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The self similar expansion of multi-species ion plasma is investigated by a two-ion fluid model with
adiabatic equation of state for each ionic species. Our aim is to elucidate the effect of secondary
ions on a plasma expansion front, in combination with energetic (suprathermal) electrons in the
background, modeled by a kappa-type distribution function. The plasma density, velocity and
electric field profile is investigated. It is shown that energetic electrons have a significant effect on
the expansion front dynamics, essentially energizing the front, thus enhancing the ion acceleration
mechanism. Different special cases are considered, as regards the relative magnitude of the ion mass
and/or charge state.

I. INTRODUCTION

Plasma expansion into vacuum has received constantly
growing interest in recent years, in particular due to its
relevance with experiments on ultraintense laser pulse in-
teraction with solid targets [1–5], and with applications
of high energy ion beams, e.g. for ion acceleration [6–
9], laser-assisted fast ignition scenaria for fusion [10–12].
Experimental low-temperature plasmas [13] and plasmas
for medical applications [14–18] (e.g. cancer therapy) in-
volving plasma expansion mechanisms have received in-
creasing attention in the last few years. Various plasma
expansion schemes have been modelled via particle-in-cell
(PIC) simulations, to validate theoretical models [19–21].

From a theoretical modeling point of view, the main
building blocks have been set in the early works of Gure-
vich et al [22] and later of Allen and coworkers [23].
These were succeeded by a series of remarkable con-
tributions by Mora and coworkers [24–29], including a
study of the effect of charge separation, i.e. violation
of the charge neutrality hypothesis (plasma approxima-
tion), numerically [25, 30], for electron-ion plasmas. In-
terestingly, a bi-Maxwellian (two electron temperature)
approach was considered in a number of works [31–33],
described the effect of the co-existence of two thermal
electron populations. Other analytical studies have fo-
cused on kinetic-theoretical considerations for the elec-
tron distribution [34], the effect of instabilities [35] and
even magnetic field generation [36], among other effects.

Not against physical intuition, and certainly in favor
of analytical tractability, the electron background is of-
ten tacitly assumed to be isothermal throughout the ion-
fluid expansion procedure. However, in realistic situa-
tions, laser-target interaction certainly generate energetic
(suprathermal) electrons, which are energized due to var-
ious acceleration mechanisms. These electrons may be
characterized by particle distribution functions featuring
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a long tail in the velocity spectrum, which may signif-
icantly deviate from the Maxwellian distribution. One
widely accepted paradigm of a long-tailed distribution is
the so-called kappa distribution [37, 38], which is known
to model a number of situations in Space [39, 40], but also
in the laboratory [41]. The kappa approach was adopted
in a plasma expansion context only recently, consider-
ing superthermal electron effects in electron-ion plasmas
[42]. The kappa distribution is characterized by a real pa-
rameter (κ), whose “smallness” measures deviation from
thermal equilibrium: the Maxwell-Boltzmann state is ob-
tained in the infinite κ limit. It has been shown that
kappa distributions provide excellent fits in a variety of
environments, not only in Space [43–47], but also in nu-
merical experiments [48]. The kappa distribution is by
now established as an efficient tool for providing correct
predictions of observed modifications of, e.g., the plasma
sound speed and the associated charge screening length
[47], both of which are modified in the presence of ener-
getic electrons [38].

In Space plasmas, it appears that κ values between 3
and 6 are ubiquitous in the solar wind [39], and also in
planetary magnetospheres [44, 48]. The ability for accu-
rate measurements of particle distributions by sophisti-
cated diagnostic devices onboard spacecraft missions [39]
provides a tool for precise characterisation of energetic
particle distributions, which seem to establish the fact
that the long-tailed distribution observed are well fit by
kappa-type theories [40, 46].

In high-power laser-plasma interaction experiments, on
the other hand, qualitative evidence based on proton di-
agnostics [49] suggests that the electron population is
not thermalized, while various types of non-Maxwellian
situations, e.g. “bump-on-tail” distributions may de-
velop, depending on the surrounding plasma environ-
ment. For any target thickness, it is evident that the
electrons are in a nonthermal state, for long times (large
multiples of the plasma period) [50]. Admittedly, in pro-
ton imaging based experiments, it appears that current
diagnostic techniques do not allow for an accurate char-
acterization of the electron distribution, hence the elec-
tron distribution may often have to be inferred indirectly
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[50]. Suprathermal particles also appear in other types of
laser-plasma interaction experiments e.g. in hohlraums
[51], and also in fusion plasmas [52]. Therefore, although
a link to kappa-type theories may not be rigorously es-
tablished, in the laboratory, these seem to capture the
generic characteristics of electrostatic excitations at least,
as observations seem to be compatible with waveforms
predicted by related studies [41].

