
On the characteristics of obliquely propagating electrostatic structures in
non-Maxwellian plasmas in the presence of ion pressure anisotropy

Muhammad Adnan1,, Anisa Qamar2, Shazhad Mahmood3 and Ioannis Kourakis4

1Department of Physics,
Kohat University of Science & Technology (KUST), Kohat, Pakistan

2Department of Physics, University of Peshawar,
Peshawar 25000, Pakistan

3 Theoretical Physics Division (TPD),
PINSTECH P.O. Nilore Islamabad 44000 Pakistan

4 Department of Physics and Astronomy,
Centre for Plasma Physics, Queen’s University Belfast,

BT7 1NN Northern Ireland, United Kingdom

(Dated: Submitted 30 October 2016; accepted 2 March 2017; to appear in Physics of Plasmas)

The dynamical characteristics of large amplitude ion-acoustic waves are investigated in a mag-
netized plasma comprising of ions presenting space asymmetry in the equation of state and non-
Maxwellian electrons. The anisotropic ion pressure is defined using the double adiabatic Chew-
Golberger-Low (CGL) theory. An excess in the superthermal component of the electron population
is assumed, in agreement with long-tailed (energetic electron) distribution observations in space
plasmas; this is modeled via a kappa-type distribution function. Large electrostatic excitations are
assumed to propagate in a direction oblique to the external magnetic field. In the linear (small am-
plitude) regime, two electrostatic modes are shown to exist. The properties of arbitrary amplitude
(nonlinear) obliquely propagating ion-acoustic solitary excitations are thus investigated via a pseu-
domechanical energy balance analogy, by adopting a Sagdeev potential approach. The combined
effect of the ion pressure anisotropy and excess superthermal electrons is shown to alter the param-
eter region where solitary waves can exist. An excess in suprathermal particles is thus shown to
be associated with solitary waves which are narrower, faster, and of larger amplitude. Ion pressure
anisotropy, on the other hand, affects the amplitude of the solitary waves, which become weaker (in
strength), wider (in spatial extension) and thus slower, in comparison to the cold ion case.
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I. INTRODUCTION

The occurrence of excess energetic electrons is a com-
mon feature in laboratory and space plasma environ-
ments in the ionosphere, the auroral zone, the meso-
sphere, the lower thermosphere and elsewhere [1–4]. A
non-Maxwellian electron distribution, featuring an excess
in the superthermal component, is often found e.g. in
Space observations, where a long tail in the energy re-
gion indicates deviation from the Maxwellian behavior.
The so called kappa (κ) or generalized Lorenzian veloc-
ity distribution function is often employed to model such
situations. The kappa (κ) distribution was first postu-
lated by Vasyliunas in 1968 [1] to model solar wind data,
and was later adopted by many researchers in various
physical settings. A brief review of the different forms
of kappa distribution applying to various physical sce-
narios can be found in Refs. 5-6. Application of kappa
distributions include: fitting and interpretation of ob-

servations in the earth’s foreshock (for 3 < κ < 6) [7]
and of coronal electrons in solar wind models (satisfy-
ing 2 < κ < 6) [8, 9]. In the laboratory, a superthermal
electrons are also observed in laser matter interactions or
in experimental studies of plasma turbulence [10]. Var-
ious theoretical investigations have by now established
the theoretical background of non-Maxwellian distribu-
tions, which seem to arise as an ubiquitous characteristic
of nature [6, 11]. This is clearly a growing area of study
in plasma physics.

The three-dimensional isotropic kappa velocity distri-
bution function reads [5]

fκ(v) =
n0

(πκθ2)3/2

Γ(κ+ 1)

Γ(κ− 1/2)

(
1 +

v2

κθ2

)
,

where κ is the spectral index, measuring the slope of
the energy spectrum of the superthermal electrons at
the tail of the distribution function: lower values of
κ represent higher concentrations of superthermal elec-
trons in the tail of the distribution function (recall that
κ > 3/2 should hold for a physically valid solution) [5].
In the latter formula, we have defined the Gamma func-
tion Γ(x) and the equilibrium particle (number) den-
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sity n0. The κ−dependent (modified) thermal speed in
the presence of superthermal electrons is here denoted
by θ = [(κ − 3/2)/κ]1/2 (2kBTe/me)

1/2 (the Boltzmann
constant is denoted by kB as usual). In the limit κ
→ ∞, the above distribution function reduces to the
Maxwellian limit, with the average electron speed be-
ing vte = (2kBTe/me)

1/2. A comprehensive literature
review on supethermal electrons can be found in Refs.
12-13 (also see various references cited therein).

Assuming a collisionless regime, the presence of a
strong magnetic field makes the plasma anisotropic, i.e.,
dynamical behavior differs in the parallel and perpendic-
ular direction(s), relative to the external magnetic field
[14]. The Chew-Goldberger-Low (CGL) theory [15], also
known as the double adiabatic theory, applies to such
anisotropic plasma, provided that no coupling exists be-
tween the parallel and perpendicular degrees of freedom
[16]. In such plasmas, one needs to separate the equa-
tions of state, i.e. to evaluate the ion pressure, viz. p‖,i
and p⊥,i, where p‖,i and p⊥,i) denote the parallel and
perpendicular, respectively, ionic pressure relative to the
ambient magnetic field. In isotropic plasma, strong cou-
pling between the parallel and perpendicular directions,
due to wave-particle interaction [17, 18], leads to a sim-
plified description, hence two separate equations of state
are not necessary.

In space plasmas, there are physical regimes where
magnetic compression and/or expansion processes gen-
erate plasma convection. Magnetic compression leads to
an increase in the perpendicular temperature T⊥ of the
particles, while expansion is associated with a decrease
in the parallel temperature T‖ [17]. These changes result
in temperature anisotropy, i.e., T⊥i/T‖i 6= 1. One may
find examples of stream-stream (fast and slow streams of
charged particles) interactions in the solar wind, sunward
flow in the terrestrial and planetary magnetotails and
magnetosheath flow around the terrestrial and planetary
magnetosphere [17] within the above mentioned physical
situations.

