the form

H =
∑

n

1

2
M

(
drn

dt

)2

+
∑

m �=n

U(rnm) + Φext(rn), (1)

and the motion of the nth dust grain in the transverse verti-
cal, off-plane, z-direction, we have the equation of motion
including dissipation of the nth grain caused by dust-neutral
collisions (Kourakis and Shukla 2004g)

M

(
d2zn

dt2
+ ν

dzn

dt

)
= −

∑

n

∂Unm(rnm)

∂zn

+ Fext(zn), (2)

where Fext(zn) accounts for all external forces in the
z-direction.

2.1 Equation of motion

Considering small displacement from the equilibrium posi-
tion, we can develop the interaction potential U(r) around
the intergrain equilibrium position (zn = 0)lr0 = |n − m|r0

between the lth neighbours (l = 1,2,3, . . .). Thus, by re-
taining only interaction between near neighbours (l = 1) the
equation of motion of the nth grain is as follow: From (2)
we have:

M

(
d2zn

dt2
+ ν

dzn

dt

)
= −

∑

n

∂Unm(rnm)

∂zn

+ Fext(zn),
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by the way, −Fext(rn) = ∂Φext(rn)/∂rn, and,

Φext(rn) = Φ0 + Φ(1)zn + 1

2
Φ(2)z

2
n + 1

3!Φ(3)z
3
n + 1

4!Φ(4)z
4
n

Eq. (2) then become:

z̈ + νż + ω2
gzn + K1z

2
n + K2z

3
n = ω2

0,T (2zn − zn−1 − zn+1)

+ K3
[
(zn+1 − zn)

3 − (zn − zn−1)
3], (3)

where the characteristic frequency of transversal oscilla-
tions ω0,T and the coefficient K3 are (Kourakis and Shukla
2004f):

ω2
0,T = −

(
U ′(r0)

Mr0

)
,

K3 = − 1

2Mr3
0

[
U ′(r0) − r0U

′′(r0)
]
,

ω2
g = Φ(2)

M
,

K1 = Φ(3)

2M
; K2 = Φ(4)

6M

From the nonlinear equation (3), we search for small-
amplitude time-periodic solutions. So, we will study the be-
haviour of this wave with the help of the discrete spatial
Fourier transform:

zn =
+∞∑

p=−∞
a

(p)
n eipωbt ; (4)

where ωb is the eigenfrequency of the fundamental model
(p = 1) and, a

(p)
n are time independent amplitude of the pth

mode: an(ε
2t); a

(p)
n ∼ εp ⇒ ȧn ∼ ε2t ; än ∼ ε4t

After substituting (4) into (3) and cancelling first order
harmonic, we have:

an =
√

2ωb

3K2 + 6K3 + β
× ψn × exp

[
i
ω2

g − ω2
b − 2ω2

0

2ωb

t

]
,

(5)

where β = − 4K2
1

ω2
g

− 2K2
1

ω2
g−4ω2

b+2iνωb
and the dynamic of dust

grain in our model is then described by the modified discrete
complex Ginzburg-Landau like equation:

iψ̇n + P(ψn+1 + ψn−1) + S|ψn|2ψn

− R
{−2ψn

(|ψn+1|2 + |ψn−1|2
) − ψ∗

n

(
ψ2

n+1 + ψ2
n−1

)

+ 2|ψn|2(ψn+1 + ψn−1) + ψ2
n

(
ψ∗

n+1 + ψ∗
n−1

)

+ |ψn+1|2ψn+1 + |ψn−1|2ψn−1
} − iηψn = 0, (6)

with the complexes parameters

P = ω2
0

2ωb − iν
= 2ωbω

2
0

4ω2
b + ν2

+ i
νω2

0

4ω2
b + ν2

= Pr + iPi, (7)

S = 2ωb

2ωb − iν
= 4ω2

b

4ω2
b + ν2

+ i
2νωb

4ω2
b + ν2

= Sr + iSi, (8)

R = 6K3ωb

(2ωb − iν)(3K2 + 6K3 + β)
= Rr + iRi, (9)

η = ν(θ + ωb)

2ωb − iν
= ν(ω2

g + ω2
b − 2ω2

0)

4ω2
b + ν2

+ i
ν2(ω2

g + ω2
b − 2ω2

0)

2ωb(4ω2
b + ν2)

= ηr + iηi . (10)

Others works with dust charge variation and Epstein fric-
tion in dusty plasma shown that the dynamics of wave was
governed by a nonlinear Schrödinger equation modified by
a dissipative term (Ghosh et al. 2011; Li 2014).