As opposed to the “textbook” two-component
(electron-ion) plasma picture, experimentally produced
laser plasmas contain several ion species, due to increas-
ingly complicated composite material targets, leading to
multicomponent plasma configurations [53–56]. Inter-
estingly, secondary ions (rather than electrons) have re-
cently been argued to contribute to ultrafast collisional
plasma heating by electrostatic shocks [57]. The role of a
minority secondary ion population on plasma expansion
was investigated earlier in a number of studies [31, 58–
61]. Our work at hand aims at generalizing those earlier
models by considering a nonthermal (non-Maxwellian)
plasma environment and a finite (arbitrary) admixture
of ion components. From first principles, the presence
of secondary ions in an expanding plasma is manifested
in the appearance of spectral peaks, which are of inter-
est both in experimental diagnostics and for application
purposes [31, 59]. As a simplifying hypothesis, one may
assume that the plasma doesn’t change its shape during
the expansion process and that there is no charge separa-
tion. Therefore, the expanding plasma can be studied as
a self-similar process. Physically speaking, this assump-
tion is justified if the system’s scale is much larger than
the characteristic Debye length, and the flow of both ions
and electrons is sufficient smooth (laminar) on the ionic
timescale. As a matter of fact, the shape of the expanding
plasma front has been investigated via numerical simu-
lation in a number of studies in the past [25, 34, 62, 63],
which corroborated the general features of the self-similar
solution. As a matter of fact, the aforementioned studies
have addressed the expansion of a collisionless cold-ion
fluid against an electron cloud obeying either a step-like
or a Maxwell-Boltzmann distribution. A critical compar-
ison between the analytical (self-similar) solution and the
numerical results has confirmed that the self-similar so-
lution can predict the general features of the expansion
front but rather fails to predict the actual position of
the ion front and of the associated electric field at early
times. However, those numerical studies have confirmed
that, with the passage of time, plasma motion approaches
the self-similar picture quite precisely, regardless of the
background electron profile. It is worth mentioning that
a series of recent numerical and experimental studies have
established a link with particle acceleration mechanisms
via spontaneous shock creation during plasma expansion
[19–21]. Concluding, the self-similar solution cannot ex-
plain the complete process of plasma expansion into vac-
uum, but it succeeds in capturing the essential features of
the problem and bears, in fact, the significant advantage
of analytical tractability.

Our aim in this work, is to elucidate the effect of sec-
ondary ions on the plasma expansion front, in combi-
nation with the role of energetic electrons in the back-
ground. A kappa-type electron distribution function
[37, 38] is adopted. Adopting a self-similar analysis, the
evolution of the plasma density, velocity and electric field
profile is investigated in detail. It is shown that energetic
electrons have a significant effect on the expansion front
dynamics, essentially energizing the front, thus enhanc-
ing the ion acceleration mechanism. Different special
cases are considered, in terms of the relative magnitude
of the ion mass and/or charge state.

The layout of this article goes as follows. In Section II,
an analytical model is developed and its physical impli-
cations are discussed. The self similar expansion mech-
anism is investigated, adopting different assumptions for
the plasma slab, in Section III. The single-ion limiting
case (cold- or warm-ion model) is presented, for reference,
and the theory is extended to a two-ion fluid model, in
the presence of heavier (minority) ions. Finally, Section
IV summarizes our results and conclusions.

II. THE MODEL

We consider a planar plasma slab consisting of elec-
trons (absolute charge e, mass me) and two different
(positive) ion populations. The two ion species are char-
acterized by their respective mass mj , charge qj = zje
and temperature Tj , as well as their equilibrium density
nj,0, respectively (for j = 1, 2). The plasma is assumed
to be quasineutral, hence, the electron number density
inside the slab equals ne,0 =

∑
zj,0nj,0 at equilibrium.

At t = 0, the plasma is assumed to occupy the negative
semi-axis (for x < 0), while vacuum is assumed to occupy
the positive semi-axis (for x > 0); here x is the distance
measured from the plasma slab, as shown in Fig. 1.

The dynamics of the ions (at t > 0) can be described
by the multi-fluid model

∂nj

∂t
+

∂

∂x
(njuj) = 0,

mjnj

(
∂uj

∂t
+ uj

∂uj

∂x

)
= zjenjE − ∂Pj

∂x
,

∂E

∂x
= 4πe

(
z1n1 + z2n2 − ne

)
, (1)

where indices j = 1, 2 denote ion fluid(s) 1 and 2, re-
spectively. The notation is self-explanatory: nj is the
ion-density, uj is the ion velocity, Pj is the partial ion
pressure, mj is the ion mass, and zj is the ion charge
state (for j = 1, 2).