Temperature anisotropy is ubiquitous in space obser-
vations in a variety of environments, such as in the Solar
corona, the solar wind, the ionosphere and the Earth’s
magnetosphere, with typical plasma parameters in the
order of e.g. n ≈ 107 − 1012m−3, T ≈ 102 − 107K and
temperature anisotropy in the range of 0.05 ≤ T ⊥ /T‖ ≤
24 [17, 19]. For instance, the data for the outer Solar
Corona [19] obtained from the SOHO (Solar and Helio-
spheric Observatory) showed that the velocity distribu-
tion function is practically isotropic at about 1.8 solar
radii (1Rs = 6.9 × 108m) and becomes anisotropic be-
yond that distance. Similarly, data for the solar wind
[20, 21] obtained from different spacecraft, such as He-
lios I, Cluster II and Ulysses, have shown evidence of
anisotropy in those regions, suggesting that the core pop-
ulation of the solar wind cannot be modelled via the
usual Maxwellian particle distribution function. In laser-
plasma interaction experiments, the incident high energy
laser beam can produce a strong anisotropy in the formed

plasma temperature. This is due to the fact that the
formed plasma is predominantly heated in the direction
of the laser wave electric field [22, 23]. Our work at hand
is also motivated by a series of magnetosheath observa-
tions made by instruments onboard the AMPET/CCF
and AMPET/IRM spacecraft missions, as described in
Denton et al [17], and also independently by Seough et
al [24, 25].

Ion pressure anisotropy in magnetized plasmas has
been shown to bear significant effect on the propaga-
tion characteristics of ion-acoustic solitary structures
[26]. The characteristics of linear modes occurring in
anisotropic plasma have been studied by Gedalin [27] and
Gebretsadkan and Kalra [28] using magnetohyrodynam-
ics (MHD) in the framework of CGL theory. They related
their results to astrophysical features such as cosmic rays
and pulsar winds. Similarly, nonlinear solitary waves in
magnetized plasma have been studied by Chatterjee et al
[29] by adopting the Sagdeev pseudopotential approach.
Considering Poisson’s equation, rather than the neutral-
ity condition (plasma hypothesis), they have obtained a
set of conditions for solitary wave existence, and have
discussed the shape and speed of the solitary waves.

Choi et al [18, 30, 31] have extended earlier studies to
cover obliquely propagating ion acoustic solitary waves,
with respect to the ambient magnetic field. Recently,
Adnan et al [26] applied the CGL theory to study linear
waves and (small-amplitude) nonlinear ion-acoustic soli-
tary structures in non-Maxwellian plasmas, by adopting
the Zakharov-Kuznetsov equation paradigm. The sta-
bility of such solitonic structures was also addressed in
that study, in the framework of the CGL theory. In this
article, we present a comprehensive study of nonlinear
wave characteristics, by taking into account the com-
bined effect of electron supethermality and ion pressure
anisotropy. The Sagdeev potential methodology will be
adopted, while the plasma neutrality hypothesis (plasma
approximation) will be assumed to hold, for analytical
tractability and simplicity. This work can be viewed as
an extension of earlier work [18, 26], beyond the standard
isotropic plasma hypothesis.

The structure of this article goes as follows. In the
next Section II, we present the basic model equations. In
Section III, the characteristics of linear waves are briefly
summarized. In Section IV, a nonlinear analytical frame-
work for modeling large-amplitude electrostatic excita-
tions is presented. In Sec. V, a set of existence conditions
for electrostatic pulses (solitons) is established. In Sec.
VI, a parametric investigation is carried out, to trace the
influence of the wave characteristics on various intrinsic
plasma parameters. Finally, our results are summarized
in the concluding Section VII.

II. MODEL EQUATIONS

We consider the propagation of electrostatic waves in
a magnetized plasma, consisting of hot ions character-
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ized by pressure anisotropy with respect to the direction
of the ambient magnetic field. Particle collisions are ne-
glected throughout this study. For the ionic pressure,
we have adopted the adiabatic or Chew-Golberger-Low
(CGL) description [15]. A superthermal electron popu-
lation is assumed to exist, associated with a presumed
long-tailed distribution here modelled as a kappa distri-
bution. The ambient magnetic field is taken to be uni-
form, for simplicity, and assumed to be along the x̂-axis
i.e. B = B0x̂.

The ion fluid equations in the presence of ion pressure
anisotropy read:

∂tni +∇ · (nivi) = 0 (1)

and

∂tvi+(vi · ∇)vi =
Ze

mi
E +

Ze

mic
(vi ×B0x̂)− 1

mini
∇·P̃i .

(2)
The presence of a strong external magnetic field B0

makes the plasma anisotropic, hence its behavior is dif-
ferent in the parallel and perpendicular direction(s). The

pressure tensor, P̃i, splits into a parallel (p‖i) and a per-
pendicular (p⊥i) component and takes the form [17, 26]:

P̃i = p⊥iÎ +
(
p‖i − p⊥i

)
b̂ b̂ , (3)

where Î is the unit tensor and b̂ is the unit vector along
the external magnetic field. The parallel and perpendic-
ular ionic pressure functions are given, respectively, by
[17, 26]:

p‖i = p‖i0

(
ni
ni0

)3

and p⊥i = p⊥i0

(
ni
ni0

)
, (4)

where p‖i0= ni0kBTi‖ and p⊥i0= ni0kBTi⊥ obviously
represent the equilibrium values of the parallel and per-
pendicular pressure, respectively. In the isotropic case,
the two components coincide, viz. p⊥i = p‖i, hence the

model reduces to ∇ · P̃i = ∇pi.
For the electron number density, we have adopted the

kappa distribution function:

ne = ne0

[
1− eφ

kBTe(κ− 3/2)

]−κ+1/2

. (5)

It is important to mention here that the formulation of
the kappa distribution in the presence of a potential en-
ergy may incorporate φ−〈φ〉 (rather than φ), as described
in Ref. 32. Importantly, in our case 〈φ〉/kBTe � 1 (as,
in fact, 〈φ〉 = 0), hence Eq. (5) holds.