In our purpose, one can see that the effects of damp-
ing on the dust lattice waves and the transverse magnetized
dust lattice oscillations reduce their dynamics to the MD-
CGL equation, which is characteristic to dissipative sys-
tems. This equation is known in many systems (Boccaletti
et al. 2000, 2002; Willame et al. 1991; Otsuka 1999) and
is shown in this study to describe discrete dynamical struc-
tures in complex plasma. Its parameters are depicted versus
the dust neutral collision (damping) term and Fig. 1 presents
the shape of each of them. In general, the coefficient Pr ac-
counts for the energy tunneling between adjacent elements
of the dust lattice, while the imaginary term Pi(> 0) stands
for gain due to the coupling between neighboring sites of
the dust lattice. The cubic nonlinearity coefficients are com-
plex quantities which real parts (Sr and Rr ) correspond to
elastic collisions in the system. They correspond to the re-
pulsive interaction for positives values (Sr,Rr > 0) and at-
tractive interaction for negatives ones (Rr < 0). Next, the
imaginary part (Si and Ri ) represent the cubic nonlinear
loss (gain) if they take negative (positive) values (Borha-
nian 2013), which appear due to inelastic collisions. Finally,
since ηr , ηi > 0 (Fig. 1) the coefficient η indicates the linear
gain parameter due to the feeding strength from the thermal
dust.

However, this equation reduces to the modified discrete
nonlinear Schrödinger (MDNLS) equation in collisionless
limit (ν = 0 → η = 0 and P , R and S are real parameters).
We use theses equations to study the possibility of genera-
tion of localized structures in our complex plasma through
modulational instability.

2.2 The modulational instability criterion

Since the modulates signals are used in engineering, they
are very important due to their property of being transmit-
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Fig. 1 Variation versus
dust-neutral collision ν of the
real (continued lines) and
imaginary (dotted lines) part of
different parameters of (6)

ting along much longer distance than non-modulated ones.
Different approaches have been proposed to study the gen-
eration of modulated waves, and one of the ways to pro-
duce those with soliton-like objects forms is through mod-
ulational instability (MI). It is a result of the interplay be-
tween nonlinearity and dispersion and arises in continuous
as well as in discrete systems. The MI is a general fea-
ture of continuum as well of discrete nonlinear wave equa-
tions and its demonstration spans a diverse set of disci-
plines, ranging from plasma physics, electrical transmission
lines, nonlinear optics and DNA molecule, to cite just a few.
In this section, we find the condition under which a uni-
form wave moving along the dusty plasma system will be-
come modulationally stable or unstable to a small perturba-
tion. We look for plane wave solutions of (6) in the form:
ψn = ψ0 exp[i(qn − ωt)] we thus obtain the dispersion re-
lation:

ω + 2Pr cos(q) + |ψ0|2
{
Sr − Rr

(
8 cos(q)

− 2 cos(2q) − 4
)} + ηi = 0, (11)

and

|ψ0|2 = −2Pi cos(q) + ηr

Si + Ri(−8 cos(q) + 2 cos(2q) + 4)
. (12)

Then, the modulational instability of a plane wave in such
a dusty plasma lattice is investigated by studying the sta-
bility of its amplitude in the presence of sufficiently small

perturbation so that one can linearize the equation of the en-
velope and the carrier wave. By the way, this phenomenon
has been studied in various contexts such as fluid dynam-
ics (the Benjamin-Feir instability) in Benjamin and Feir
(1967); nonlinear optics and also in plasma physics (Tanu-
iti and Washimi 1992). Dauxois and Peyrard have shown
that the modulational instability of a linear wave is a first
step towards energy localization in nonlinear lattices (Daux-
ois and Peyrard 1993). The first step to probe some partic-
ular features of these excitations in our system is to intro-
duce a small perturbation in the amplitude and in the phase,
and look for the solution of (6). The modulational stabil-
ity/instability of an extended nonlinear wave in such a sys-
tem is related to the time evolution of a perturbed nonlinear
wave of the form:

ψn = (ψ0 + an) exp
[
i(qn − ωt + φn)

]
, (13)

where ψ0 is a constant amplitude of a plane wave. Replacing
(13) in (6) and assuming |φn(t)| 	 (qn − ωt) and also that
|an(t)| 	 φ0, we obtain the following equation describing
the evolution of the perturbations an(t) and φn(t):

i
∂an

∂t
− ψ0

∂φn

∂t
+ P

{[(
an+1 + an−1 − 2an

+ iψ0(φn+1 + φn−1 − 2φn)
)]

cos(q)

+ [
i(an+1 − an−1) − ψ0(φn+1 − φn−1)

]
sin(q)

}

+ 2ψ2
0 R

{[(
an+1 + an−1 + a∗

n − an
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Fig. 2 Unstability (Color zone) and stability (Dark zone) diagrams in the (Q,q) plane with the parameters: ωg = 1; K1 = −0.5ω2
g ; K2 = 0.07ω2

g ;
K3 = −0.005; ωb = 0.6; ω0 = 0.2; (a) ν = 0; (b) ν = 0.04; (c) ν = 0.075; (d) ν = 0.5

+ iψ0(φn+1 + φn−1 − 2φn)
)]

cos(2q)

+ [
i(an+1 − an−1) − ψ0(φn+1 − φn−1)

]
sin(2q)

+ (
an+1 + an−1 + a∗

n+1 + a∗
n−1

)

− [
2an+1 + 2an−1 + a∗

n+1 + a∗
n−1 + 2a∗

n

+ iψ0(φn+1 + φn−1 − 2φn)
]

cos(q)

+ 2
[
ψ0(φn+1 − φn−1) − i(an+1 − an−1)

]
sin(q)

}

+ Sψ2
0

(
an + a∗

n

) = 0. (14)

Then we get the following equation describing the dy-
namics of the perturbation:

φn = φ1e
i(Qn+Ωt) + φ2e

−i(Qn+Ω∗t),

an = a1e
i(Qn+Ωt) + a2e

−i(Qn+Ω∗t),
(15)

where (*) refers to complex conjugates of variables; Q and
Ω , the wave number and the frequency of the perturbation,
characterize linear properties; φ1, φ1, a1 and a2 are real con-
stants.

Since it is known that the asymptotic behavior of the per-
turbation is related to the sign of the imaginary part of Ω

(Nguenang et al. 2005; Daumont et al. 1997), one can look
for the measure of the growth rate of the perturbation shown
by (14) like G(q,Q) = |Im(Ω)|.

Substituting (15) into (14) yields to the following ho-
mogenous system of φ1, φ2, a1 and a2 such that: Mu = 0

with u⊥ = [φ1, a1, φ2, a2] and the matrix M is defined by:

M =

⎛

⎜⎜⎝

m1 m2 − Ω 0 m4

m5 − Ω m6 0 m8

0 m10 m11 m12 − Ω

0 m14 m15 − Ω m16

⎞

⎟⎟⎠ , (16)

and we have non trivial solutions by balancing the determi-
nant of the matrix M with zero; this leads to the relation of
dispersion:

Ω4 + K3(Q,q)Ω3 + K2(Q,q)Ω2 + K1(Q,q)Ω

+ K0(Q,q) = 0, (17)

where coefficients Ki(Q,q), (i = 0, . . . ,3) and mij , (i, j =
1, . . . ,4) are real and expressed in the Appendix. This dis-
persion relation, which shows Ω as a function of the waves
numbers q and Q, and system parameters, including the MI
gain G(q,Q) = |Im(Ω)|, is then obtained from the condi-
tion of the existence of nontrivial solutions of the algebraic
linear homogeneous system det(M) = 0, which amounts to
a quartic equation (17). After solving this condition of exis-
tence of nontrivial solutions numerically, we only keep the
values of the wave numbers which give negative values of
the imaginary part of Ω . Doing so, it allows to obtain by
numerical computation the region (Fig. 2) where wave mod-
ulation is expected (colored zone) and stability region (Dark
zone) diagrams in the (Q,q) plane. In these stability regions,
at least one of the four growth rates has positive imaginary
part.