The electrons are described by the “kappa” distribu-
tion, hence their density is given by [37, 38]:

ne = ne,0

(
1− eΦ

Te(κ− 3
2 )

)(−κ+ 1
2 )

, (2)
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(a)

(b)

FIG. 1: (Color online) (a) The interaction of a laser beam with
a solid target is illustrated; note that emission of fast ions from
the rear surface of the target. (b) Ion acceleration mechanism
(heuristic plot) due to laser-target interaction. Both plots
have been adapted from Ref. 8, with permission from the
publisher.

where Φ is the electrostatic potential, viz. E = −∂Φ/∂x.
Here, κ is the (real) spectral index which measures the
strength of the excess superthermality, Te denotes elec-
tron temperature, and e is the electron charge. Note that
κ > 3/2 is assumed as a requirement [37, 38].

The neutrality assumption (plasma approximation) is
adopted, for analytical tractability. We shall assume
throughout this work that the density gradient scale
length is much greater than the Debye length, so that
quasineutrality remains valid during the expansion proce-
dure. Having adopted the plasma hypothesis, the Poisson
equation for the electrostatic potential can be replaced by
the relation (neutrality condition):

ne = z1 n1 + z2 n2 , (3)

assumed to hold at all times.

A. Electric field in a kappa-distributed electron
background

Upon inspection of the above equations, it is obvious
that the only interaction between the two ion species is
through the self-consistent electric field, entering the mo-
mentum equation for the ions. We thus need to evaluate
the electric field, in order to close the system of evolution
equations. Differentiating Eq. (2) with respect to x, and
using the quasineutrality relation (3), we obtain

∂ne

∂x
=

∂

∂x

(
z1n1 + z2n2

)
=

e

Te

(κ− 1
2 )

(κ− 3
2 )

(
1− eΦ

Te(κ− 3
2 )

)−1(
z1n1 + z2n2

)
∂Φ

∂x
. (4)

The electric field E is thus determined by using Eq. (4)
as

E = −∂Φ

∂x
= −Te

e

1

z1n1 + z2n2

(
κ− 3

2

κ− 1
2

)(
1− eΦ

Te(κ− 3
2 )

)
∂

∂x

(
z1n1 + z2n2

)
. (5)

The latter equation (5) generalizes the well known rela-
tion:

eE = −Te

ne

∂ne

∂x
, (6)

for isothermal (inertialess) electrons obeying the
Maxwell-Boltzmann distribution [58]. As expected, Eq.

(6) is recovered from Eq. (5) in the limit κ → ∞. We
shall assume adiabatic ion motion, which implies

∂Pj

∂x
=

3Tj,0

n2
j,0

n2
j

∂nj

∂x
(for j = 1, 2) , (7)
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where index zero denotes values at the initial time t = 0.
Combining Eqs. (1) - (7), we obtain

∂nj

∂t
+

∂

∂x
(njuj) = 0,

∂uj

∂t
+ uj

∂uj

∂x
= −3Tj,0

mj

nj

n2
jo

∂nj

∂x
− zjTe

mj

1

z1n1 + z2n2

(
κ− 3

2

κ− 1
2

)(
1− eΦ

Te(κ− 3
2 )

)
∂

∂x

(
z1n1 + z2n2

)
. (8)

Note that the neutrality assumption (3) was adopted in
the last step, to eliminate the electron density.

B. Scaling

For analytical convenience, we shall now introduce nor-
malized variables, according to the following scaling:

T = ωp,1 t , X =
x

λDi
, Nj =

nj

nj0
,

Vj =
uj

cs
and ϕ =

eΦ

Te
. (9)

Here, the time (T ) and space (X) variables are respec-
tively normalized by the (ion) plasma period ω−1

p,1 =

(4πe2n1oz
2
1/m1)

−1/2 and the (ion) Debye length λD,1 =(
4πz1e

2n1o/kBTe

)1/2
; the number density Nj (j =

e, 1, 2) and the velocity Vj are normalized by the un-
perturbed number density nj0 and ion acoustic speed

cs = (z1kBTe/m1)
1/2; finally, the electrostatic potential

ϕ is normalized by kBTe/e, where Te denotes the electron
temperature, and e is the elementary (electron) charge.
Furthermore, the following dimensionless parameters are
defined:

δ =
z2 n20

z1 n10
, γ =

q2/m2

q1/m1
=

z2 m1

z1 m2
. (10)

The physical meaning of these parameters is transparent,
as they respectively represent the charge density ratio
and the specific charge (charge-to-mass) ratio, between
the two ion populations. Note that δ → 0 (and γ becomes
irrelevant) in the vanishing “secondary-ion” limit (n2 =
0).