Where κ is the spectral index, measuring the slope of
the energy spectrum of the electrons at the tail of the
distribution function. It suffices to retain, qualitatively
speaking, that the smaller the value of κ the stronger the
superthermal (energetic) electron concentration in the
superthermal region of the distribution function. One
recovers the Maxwellian limit upon setting κ→∞.

We assume that the spatial variation in the electro-
static potential is slow, and essentially occurs on a scale
beyond the Debye sphere, i.e. k2λ2

D,e � 1, where

λDe =
(
kBTe/4πne0e

2
)1/2

is the (electron) Debye ra-
dius. Accordingly, we have adopted the plasma approx-
imation (charge neutrality hypothesis) in our model, by
closing the algebraic system of fluid equations by setting
ni ' ne (at all times). Obviously, charge neutrality at
equilibrium requires ni0 = ne0.
a. Fluid evolution equations. For simplicity, we have

assumed that any excitation off equilibrium evolves and
propagates in the xy-plane only, viz. ∂/∂z = 0, with
no loss of generality. The above system of equation thus
takes the form:

∂tni + ∂x (nivix) + ∂y (niviy) = 0, (6)

∂tvix + (vix∂x + viy∂y) vix = − e

mi
∂xφ−

3p‖i0

min3
0

ni∂xni,

(7)

∂tviy+(vix∂x + viy∂y) viy = − e

mi
∂yφ+Ωiviz−

p⊥i0
min0ni

∂yni,

(8)

∂tviz + (vix∂x + viy∂y) viz = −Ωiviy, (9)

and

ni ' ne = ne0

[
1− eφ

Te(κ− 3/2)

]−κ+1/2

(10)

Here, the quantities e, mi, ne, ni, and φ represent the
electronic charge, ion mass, electron fluid density, ion
fluid density and electrostatic potential respectively. The
ion gyro-frequency is defined by Ωi = eB0

mic
while vix, viy,

and viz denote the fluid velocity components. Note that
the ionic charge state has been set equal to unity, i.e.
Zi = 1, everywhere.
b. Scaling. We shall rely in the following on a nor-

malized form of the above equations:

∂tni + ∂x (nivix) + ∂y (niviy) = 0, (11)

∂tvix + (vix∂x + viy∂y) vix = −∂xΦ− P‖ni∂xni, (12)

∂tviy + (vix∂x + viy∂y) viy = −∂yΦ + Ωviz −
P⊥
ni
∂yni,

(13)

∂tviz + (vix∂x + viy∂y) viz = −Ωviy (14)

and

ni ' ne =

[
1− Φ

(κ− 3/2)

]−κ+1/2

. (15)

In the latter system of equations, the number den-
sity variables nj (for species j = e, i) have been scaled
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by the equilibrium ion density ni0, the electrostatic po-
tential φ by (Te/e), while the ion fluid speed (vector
components) have been normalized by the ion sound

speed cs = (Te/mi)
1/2

. The space and time variables
are normalized by the electron Debye radius λDe =(
kBTe/4πne0e

2
)1/2

and the inverse ion plasma frequency

ω−1
pi =

(
mi/4πni0e

2
)1/2

, respectively. In the above re-
lations, the dimensionless parameter Ω denotes the ratio

Ω = Ωi
ωpi

, while P‖ =
3p‖i0
ni0Te

and P⊥ = p⊥i0
ni0Te

express the

relative strength of the pressure, normalized by the ther-
mal pressure in the respective directions.

III. LINEAR DISPERSION RELATION

One may assume small-amplitude harmonic perturba-
tions in the form ∼ ei(kxx+kyy−ωt) i.e., by Fourier ana-

lyzing Eqs.(11-15). The wavenumbers in the directions
parallel (perpendicular) to the magnetic field are respec-
tively denoted by kx (ky), so that k2

x+k2
y = k2. One thus

obtains a dispersion relation (DR) linear wave propaga-
tion in the form:

1 =

(
κ− 3/2

κ− 1/2
+ P‖

)
k2
x

ω2
+

(
κ− 3/2

κ− 1/2
+ P⊥

)
k2
y

ω2 − Ω2
.

(16)
One notices immediately the explicit dependence of ion
pressure anisotropy on the DR, via P‖ and P⊥ (recall

that these were defined above as P‖ =
3p‖i0

ni0kBTe
and

P⊥ = p⊥i0
ni0kBTe

, respectively). Furthermore, the mag-

netic field appears through the (cyclotron- to plasma-)
frequency ratio Ω, while the effect of electron superther-
mality enters into play through κ. Equation(s) (16) can
be expressed as

ω2
± =

1

2

(κ− 3/2

κ− 1/2
k2 + P‖k

2
x + P⊥k

2
y + Ω2

)
±

√(
κ− 3/2

κ− 1/2
k2 + P‖k2

x + P⊥k2
y + Ω2

)2

− 4

(
κ− 3/2

κ− 1/2
+ P‖

)
Ω2k2

x

 ,
(17)

suggesting that two branches occur, ω+ and ω−, corre-
sponding to a fast and a slow electrostatic mode, respec-
tively. In the following, we shall discuss some of the re-
sulting limiting cases and their properties, for later ref-
erence.

a. Parallel propagation. The dispersion relation for
parallel-propagating electrostatic waves in a warm mag-
netized plasma with superthermal electrons can be ob-
tained by setting, ky −→ 0 (thus kx = k) in equation
(17), as

ω2
−(k) =

(
κ− 3/2

κ− 1/2
+ P‖

)
k2. (18)