Since our system is dissipative (non-conservative sys-
tem), the counterbalance between loss and gain is added to
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Fig. 3 Modulational stability. Same parameters as in Fig. 1, for the
carrier wave and modulated wave number q = 0.2π ; Q = 0.9π

the balance between nonlinearity and dispersion for forma-
tion of solitary waves which are called dissipative solitons in
this case. Moreover, dissipative media has the capability to
generate shock waves due to the interplay between disper-
sion and dissipation (Borhanian 2012). Thus, in Fig. 2, the
corresponding gain shown in tridimensional, one observes
that the growth rate of instability increases with the damp-
ing due to dust-neutral collision and high values of damping
extend the instability region for high values of wave num-
ber Q of perturbation. This widening makes the choice of
wave number for possible modulation very easy. This is a
first confirmation of the possibility of MI in the system un-
der our study. This increase of the growth rate shows the way
through MI, which stands as a precursor phenomenon to for-
mation of soliton, dissipative solitons could be localized in
our dusty plasma due to Epstein damping ν.

3 Numerical simulations and discussions

The stability of a nonlinear plane wave with wave number
q modulated by a small-amplitude wave of wave number Q

is determined by the dispersion relation (17). Linear stabil-
ity analysis doesn’t predict well the long time evolution of
a modulated nonlinear plane wave. Thus, to look for the va-
lidity of our analytical approach and the kind of dynamical
patterns one might obtain in our dusty plasmas system under
small perturbations, we carried out numerical simulations of
the MDCGLE equation by using the fourth-order Runge–
Kutta method. The initial conditions, typically at time t = 0,
are coherently modulated plane waves of the form:

ψ0
(
1 + ε cos(Qn)

)
exp

(
iqn + 0.01 cos(Qn)

)
, (18)

with ε 	 1 and we have performed simulations with a lat-
tice of 500 dust grain with periodic boundary conditions
ψn(t) = ψn+N(t) where N is the lattice length (in units
of the lattice constant) (Natanzon et al. 2007). Figure 2
shows the instability diagram according to the stability lim-
its of (17) and for wavenumbers labelled in black regions,

we should obtain the MI phenomenon as theoretically pre-
dicted. So, we chose from Fig. 2 a set of wavenumbers q and
Q for numerical studies. We first consider the case of points
labelled in the black region, corresponding to modulational
stability. As specific example we use the point q = 2π/10
and Q = 9π/10 and the initial condition is introduced in the
system. One obtains that no instability is observed, the am-
plitude remains stable during the propagation as shown is
Fig. 3.

The wave pattern displayed by the set of the preceding
wave number is that of a plane wave with a sinusoidal form,
with a constant amplitude that is not sensitive to any modu-
lation as the time increases. Therefore, the system is said to
be stable under the corresponding modulation.

Now, we take in Fig. 2 a set of wave numbers. One
obtains that an initial plane wave with a sinusoidal form,
with a constant amplitude become sensitive to modulation
as the time increases: the wave displays an oscillating and
breathing wave behavior. Figure 4 presents how the ampli-
tude of the wave generated by wave motion is modulated
in the form of a train of small amplitude with short wave-
length.

Figure 4: the panels show how the initial plane solution
wave breaks into wave train which has the shape of a soliton-
like object in the dust lattice, as predicted by the analytical
predictions, for parameters of diagram (Fig. 2).