Applying the above scaling, Eqs. (1) are cast in the
dimensionless form:

∂N1

∂T
+

∂

∂X
(N1V1) = 0, (11)

∂V1

∂T
+ V1

∂V1

∂X
= − ∂ϕ

∂X
− α1N1

∂N1

∂X
, (12)

∂N2

∂T
+

∂

∂X
(N2V2) = 0, (13)

∂V2

∂T
+ V2

∂V2

∂X
= −γ

∂ϕ

∂X
− α2N2

∂N2

∂X
, (14)

∂2ϕ

∂X2
= (1 + δ)ne −N1 − δN2, (15)

We have defined the quantity:

αj =
3

z1

Tj,0

Te

n2
10

n2
j,0

m1

mj
, (16)

i.e., essentially,

α1 = 3
T1,0

z1Te
and α2 =

3

z1

T2,0

Te

n2
10

n2
2,0

m1

m2
,

adopting the notation in Ref. 58. Finally, we have de-
fined the kappa-related parameters:

a = κ− 3

2
and b = κ− 1

2
. (17)

The procedure adopted above in order to determine
the electric field E – see Eqs. (4)-(6) – may now be
adapted to the rescaled (dimensionless) formulation of
the problem. In dimensionless form, Eq. (4) becomes:

1

ne

∂ne

∂X
=

b

a

(
1− ϕ

a

)−1
∂ϕ

∂X
. (18)

Thus the electric field becomes:

E = − ∂ϕ

∂X
= −

(
a

b

)(
1− ϕ

a

)
1

ne

∂ne

∂X
. (19)

By using the neutrality assumption

ne =
1

1 + δ
(N1 + δN2) ,

one obtains

E = −
(
a

b

)(
1− ϕ

a

)
1

N1 + δN2

∂

∂X

(
N1 + δN2

)
. (20)
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By using Eq.(20) with Eqs.(11-15), we get

∂N1

∂T
+

∂

∂X
(N1V1) = 0,

∂V1

∂T
+ V1

∂V1

∂X
= −α1N1

∂N1

∂X

−
(a
b

)(
1− ϕ

a

)
∂

∂X

[
ln(N1 + δN2)

]
,

∂N2

∂T
+

∂

∂X
(N2V2) = 0,

∂V2

∂T
+ V2

∂V2

∂X
= −α2N2

∂N2

∂X

− γ
(a
b

)(
1− ϕ

a

)
∂

∂X

[
ln(N1 + δN2)

]
.

(21)

III. SELF-SIMILAR EXPANSION SCHEME

The system of partial differential equations (PDEs)
(21) may now be transformed into a set of ordinary dif-
ferential equations (ODEs) by assuming that all depen-

dent variables are functions of the similarity parameter
ξ = X/T alone [23, 24, 58]. Eqs. (21) thus take the form:

(V1 − ξ)N ′
1 +N1V

′
1 = 0

(V1 − ξ)V ′
1 = −α1N1N

′
1

−
(a
b

)(
1− ϕ

a

)[
ln(N1 + δN2)

]′
,

(V2 − ξ)N ′
2 +N2V

′
2 = 0

(V2 − ξ)V ′
2 = −α2N2N

′
2

− γ
(a
b

)(
1− ϕ

a

)[
ln(N1 + δN2)

]′
.

(22)

where prime denotes differentiation with respect to ξ. As
boundary condition, we require that there should exist a
point ξ0 such that

V1(ξ0) = 0 V2(ξ0) = 0,

N1(ξ0) = 1 N2(ξ0) = δ. (23)

Eq. (22) can be written in matrix form as



V1 − ξ α1N1 +
a
b (1−

ϕ
a )

1
N 0 (ab )(1−

ϕ
a )

δ
N

N1 V1 − ξ 0 0

0 γ a
b (1−

ϕ
a )

1
N V2 − ξ α2N2 + γ a

b (1−
ϕ
a )

δ
N

0 0 N2 V2 − ξ





V ′
1

N ′
1

V ′
2

N ′
2


= 0 (24)

where we have used the relation N = N1 + δN2.

The latter system of equations will form the working
toolbox for the analysis that follows. Before proceeding
with our study of the two-ion fluid flow dynamics, we
shall consider the single-ion limiting case, as it derives
from the above model, for the sake of comparison with
earlier works, but also to gain valuable insight in the
model and its limitations.