Note that neither the magnetic field strength Ω nor the
ion perpendicular pressure P⊥ contribute to the above re-
lation. The phase speed (essentially, the sound speed) in
the direction parallel to the magnetic field is thus readily
obtained as

vph =

(
κ− 3/2

κ− 1/2
+ P‖

)1/2

. (19)

IV. LARGE ELECTROSTATIC EXCITATIONS

In this section, we shall investigate the existence of
large (arbitrary amplitude) solitary waves, in the pres-
ence of ion pressure anisotropy, in non-Maxwellian plas-
mas. In order to obtain a solitary wave solution for

equations (11-15), we introduce a moving variable ξ =
αx + βy −Mt, where M = V

cs
is the normalized pulse

velocity (with V denoting the soliton speed). The pa-
rameters α and β here denote the directional cosines
along the x and y directions, i.e., α = kx/k = cosθ and
β = ky/k = sinθ (viz., α2 + β2 = 1.)

Assuming that all fluid variables in evolution equations
(11-15) depend on ξ, one is led to a set of coupled ordi-
nary differential equations in the co-moving co-ordinate
ξ. The transformed equations read:

−M dni
dξ

+ α
d(nivix)

dξ
+ β

d(niviy)

dξ
= 0, (20)

(−M + αvix + βviy)
dvix
dξ

+α
dΦ

dξ
+αP‖ni

dni
dξ

= 0, (21)

(−M + αvix + βviy)
dviy
dξ

+β
dΦ

dξ
−Ωviz+βP⊥

1

ni

dni
dξ

= 0,

(22)

(−M + αvix + βviy)
dviz
dξ

+ Ωviy = 0. (23)

Integrating the above set of Eqs. (20-23) with appro-
priate boundary conditions i.e., ni → 1, vix,y → 0 and
Φ→ 0, at ξ → ±∞, and adopting the neutrality approx-
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imation, viz. ni ' ne = n, we obtain

(αvx + βvy) = M

(
n− 1

n

)
,

(24)

vx =
α

M

{
−1 +

∫
ndΦ +

1

3
P‖
(
n3 − 1

)}
,

(25)

vy =
M

β

(
1− 1

n

)
− α2

Mβ

{
−1 +

∫
ndΦ +

1

3
P‖
(
n3 − 1

)}
.

(26)

For simplicity, we have dropped the subscript i in writing
down the above equations. After a lengthy algebraic ma-
nipulation, one can obtain the following relation [33–35]

d2S

dξ2
=

d2

dξ2

[
Φ +

M2

2

(
1− Φ

κ− 3/2

)2κ−1

+
α2P‖

2

(
1− Φ

κ− 3/2

)−2κ+1

+ β2P⊥ ln

(
1− Φ

κ− 3/2

)−κ+1/2
]

= F (Φ),

(27)
where the function S represents the quantity in the square brackets, and F (Φ) is given by

F (Φ) = Ω2

[(
1 +

α2

M2

)(
1− Φ

κ− 3/2

)−κ+1/2

− 1− α2

M2

(
1− Φ

κ− 3/2

)−2κ+2

+
α2

3M2
P‖

(
1− Φ

κ− 3/2

)−κ+1/2
{

1−
(

1− Φ

κ− 3/2

)−3κ+3/2
}]

. (28)

Multiplying both sides of equation (27) by dS/dξ and
integrating once, we obtain a pseudo-energy-conservation
condition in the form:

1

2

(
dΦ

dξ

)2

+ Ψ(Φ,M, κ, P‖, P⊥) = 0, (29)

where

Ψ(Φ,M, κ, P‖, P⊥) = Ω2 Ψ1(Φ,M, κ, P‖, P⊥)

Ψ2(Φ,M, κ, P‖, P⊥)
(30)

is a “pseudopotential” function, with Ψ1(Φ,M, κ, P‖, P⊥)
and Ψ2(Φ,M, κ, P‖, P⊥) given by:



6

Ψ1(Φ,M, κ, P‖, P⊥) =

(
1 +

α2

M2

)[
1−

(
1− Φ

κ− 3/2

)−κ+3/2
]
− M2

2

[
1−

(
1− Φ

κ− 3/2

)2κ−1
]

+

[
1− α2

(
κ− 1/2

κ− 3/2

)
Φ

]
+
(
M2 + α2

) [
1−

(
1− Φ

κ− 3/2

)κ−1/2
]
− α2

2M2

[
1−

(
1− Φ

κ− 3/2

)−2κ+3
]

+P‖

{
α2

3M2

[
1−

(
1− Φ

κ− 3/2

)−κ+3/2
]
− α2

12M2

(
κ− 3/2

κ− 3/4

)[
1−

(
1− Φ

κ− 3/2

)−4κ+3
]

−α
2

3

(
1− Φ

κ− 3/2

)κ−1/2
[

1−
(

1− Φ

κ− 3/2

)−3κ+3/2
]

+

(
1 +

α2

M2

)
α2

3

[
1−

(
1− Φ

κ− 3/2

)−3κ+3/2
]

− α4

4M2

(
κ− 1/2

κ− 3/4

)[
1−

(
1− Φ

κ− 3/2

)−4κ+3
]

+
α4P‖

9M2

[
1−

(
1− Φ

κ− 3/2

)−3κ+3/2
]

−
α4P‖

18M2

[
1−

(
1− Φ

κ− 3/2

)−6κ+3
]}

+ P⊥

{(
1 +

α2

M2

)
β2

[
1−

(
1− Φ

κ− 3/2

)−κ+1/2
]

−β2 log

(
1− Φ

κ− 3/2

)κ−1/2

− α2β2

2M2

(
κ− 1/2

κ− 1

)[
1−

(
1− Φ

κ− 3/2

)−2κ+2
]}

−
α2β2P‖P⊥

3M2

{[
1−

(
1− Φ

κ− 3/2

)−κ+1/2
]
− 1

4

[
1−

(
1− Φ

κ− 3/2

)−4κ+2
]}

and

Ψ2(Φ,M, κ, P‖, P⊥) =

[
1−M2

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)2κ−2

+ P‖α
2

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)−2κ

+P⊥β
2

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)−1
]2

.