4 Conclusion

We have investigated modulational instability of discrete dy-
namical structures in complex plasma system by consider-
ing damping (Epstein friction). We have shown that when
damping contribution are not taken into account, the system
reduces to the MDNLS equation. When the (Epstein) damp-
ing term, due to dust-neutral collisions is taken into account,
the amplitude of oscillations is described by the MDCGL
equation. We have found that modulational instability is re-
lated to localized patterns and the domain of instability in-
creases with the damping due to dust-neutral collision and
high values of damping extend the instability region. These
localized excitations represent a general subset of large va-
riety of possible news discrete solitons or already existing
solutions admitted in our model. In forthcoming studies, for
example, we should also investigate exact explicit soliton so-
lution of our MDCGLS equation, to have some explanations
of certain dust phenomenon in various states of the interstel-
lar atmosphere.
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Fig. 4 Pattern formation. The amplitude appears as a train of soliton-like objects. Same parameters as in Fig. 1, for the carrier wave and modulated
wave number (a): q = 0.4π , Q = 0.9π , ν = 0; (b): q = 0.98π , Q = 0.98π , ν = 0.04; (c): q = 0.1π , Q = 0.98π , ν = 0.075

Appendix

The matrix elements mij (i, j = 1,2,3,4) are given as fol-
lows:

m1 = (−4 cos(Q + 2q) + 6 cos(q + Q) − 4 cos(q)

− 2 cos(Q − q) + 4 cos(2q)
)
Riψ0

2

+ 2
(
cos(q) − cos(q + Q)

)
Pi,

m2 = (
Sr + (−8 cos(q + Q) − 2 cos(2q) + 4 cos(Q)

+ 4 cos(Q + 2q)
)
Rr

)
ψ0

2

+ (
2 cos(q + Q) − 2 cos(q)

)
Pr,

m4 = −m10 = ((
4 cos(Q) − 4 cos(q) − 2 cos(Q − q)

− 2 cos(q + Q) + 2 cos(2q)
)
Rr + Sr

)
ψ0

2,

m5 = (
2 cos(Q − q) + 4 cos(Q + 2q) − 4 cos(2q)

− 6 cos(q + Q) + 4 cos(q)
)
Rrψ0

2

+ 2
(
cos(q + Q) − cos(q)

)
Pr,

m6 = ((−8 cos(q + Q) − 2 cos(2q) + 4 cos(Q)

+ 4 cos(Q + 2q)
)
Ri + Si

)
ψ0

2

+ (
2 cos(q + Q) − 2 cos(q)

)
Pi,

m8 = −m14 = ((
4 cos(Q) − 4 cos(q) − 2 cos(Q − q)

− 2 cos(q + Q) + 2 cos(2q)
)
Ri + Si

)
ψ0

2,

m11 = −(−2 cos(q + Q) − 4 cos(q) + 6 cos(Q − q)

+ 4 cos(2q) − 4 cos(Q − 2q)
)
Riψ0

2

− 2
(
cos(q) − cos(Q − q)

)
Pi,

m12 = −(
Sr + (

4 cos(Q − 2q) + 4 cos(Q) − 8 cos(Q − q)

− 2 cos(2q)
)
Rr

)
ψ0

2 − 2
(
cos(Q − q) − cos(q)

)
Pr,

m15 = (−2 cos(q + Q) − 4 cos(q) + 6 cos(Q − q)

+ 4 cos(2q) − 4 cos(Q − 2q)
)
Rrψ0

2

+ 2
(
cos(q) − cos(Q − q)

)
Pr,

m16 = ((
8 cos(Q − q) + 2 cos(2q) − 4 cos(Q − 2q)

− 4 cos(Q)
)
Ri − Si

)
ψ0

2

+ 2
(
cos(q) − cos(Q − q)

)
Pi;

K3 = −m15 − m5 − m2 − m12,

K2 = m2
4 + m2m12 + m5m15 − m1m6 + m5m2 + m2m15

− m11m16 + m12m15 + m5m12,

K1 = m1m4m8 − m5m2m12 + m1m6m15 + m5m11m16

− m5m2m15 + m2m11m16 + m8m11m4 − m5m4
2

− m2m12m15 − m4
2m15 + m1m6m12 − m5m12m15,

K0 = −m1m4m8m15 + m5m2m12m15 − m5m2m11m16

− m1m6m12m15 + m1m6m11m16 − m5m8m11m4

+ m1m8
2m11 + m5m4

2m15.
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