A. Single cold-ion fluid limit

We consider first the slab is consisting of electrons and
light ions (protons) only and the ions are initially cold.
So, in the single (N2 = V2 = 0) cold (α1 = 0) ion case,

Eqs. (22) reduce to

(V1 − ξ)
N ′

1

N1
+ V ′

1 = 0

a

b

(
1− ϕ

a

)
N ′

1

N1
+ (V1 − ξ)V ′

1 = 0. (25)

At this stage, the derivative terms in Eqs. (25) may
be treated as independent variables. Considering the re-
sulting set of algebraic equations, the determinant of the
system must vanish, for nontrivial solutions to exist:∣∣∣∣ V1 − ξ 1

a
b

(
1− ϕ

a

)
V1 − ξ

∣∣∣∣ = 0. (26)

We choose the positive solution, corresponding to an ex-
pansion in the +x direction and a velocity increasing with
increasing x, so the solution of the determinant is

V1 = ξ +

√(a
b

)(
1− ϕ

a

)
. (27)
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With the boundary condition (23), we obtain ξ0 = −
√

a
b ,

i.e.,

ξ0 = −
(
2κ− 3

2κ− 1

)1/2

. (28)

Interestingly, this relates the speed to the sound speed,
since the ratio a/b = (2κ−3)/(2κ−1) is essentially related
to the sound speed (squared) for non-Maxwellian plasmas
within the kappa-distribution approach [37, 38, 47] (see
that a/b → 1 in the infinite κ, i.e. Maxwellian limit).
Combining Eqs. (25) and (27), we find

dϕ

dξ
=

2b

1− 2b

√
1

b
(a− ϕ). (29)

One can derive a self-similar solution for the system un-
der the assumption of charge quasi-neutrality, for the po-
tential, the ion fluid speed, and for the ion density. The
set of analytical expressions for the state variables thus
obtained read:

ϕ(ss) =
−1

(1− 2b)2

[
b(ξ − ξ0)

(
2

√
a

b
(2b− 1) + ξ − ξ0

)]
,

V1 = ξ +

√
a

b

(
1− ϕ(ss)

a

)
,

N1 =

(
1− ϕ(ss)

a

)−b

,

(30)

In the limit (κ → ∞), i.e, for a Maxwellian distribu-
tion, one readily recovers

ϕ(ss) = −(ξ + 1),

V1 = ξ + 1,

N1 = exp[−(ξ + 1)] = exp(−V1) . (31)

These expressions are identical to those obtained ear-
lier for electron-ion plasma [23, 24, 58] considering
Maxwellian electrons.
We can see from Eq. (31) that the density profile ex-

ponentially decreases, extending to infinity into vacuum,
thus representing a rarefaction wave which propagates
into the unperturbed plasma with velocity cs, that is, the
ion acoustic speed. The velocity increases linearly from
zero at ξ = −1 to attain a constant value (cs) at ξ = 0. In
our case, Eq. (30) with superthermal effect through κ, we
can see the velocity increase linearly from zero at ξ = ξ0
(the rarefaction wave) and with cs,(κ) = 2

1−2b

√
ab cs at

ξ = 0, where cs,(κ) is the modified ion acoustic speed in
terms of κ.
The influence of superthermality on the ion density,

velocity and the electric field is depicted in Fig. 2. We
can see that ion acceleration is enhanced due to an excess
in superthermal electrons, i.e. upon decreasing κ.

B. Single warm-ion model

Retaining the thermal pressure term in eq. (22), the
single ion model equations read:

(V1 − ξ)
N ′

1

N1
+ V ′

1 = 0[
α1N

2
1 + (

a

b
)
(
1− ϕ

a

)] N ′
1

N1
+ (V1 − ξ)V ′

1 = 0. (32)

The compatibility (vanishing determinant) condition now
becomes ∣∣∣∣ V1 − ξ 1

α1N
2
1 + (ab )

(
1− ϕ

a

)
V1 − ξ

∣∣∣∣ = 0 , (33)

which implies

V1 = ξ +

√
1

b

[
a− ϕ+ bα1

(
1− ϕ

a

)−2b
]
. (34)

Requiring V1 = 0 and ϕ = 0 at ξ = ξ0, we obtain ξ0 =

−
√

a+bα1

b .

For κ → ∞ i.e, for a Maxwellian electron distribution,
we recover [58]:

V1 = ξ +
√

1 + α1 exp(2ϕ). (35)

Combining Eqs. (32) and (34) with the neutrality con-
dition z1N1 = ne , we find that the electrostatic potential
is given by the equation

dϕ

dξ
= −

2ab(1− ϕ
a )

2b+ 3
2

√
a
b + α1(1− ϕ

a )
−(2b+1)

4b2α1 + a(2b− 1)(1− ϕ
a )

2b+1
. (36)

The electrostatic potential, ion velocity and ion density
are obtained numerically upon solving Eqs. (32) and (36)
numerically. These results are shown in Fig. 3 and 4.

Fig. 4 shows the effect of the ionic thermal pressure on
ion acceleration. Upon increasing the ion temperature,
the velocity of the expansion front increases, suggesting
that thermal effects energize the ions, as intuitively ex-
pected.