The main steps of the tedious derivation of equation (29)
are provided in the Appendix.

Equation (29), admits solitary wave solutions, pro-
vided that the following requirements are fulfilled:

1. The pseudopotential function Ψ(Φ,M, κ, P‖, P⊥)
attains a maximum value at the origin, viz. Ψ(Φ =

0) = 0, dΨ
dξ |Φ=0 and d2Ψ

dξ2 |Φ=0 < 0;

2. A (one, at least) nonzero root occurs, e.g. at Φ =
Φm (here the subscript “m” may either stand for
‘min’ or for ‘max’ ), so that Ψ(Φm,M) = 0 holds.

The sign of the root (Φm) determines the polarity of
the potential pulse: if Φm < 0, hence Ψ(Φ) is negative
in the interval 0 < Φ < Φm; similarly, if Φm > 0, then
Ψ(Φ) is positive in the interval Φm < Φ < 0.

In the following, we shall demonstrate the above con-
ditions, analytically and graphically.

V. SOLITON EXISTENCE CONDITIONS

In this section, we will discuss the properties of the
Sagdeev-type pseudopotential Ψ(Φ,M, κ, P‖, P⊥), in or-
der to determine the existence domain for localized non-
linear structures to occur, in terms of the various relevant
parameters.

The local maximum of the function Ψ(Φ,M, κ, P‖, P⊥)
at the origin (Φ = 0) defines the equilibrium state. It is
straightforward to show that the conditions Ψ(Φ = 0) =
dΨ
dξ |Φ=0 = 0 hold, based on Eq. (30). Investigating the

condition d2Ψ
dξ2 |Φ=0 < 0, one defines a region of velocity

values where nonlinear excitations may exist [38]. Adopt-
ing the methodology presented in Refs. 34 and 35, the
latter condition takes the form of the requirement:

d2Ψ

dξ2
|Φ=0 = Ω2 M2 −M2

1

M2(M2 −M2
2 )

< 0, (31)

with

M1 = |α|
(
κ− 3/2

κ− 1/2
+ P‖

)1/2

≤ 1 (32)
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and

M2 =

(
κ− 3/2

κ− 1/2
+ α2P‖ + (1− α2)P⊥

)1/2

. (33)

It is obvious from Eq. (32) that the lower Mach num-
ber (threshold) M1 is independent from the perpendic-
ular pressure P⊥, while the upper Mach number M2 on
the other hand depends on both P‖ and P⊥. Notice that,
upon setting α = 1 (in account for parallel propagation),
both expressions reduce to the phase speed obtained in
(19) above.

Equation (31) is satisfied for Mach number values in
the interval

M1 < M < M2, (34)

i.e.,

α <
M

M2
< 1, (35)

with straightforward interpretation, recalling that α =
cos θ ≤ 1 is defined as a directional cosine. As expected,
the expressions for M1 and M2 recover precisely the re-
sults of Refs. 34 and 35 in the limit(s) of cold ion plasma
and isotropic plasma, respectively. It is also important
to point out here, for rigor, that our results are valid in
the long wavelength limit (since the neutrality hypothesis
was adopted, rather than Poisson’s equation) and there-
fore one cannot recover the results by Saini et al [36] in
unmagnetized superthermal electron-ion plasma.

A qualitative discussion is in row at this point, for the
sake of rigor. First, let us recall that soliton-like pulses
predicted via the pseudopotential method [38] are always
superacoustic (supersonic), i.e. they propagate at a speed
that exceeds the true acoustic speed (for a given plasma
configuration) [39], namely here given by Eq. (19). This
is a (physically expected) algebraic consequence of the
curvature requirement (at the origin), discussed above
[39]. Upon inspection of Eq. (32), one might be tempted
to argue that the “supersonic soliton” requirement is vi-
olated in our case. However, recalling that we are here
focusing on oblique pulse propagation (with respect to
the direction of the magnetic field), it turns out that the
supersonic requirement is precisely expressed as M > M1

[cf. Eq. (32)], since M1 essentially accounts for the
sound speed projection (vector component) in the direc-
tion of the magnetic field. Furthermore, it is stressed that
this model is valid only for oblique propagation, strictly
speaking. In other words, either taking α = 1, in account
of parallel propagation, or setting Ω = 0, one does not
recover the known Sagdeev-theory based results in the
unmagnetized case. The reason for this is that the neu-
trality hypothesis was adopted herewith, which cannot
be satisfied (i.e., is violated) in the parallel propagation
model. These apparent contradictions have also briefly
been discussed in Ref. 34.

In order to gain some physical intuition in the problem,
we have depicted the existence region for solitary waves,

that is the area bounded by the lower and upper Mach
number limits, M1 and M2, defined above. In figure 1(a),
the Mach number range is depicted versus the superther-
mality parameter κ, for different values of (the oblique-
ness cosine) α, in the case when ion parallel pressure is
great than the ion perpendicular pressure. One can see
that both critical values (M1 and M2) increases with κ,
and in fact attain a constant value for high κ, as expected
(recalling that large κ essentially accoutn for Maxwellian
electrons). These asymptotic values clearly depend of the
considered value of α. It is evident on the graphs that
the lower Mach number (threshold) M1 increases with α,
while the upper limit M2 is practically independent from
α. Therefore, the soliton existence range shrinks with
larger deviation from the magnetic field direction, while
at the same time it shifts towards higher values. Similar
results are obtained and depicted in Figure 1(b), in the
case when the perpendicular ion pressure is greater than
the parallel ion pressure. In Fig. 1(c), we have plotted
the Mach number region against the parallel pressure P‖
with different values of the perpendicular ion pressure
P⊥. One sees that the values of both lower and upper
Mach numbers increase with the parallel ion pressure for
a specific value of P⊥. Increasing the perpendicular pres-
sure essentially leads to an increase in M2. On the other
hand, M1 does not on P⊥, as evident from equation 32.
In an analogous manner, we have plotted M1,2 against
P⊥ under the effect of the parallel ion pressure in Fig-
ure 1(d). Here, both the upper and lower Mach number
(critical values) vary with P‖; however, since the lowest
Mach number is independent from the ion perpendicu-
lar pressure, the curve representing M1 (Mach number
threshold) versus P⊥ is horizontal, that is, constant (re-
gardless of the value of P⊥).

VI. PARAMETRIC INVESTIGATION

In this section, we shall investigate the dependence of
the pseudopotential function Ψ(Φ) on various relevant
plasma parameters (M,κ, P‖, P⊥, α,Ω).

A. Effect of superthermality

The effect of superthermal electrons on the propaga-
tion characteristics of nonlinear ion acoustic waves has
been studied by Saini et al [36] and by Sultana et al
[34] for unmagnetized and magnetized plasma, respec-
tively. It has been shown that smaller values of the su-
perthermality parameter κ (i.e., larger deviation from
Maxwellian equilibrium) enhances solitary waves. Re-
cently, Singh et al [35] confirmed the same qualitative
result in the warm ion fluid model. Elaborating on
those earlier works, we have investigated the effect of su-
perthermality on the propagation of ion acoustic waves
in the presence of ion temperature anisotropy. Our re-
sults are in agreement with all known previous works
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[34–36] in the appropriate limiting cases. We observe
that lower values of κ lead to an increase in the ampli-
tude of the soliton, which is more localized in space and
also steeper, as shown in Figure 2. Considering weak
obliqueness with respect to the direction of the magnetic
field (in view of the electrostatic approximation [37]), and
tracing the effect of superthermality on the wave dynam-
ics, one notices that the allowed interval is wider, as P⊥
varies, whereas P‖ determines a shorter range of values
satisfying the boundary conditions; the existence region
is therefore less sensitive to changes in the parallel pres-
sure component P‖.

B. Effect of Mach number

In Figure 3, we have depicted the Sagdeev potential
form and the resulting electrostatic potential and elec-
tric field (disturbances), for various values of the Mach
number M , keeping the remaining plasma parameters
fixed. One sees in Figure 3 that, as M increases, the am-
plitude and depth of the pseudopotential well increases,
hence structures with large M value (within the region
M1 < M < M2) are taller and sharper. This is in agree-
ment with Ref. 34. Upon simple comparison with Fig. 7
in Ref. 34, one notices a similar behavior, although the
predicted pulses (solitons) are now smaller in both ampli-
tude and width: this is due to ion pressure (anisotropy)
effect.

C. Effect of magnetic field

The effect of the magnetic field on the characteristics
of solitary waves can be traced through the (cyclotron-
to plasma-) frequency ratio Ω. It is quite evident from
Figure 4 that the amplitude of the soliton is independent
from Ω, although the depth of the Sagdeev pseudopo-
tential well (but not its root) increases with stronger
magnetic field (larger Ω). This means that solitons in
stronger magnetic fields are steeper and sharper in form.
Another important aspect to recall here is that the soli-
ton existence region (velocity range), as discussed in the
previous Section, is essentially independent of Ω.

D. Effect of Obliqueness

We have also investigated the effect of the propagation
direction (via the angle cosine α) on the ion acoustic
wave characteristics. It is important to keep the angle
small (i.e., the cosine value α = cosθ large), in order to
preserve the validity of the electrostatic approximation,
as argued by Verheest [37]. We found that, for a fixed set
of plasma (configurational) parameter and Mach number
M values, increasing the value of α leads to a decrease in
the soliton amplitude and also in the (depth and root of)
the Sagdeev potential form, as shown in Figure 5. This

is an expected qualitative result, since the Mach number
threshold M1 decreases for larger obliqueness (cf. Figure
1), hence a given M value exceeds M1 even further and
hence leads to an increased (since “more supersonic”)
pulse amplitude.

E. Effect of Ion pressure anisotropy

To demonstrate the effect of pressure anisotropy on the
solitary waves, we have drawn the Sagdeev pseudopoten-
tial along with the corresponding electrostatic electric
field perturbations, for fixed values of the plasma param-
eters, such that κ = 3,M = 0.7, α = 0.7, P⊥ = 0.01 and
P‖ = 0.03, 0.06, 0.09: note the green, blue and red curves
respectively, in Figure 6 . We have found that, upon as-
suming larger values of α (i.e., 0.7, 0.8, 0.9), the effect
of ion pressure P‖ is more effective (i.e., a small change
in P‖ leads to larger changes in Ψ(Φ)); an increase in
the parallel pressure P‖ thus leads to a decrease in the
pulse (soliton) amplitude, as shown in Figure 6. A simi-
lar result is obtained for the perpendicular ion pressure.
Similarly, in Figure 7, we have considered three different
cases, namely, P‖ > P⊥, P‖ < P⊥ and P‖ = P⊥ = 0.
We see that the characteristics of ion acoustic pulses are
more sensitive to variations of the parallel ion pressure
(P‖) rather than its perpendicular counterpart (P⊥). An-
other important feature of Figure 7 is that, in general,
the ion thermal pressure reduces both the amplitude and
the width of electrostatic pulses.

VII. CONCLUSIONS

We have investigated the nonlinear properties of arbi-
trary amplitude ion-acoustic excitations (solitary waves),
propagating in a magnetized plasma characterized by
anisotropic ions and by kappa-distributed electrons. In
the linear regime, we have obtained two modes, corre-
sponding to the magnetized ion-acoustic and to the ion-
cyclotron modes, whose characteristics depend on the
(superthermal) electron distribution and on the pressure
anisotropy of the ions. In the nonlinear regime, the prop-
erties of arbitrary amplitude obliquely propagating ion-
acoustic solitary waves were studied via a Sagdeev pseu-
dopotential approach, based on a pseudo-mechanical en-
ergy balance analogy.