C. Two cold-ion species plasma: the role of
minority ions

Here, we consider that in addition to the main ions
N1, of mass m1 and charge z1, the plasma slab contains
a small admixture of ions of mass m2 and charge z2.
Accordingly, the variation of the second fluid is assumed
to be slow, viz. N ′

2 ≪ N ′
1 [64]. Taking N2 ≪ N1, Eq.
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(a) (b)

(c) (d)

FIG. 2: (Color online) Single cold ion fluid model: the state variables ((a) electrostatic potential (b) electric field (c) ion fluid
speed and (d) density) are depicted versus ξ, following (30). Larger values of κ recover the known Maxwellian result [23, 24, 58].

(24) decouples (neglecting partial pressure α1 = α2 = 0)

(V1 − ξ)N ′
1 +N1V

′
1 = 0,

(V1 − ξ)V ′
1 ≃ −a

b

(
1− ϕ

a

)
(lnN1)

′
, (37)

(V2 − ξ)N ′
2 +N2V

′
2 = 0,

(V2 − ξ)V ′
2 ≃ −γ

a

b

(
1− ϕ

a

)
(lnN1)

′
. (38)

or, in matrix form:

V1 − ξ a
b (1−

ϕ
a )

1
N1

0 0

N1 V1 − ξ 0 0

0 γ a
b (1−

ϕ
a )

1
N1

V2 − ξ 0

0 0 N2 V2 − ξ





V ′
1

N ′
1

V ′
2

N ′
2


≃ 0

(39)
The solution of Eq. (37) is, once again, given by Eq.

(30), implying that

(V2 − ξ)V ′
2 ≃ −γ

dϕ(ss)

dξ
. (40)

This is an approximate relation for V2, in terms of the
self-similar solution ϕ(ss) that was given by Eq. (30).

The numerical results from the latter equations are
depicted in Fig. 5. Note that the variables (N1 and
V1) corresponding to the (dominant) first ion fluid re-
main precisely as they were obtained in Subsection III B
above, since Eq. (37) is still valid in this case (as dis-
cussed earlier in this Section) and it does not involve the
second (minority ion) population N2. However, the sec-
ond (minority ion) population is affected by the first, as
obvious in Eqs. (38) and (40) above.

It is worth mentioning that the “minority-ion” fluid
assumptions N2 ≪ N1 and N ′

2 ≪ N ′
1 are a posteriori

satisfied by the numerical values obtained for the density
variables; see Fig. 5(c).
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(a) (b)

(c) (d)

FIG. 3: (Color online) Single (warm) ion fluid model: the effect of superthermality is shown, following Eqs. (32) and (36). The
state variables ((a) electrostatic potential (b)electric field (c) ion fluid speed and (d) density) are depicted versus ξ. We have
considered α1 = 1, as an indicative value.

D. Two warm-ion model: the role of minority ions

Here, we consider the plasma slab is consisted of two
warm ion species. Under the minority (second) ion as-
sumption, viz. assuming N2 ≪ N1, Eq. (24) becomes:

(V1 − ξ)
N ′

1

N1
+ V ′

1 = 0

(V1 − ξ)V ′
1 ≃ −α1N1N

′
1 −

a

b

(
1− ϕ

a

)(
ln[N1]

)′

.

(41)

(V2 − ξ)N ′
2 +N2V

′
2 = 0,

(V2 − ξ)V ′
2 ≃ −α2N2N

′
2 − γ

a

b

(
1− ϕ

a

)(
ln[N1]

)′

.

(42)

or, in matrix form :
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(a) (b)

(c) (d)

FIG. 4: (Color online) Single (warm) ion fluid model: the effect of thermal pressure is shown, following Eqs. (32) and (36).
The state variables ((a) electrostatic potential (b) electric field (c) ion fluid speed and (d) density) are depicted versus ξ. We
have considered κ = 2 as indicative value.



V1 − ξ α1N1 +
a
b (1−

ϕ
a )

1
N1

0 0

N1 V1 − ξ 0 0

0 γ a
b (1−

ϕ
a )

1
N1

V2 − ξ α2N2

0 0 N2 V2 − ξ





V ′
1

N ′
1

V ′
2

N ′
2


≃ 0 (43)

The system of Eqs. (42) may be solved numerically.
The results are shown in Figs. 6 for the minority (second)
ion species. As in the cold-ion case above, the variables
corresponding to the dominant first fluid remain as they
were obtained in Subsection III B above, since Eq. (41)
is not affected by the 2nd population N2.