A parametric analysis has led to a number of qualita-
tive conclusions, which we summarize in the following.
First of all, the soliton existence region, in terms of the
permitted Mach number values, is delimited by two ex-
treme values, i.e. in the interval (M1,M2. This interval
reduces in size with smaller values of κ (i.e., for a stronger
deviation from the Maxwellian state), while a constant
(saturation) value is attained at higher κ (i.e., for a given
value of the directional cosine, expressed via the param-
eter α in our model. Similarly, the soliton Mach num-
ber range decreases with stronger obliqueness (deviation
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from the direction parallel to the ambient magnetic field),
while at the same time it shifts towards higher values.

Both lower and upper Mach number critical values in-
crease with the parallel (ion) pressure P‖, for a specific
value of P⊥. The perpendicular (ion) pressure P⊥ only
affects the upper Mach number, while the lower Mach
number (threshold) M1 is essentially independent of P⊥.

We have observed that by decreasing the superthermal-
ity parameter κ (i.e. for stronger superthermality, i.e. a
stronger deviation from the Maxwellian) the pulse am-
plitude increases significantly, hence solitary waves are
more localized and steeper, due to energetic electrons.

It was also found that, considering faster pulses, i.e.
as M increases, both the amplitude and depth of the
pseudopotential well increase; therefore, structures with
larger M (within the interval M1 < M < M2) are ex-
pected to be taller and sharper (narrower).

The amplitude of the soliton turns out to be indepen-
dent from the magnetic field (strength), expressed via
Ω, which nonetheless affects (increases) the depth of the
Sagdeev potential well, which increases with larger Ω.
The potential pulse’s shape will therefore depend on the
magnetic field (wider for stronger Ω), but not its ampli-
tude.

Finally, the characteristics of electrostatic solitary
waves are more sensitive to the parallel (ion) pressure
component P‖ than to its perpendicular counterpart P⊥.

It may be added, for rigor, that we haven’t considered
the actual mechanism of soliton generation, but rather,
we have focused on the conditions for their existence in-
stead. It is a standard working hypothesis that nonlinear
modes (like pulse solitons, here) occurring in integrable
media represent in some sense “normal modes” for the
given physical system. If these may exist in certain phys-
ical conditions (hence our interest in their conditions for
existence), then an amount of energy launched in the
plasma, in the form e.g. of a localized lump of electro-
magnetic energy, or a local disturbance of the electro-
static potential, will evolve into a series of solitons. This
scenario, however hypothetical, is corroborated by abun-
dant observations in Space plasmas.

It may be pointed out that we have employed the
same physical (plasma-fluid) model in our earlier inves-
tigation of electrostatic solitary waves in Ref. 26. The
methodology adopted in that study is distinct from the
pseudopotential analysis followed herein: as a matter
of fact, the Zakharov-Kuznetsov (ZK) perturbative ap-
proach employed in Ref. 26 is only valid in the small-
amplitude approximation, and for weakly superacoustic
pulses. The tedious Sagdeev-type analysis adopted here,
relies on the neutrality hypothesis, but is otherwise unre-
stricted in (arbitrary) pulse amplitude and in the range
of values for the velocity. In this sense, the work at hand
extends and generalizes the results of Ref. 26.

Our results should provide a good qualitative descrip-
tion of the dynamics of solitary waves, as these are ob-
served in various space and astrophysical environments
characterized by strong magnetic fields. This is particu-

larly relevant in the magnetosphere and near Earth mag-
netosheath [17, 18], where a non-thermal (energetic) elec-
tron distribution and ion pressure anisotropy can simul-
taneously occur [19–21].

APPENDIX A: DERIVATION OF EQS. (27)-(29)

We present here the most important steps in deriving
the Sagdeev-type potential equation. Substituting Eq.
(24) in equation (22) and (23), we have obtained

−M
ni

dviy
dξ

+ β
dΦ

dξ
− Ωviz + βP⊥

1

ni

dni
dξ

= 0, (A1)

−M
ni

dviz
dξ

+ Ωviy = 0. (A2)

Using the value of viy from Eq. (26) in Eq. (A2), one
obtains

dviz
dξ

= Ω

[
ni
β

(
1− 1

ni

)
− α2

M2β

{
−ni + ni

∫
nidΦ

+
1

3
P‖ni

(
n3
i − 1

)}]
. (A3)

Differentiating Eq. (A1) w.r.t ξ and using the values viy
and dviz/dξ, we get(

3M2 + α2P‖n
4
i − β2P⊥n

2
i

n4
i

)(
dni
dξ

)2

−
(
M2 − α2P‖n

4
i − β2P⊥n

2
i

n3
i

)(
d2ni
dξ2

)
+
d2Φ

dξ2
= F (Φ).

(A4)

Using Eq. (5) one can express the above equation (A4)
in terms of the electrostatic potential Φ,

M2(κ− 1/2)

(κ− 3/2)2
(2κ− 2)

(
1− Φ

κ− 3/2

)2κ−3(
dΦ

dξ

)2

−M
2(κ− 1/2)

(κ− 3/2)

(
1− Φ

κ− 3/2

)2κ−2(
d2Φ

dξ2

)
+
α2P‖(κ− 1/2)

(κ− 3/2)2
(2κ)

(
1− Φ

κ− 3/2

)−2κ−1(
dΦ

dξ

)2

+
α2P‖(κ− 1/2)

(κ− 3/2)

(
1− Φ

κ− 3/2

)−2κ(
d2Φ

dξ2

)
+
P⊥β

2(κ− 1/2)

(κ− 3/2)2

(
1− Φ

κ− 3/2

)−2(
dΦ

dξ

)2

+
P⊥β

2(κ− 1/2)

(κ− 3/2)

(
1− Φ

κ− 3/2

)−1(
d2Φ

dξ2

)
+
d2Φ

dξ2
= F (Φ).

(A5)

Differentiating twice with respect to ξ, equation (A5)
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above reduces to

M2

2

d2

dξ2

(
1− Φ

κ− 3/2

)2κ−1

+
α2P‖

2

d2

dξ2

(
1− Φ

κ− 3/2

)−2κ+1

+β2P⊥(−κ+ 1/2)
d2

dξ2

[
ln

(
1− Φ

κ− 3/2

)]
+

(
d2Φ

dξ2

)
= F (Φ).

(A6)

⇒ d2S

dξ2
= F (Φ),

where

S =

[
Φ +

M2

2

(
1− Φ

κ− 3/2

)2κ−1

+
α2P‖

2

(
1− Φ

κ− 3/2

)−2κ+1

+β2P⊥ ln

(
1− Φ

κ− 3/2

)−κ+1/2]
.

Differentiating S with respect to ξ and squaring, we
write (

dS

dξ

)2

= [G(Φ)]
2

(
dΦ

dξ

)2

, (A7)

where

G(Φ) =

[
1−M2

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)2κ−2

+α2P‖

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)−2κ

+β2P⊥

(
κ− 1/2

κ− 3/2

)(
1− Φ

κ− 3/2

)−1
]
.

Multiplying both side of Eq. (A7) by dS
dξ , we obtain

d

dξ

[
1

2

(
G(Φ)

dΦ

dξ

)2
]

= F (Φ)G(Φ)
dΦ

dξ
.

Integrating the latter equation under the boundary
conditions, Φ → 0 and dΦ

dξ → 0 at ξ → ±∞, we obtain

equation (29).
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FIG. 1: (Color online) The critical Mach number values M1

(dashed curves, on top) and M2 (solid curves, at the bot-
tom) are depicted against relevant plasma parameters, namely
(top to bottom): (a) the superthermality index κ (taking
P‖ = 0.01 and P⊥ = 0.02, viz. P‖ < P⊥, and α = 0.7, 0.8, 0.9:
blue, red, green curves, respectively); (b) the superthermal-
ity index κ, with P‖ = 0.02, P⊥ = 0.01 (i.e., P‖ > P⊥)
and α = 0.7, 0.8, 0.9 (blue, red, green curves respectively);
(c) the parallel pressure P‖, with α = 0.8, κ = 3 and
P⊥ = 0.2, 0.4, 0.7 (blue, red, green curves respectively); (d)
the perpendicular pressure P⊥, with α = 0.7, κ = 3 and
P‖ = 0.2, 0.4, 0.7 (blue, red, green curves respectively).



13

0.0 0.1 0.2 0.3 0.4
-0.003

-0.002

-0.001

0.000

0.001

0.002

F

YHFL

a

-15 -10 -5 0 5 10 15
0.00

0.05

0.10

0.15

0.20

0.25

0.30

Ξ

F

b

-15 -10 -5 0 5 10 15
-0.06

-0.04

-0.02

0.00

0.02

0.04

0.06

Ξ

E

FIG. 2: (Color online) (a) The pseudopotential Ψ(Φ) is plot-
ted versus Φ for M = 0.75, P‖ = 0.01, P⊥ = 0.02, α = 0.8,Ω =
0.5 and κ = 3 for dot-dashed (green) curve; κ = 4 for dashed
(blue) curve; κ = 5 for solid (red) curve. (b) The correspond-
ing electrostatic potential (pulse) and (c) the resulting electric
field are depicted, for the same values as in the upper frame.
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FIG. 3: (Color online) (a) The pseudopotential Ψ(Φ) is plot-
ted versus Φ for κ = 3, P‖ = 0.01, P⊥ = 0.02, α = 0.8,Ω = 0.5
and M = 0.68 for dot-dashed (green) curve; M = 0.7 for
dashed (blue) curve; M = 0.75 for solid (red) curve. (b) The
corresponding electrostatic potential (pulse) and (c) the re-
sulting electric field are depicted, for the same values as in
the upper frame.
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FIG. 4: (Color online) (a) The pseudopotential Ψ(Φ) is plot-
ted versus Φ for κ = 3,M = 0.75, P‖ = 0.01, P⊥ = 0.03, α =
0.8 and Ω = 0.3 for dot-dashed (green) curve; Ω = 0.5 for
dashed (blue) curve; Ω = 0.7 for solid (red) curve. (b) The
corresponding electrostatic potential (pulse) and (c) the re-
sulting electric field are depicted, for the same values as in
the upper frame.
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FIG. 5: (Color online) (a) The pseudopotential Ψ(Φ) is de-
picted versus Φ for κ = 3,M = 0.7, P‖ = 0.03, P⊥ = 0.01,Ω =
0.5 and: α = 0.7 (dot-dashed green curve), α = 0.75 (dashed
blue curve), α = 0.8 (solid red curve). (b) The corresponding
electrostatic potential and (c) the resulting electric field are
shown.
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FIG. 6: (Color online) (a) The pseudopotential Ψ(Φ) is de-
picted versus Φ for κ = 3,M = 0.7, P⊥ = 0.01, α = 0.7,Ω =
0.3 and: P‖ = 0.03 (dot-dashed green curve), P‖ = 0.06
(dashed blue curve); P‖ = 0.09 (solid red curve). (b) The cor-
responding electrostatic potential and (c) the resulting elec-
tric field are shown.
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FIG. 7: (Color online) (a) The pseudopotential Ψ(Φ) is de-
picted versus Φ for κ = 3,M = 0.7, α = 0.7,Ω = 0.3 and:
P‖ = P⊥ = 0 (dot-dashed green curve); P‖ = 0.1 and
P⊥ = 0.02 (dashed blue curve); P‖ = 0.02 and P⊥ = 0.1
(solid red curve). (b) The corresponding electrostatic poten-
tial and (c) the resulting electric field are shown.