E. Two warm-ion model: arbitrary ion admixture

For the sake of analytical tractability (and also, for
comparison with Ref. 58), we have assumed above that
the concentration of the secondary ions is much lower
that that of the principal ion population, i.e. δ ≪ 1,
hence the influence of the secondary ion (2) population
on the motion of the main ion fluid was practically neg-
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(a) (b)

FIG. 5: (Color online) Two (cold) ion-fluid model, with minority ions (N2 ≪ N1): the effect of superthermality is shown,
following Eqs. (40). (a) the second (minority) ion-fluid speed and (b) density are depicted, versus the self-similar space variable
ξ (taking α1 = α2 = 0 and γ = 1/3, i.e. z1 = z2 and m2 = 3m1). Note that the variables corresponding to the dominant first
fluid are omitted, since they are exactly given in Figure 2 above, obtained from Eq. (37), in this case too.

ligible. Now, we turn to the full two-fluid problem where
these concentrations may be comparable in order of mag-
nitude, i.e., the plasma slab contains a mixture of two
types of ions in an arbitrary proportion, manifested by a
finite value of δ (< 1). The expansion of the plasma slab
into vacuum is described by the system of Eqs. (24).
Considering all the derivatives (V ′

1 , N
′
1, V

′
2 , N

′
2) as inde-

pendent variables and the resulting set of equations as an
algebraic (Cramer) system, the secular (vanishing deter-
minant) condition resulting from Eqs. (24) may be cast
in the form:

(ab )

(
1− ϕ

a

)
N1

N

(V1 − ξ)2 − α1N2
1

+

(ab )

(
1− ϕ

a

)
γδN2

N

(V2 − ξ)2 − α2N2
2

= 1 . (44)

This equation cannot be solved analytically to find
N1, N2, V1, V2. However, it can be used to determine ξ0 as
the negative root of a polynomial equation, which corre-
sponds to an expansion in the +x direction and a velocity
increasing with increasing x. Assuming the initial con-
dition (23) above, it is straightforward to show that Eq.
(44) leads to:

ξ40 +Aξ20 +B = 0, (45)

viz.,

ξ0 = −
[
−A+

√
A2 − 4B

2

]1/2
(46)

where A = −
[
a(1 + γδ) + b(α1 + α2)(1 + δ)

]
/
[
b(1 + δ)

]
and B = bα1α2(1 + δ) + a(α2 + α1γδ). The negative
sign in the latter expression for ξ0 denotes the fact that
the a rarefaction wave moves in the direction opposite to
that of the expanding plasma. The modified speed of the
rarefaction wave is ξ0 (which essentially represents the

sound speed in the presence of the two ion components).
It may be appropriate to compare to the (far simpler)
expression (28) above, which is indeed recovered in the
limit δ = 0 with α1 = α2 = 0.

In order to investigate the full problem, i.e. retain-
ing the secondary ion fluid inertia, we have solved the
system of Eqs. (24) numerically, taking into account the
condition (44) and the initial value of the self-similar vari-
able ξ0 (46). The result of the numerical integrations is
shown in Figs. 7 and 8, for the cold- (α1 = α2 = 0)
and warm- (α1 = α2 = 1) ion case(s), respectively. The
plots depicted in Fig. 7 actually represent the same set
of variables (namely, γ = 1/3 and α1 = α2 = 0) as the
one shown in Figs. 2 and 5, except for the fact that the
assumption N1 ≪ N2 is now dropped, viz., a finite value
of N2 is assumed in Fig. 7 (where δ = 1 is taken, rather
δ ≪ 1, as in Fig. 5. Similarly, the plots depicted in Fig. 8
represent the same set of variables (namely, γ = 1/3 and
α1 = α2 = 1) as the one shown in Figs. 3 and 6, except
that a finite value of N2 is assumed in Fig. 8 (i.e. δ = 1),
rather δ ≪ 1, as in Fig. 6. In all of Figs. 2-8, we have
considered a set of indicative (ad hoc) parameter values,
namely z2 = z1 and m2 = 3m1, corresponding to γ = 1/3
( the values of δ are presented in the respective caption).
We have solved the system numerically for many different
values of the relevant parameters qualitatively same.

Upon a simple inspection of Figs. 2 and 5, on one
hand, and Fig. 7 on the other, in comparison with one
another, we see that, for different values of the superther-
mal spectral index κ, the electric field and the velocity
of the ion species increases for higher values of the den-
sity ratio δ. For large values of κ (i.e. in the Maxwellian
limit), Figs. 4 and 5 in Ref. [58] are exactly recovered,
thus corroborating our results.

As shown in Fig. 7, for small values of κ, the number
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(a) (b)

(c) (d)

FIG. 6: (Color online) Minority ion 2-fluid model (warm): the effect of superthermality is shown, following Eqs. (42) (taking
κ = 2, α1 = 1 and γ = 1/3, i.e. z1 = z2 and m1 = 3m2.

density N1 and N2 decrease sharply at the expansion
front; considering thermal effects (in Fig.8) the transition
is smoother.

We have also investigated the effect of the density ratio
δ for two cases: γ < 1 (Fig. 9) and γ > 1 (see Fig. 10).
Case 1: For γ(= z2m1/z1m2) < 1, Figs. 9(a,b) show that
the electric field increases with increasing density ratio
δ(= z2n20/z1n10). From Figs. 9(c,e) we can see that
the concentration of the ions falls rapidly, attaining zero
at some distance from the source plasma. Finally, Figs.
9(d,f) show that the velocity of both ions increase upon
increasing δ, i.e. for a stronger second ion concentration.
Case 2: For γ > 1, contrary to the previous case (1), we
have considered a large value of γ (γ = 16, e.g. z2 =
z1 and m1 = 16m2), actually inspired by Ref. 60. As
physically expected, the 2nd ion inertia is dominant here.
This is reflected in the plots in Figs. 10(a, b), which
show that the electric field decreases upon increasing δ.
Fig.10(c, e) also shows that the concentration of both
ions decreases slowly with increasing δ. Furthermore,
in Fig. 10(d, f) we see that the velocity now increases

faster for higher δ. This is intuitively expected, since the
first (“principal”) ion fluid accelerates the faster, during
the expansion process, the heavier the secondary ions are
(γ > 1), if the second ion fluid inertia is retained in the
description.

As a final test, we have integrated numerically the full
fluid equations for a small value of the ratio N2/N1 (=
0.1), in order to compare to the analytical solution ob-
tained in Section C above (for N2 ≪ N1). The result,
shown in Fig. 11, could not be more satisfactory: a sim-
ple comparison with Figs. 2 and 5 shows that all variables
are practically identical, in all case, asides a small change
in the densityN2 (due to the inertia of the 2nd fluid being
retained: cf. Fig. 11 and 5. It therefore appears that the
analytical result, obtained by neglecting the secondary
ion inertia, succeeds in capturing the essential features
of the expansion process, for small values of the density
ratio N2/N1. As expected, larger values of N2/N1 (and
of M2/M1) may lead to substantial deviation, however.

The latter considerations, based on Fig. 11, refer to
the cold ion model, and to a given (arbitrary) set of pa-
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rameter values. We have repeated the same procedure
(numerical integration) in a wide range of values, and
are able to assert that the behavior described above is
generic, i.e. valid throughout a wide range of parameters.
(The corresponding plots are here omitted for brevity.)

IV. CONCLUSIONS

Summarizing, we have established an analytical model
to study the self similar expansion of semi infinite multi-
species plasma slab into vacuum. We have taken into ac-
count the effect of the initial temperature of the plasma
slab on the electrostatic field at the plasma slab and vac-
uum interface and on the acceleration of the escape ions
from the slab. Our findings recover earlier results in the
respective limits, in terms of the model parameter values.
We have also studied the effect of a non-Maxwellian

electron distribution on the plasma expansion mecha-
nism, in various cases. The expanding plasma front ap-
pears to be accelerated by the suprathermal electrons
(i.e. for lower values of the superthermality index κ)
more efficiently, as intuitively expected. For infinite κ,
the Maxwellian limit is recovered.
Finally, we have studied the effect of the finite inertia

of the second ion fluid, by integrating the exact system
of equations numerically, for finite (non-negligible) values
of the second-to-first ion density ratio δ, and for different
values of the relative charge-to-mass ratio γ. We have
shown that including the second ion inertia modifies the
analytical result only quantitatively (retaining the gen-
eral qualitative characteristics of the expansion front),
and even more so for heavier secondary ions, as physi-
cally expected.

The analytical model employed in our study certainly
has its limitations and possible shortcomings. Clearly,
the self similar solution is a special solution of the fluid
equations and it does not allow for a detailed character-
ization of the entire process. The self similar solution
is worthy and useful in its own merit for the descrip-
tion of the plasma expansion in a simple and analytically
tractable way. Numerical simulations suggest that, with
the passage of time, the expanding plasma profile ap-
proaches the form provided by the self-similar methodol-
ogy [25, 34, 62, 63]. Furthermore, we have assumed that
the electron temperature remains constant throughout
the plasma expansion process. This is adopted as an ad
hoc assumption in our study, for the sake of tractability.
This hypothesis may be questioned by meticulous inter-
pretation of (e.g. PIC) plasma simulations. The latter,
though imposed, goes beyond our scope in this study.

Our results are important in various physical situa-
tions involving plasma expansion, including ion accel-
eration applications for medical purposes, astrophysical
situations and laser-assisted fusion schemes. PIC sim-
ulations [19–21] should be undertaken in the future, to
corroborate our results.
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